JPH03122532A - Light power sensor - Google Patents

Light power sensor

Info

Publication number
JPH03122532A
JPH03122532A JP25681989A JP25681989A JPH03122532A JP H03122532 A JPH03122532 A JP H03122532A JP 25681989 A JP25681989 A JP 25681989A JP 25681989 A JP25681989 A JP 25681989A JP H03122532 A JPH03122532 A JP H03122532A
Authority
JP
Japan
Prior art keywords
thermocouple
laminated
heater
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25681989A
Other languages
Japanese (ja)
Other versions
JPH0760120B2 (en
Inventor
Tadashi Minatoguchi
湊口 正
Yuzuru Kobayashi
譲 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP1256819A priority Critical patent/JPH0760120B2/en
Publication of JPH03122532A publication Critical patent/JPH03122532A/en
Publication of JPH0760120B2 publication Critical patent/JPH0760120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To improve sensitivity by a method wherein each thermocouple piece of a plurality of thermocouples arranged in series on a substrate is laminated with an insulating layer interposed. CONSTITUTION:alpha Ge is deposited on the whole of the surface of an alumina substrate 4, so that a pattern of a thermocouple element (a) having a hot contact of 7mmphi and a cold contact of 16 mmphi be formed. Ta2N is sputtered for a resistance of a heater 2 for calibration on the back side of the substrate 4, and first an NiCr alloy and then Au are evaporated sequentially and patterned thereon as electrodes for the heater, so that the resistance shaped in a ring and the electrodes thereof be laminated. The resistance of this heater for calibra tion is adjusted to be prescribed value by heat treatment. On the thermocouple element (a) in the surface, an SiNx layer and an SiO2 layer are laminated and patterned, so that an insulating layer 8 be formed. An NiCr alloy is evaporated on the whole of this layer and patterned, so that a thermocouple element (b), a heat-equalizing film and an electrode be formed. A copper leaf and an electroless Ni P plating layer are laminated on the heater 2 for calibration on the back side and a light-sensing body subjected to a blackening process is bonded thereon.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は光パワーセンサに関し、詳しくは入射光を吸収
して熱に変換する受光体、変換された熱を熱起電力とし
て測定する熱電対及び熱電対の検出熱エネルギーを校正
する校正ヒータよりなる光パワーセンサに関するもので
ある。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to an optical power sensor, and more specifically to a photoreceptor that absorbs incident light and converts it into heat, and a thermocouple that measures the converted heat as thermoelectromotive force. The present invention also relates to an optical power sensor including a calibration heater that calibrates the detected thermal energy of a thermocouple.

【従来の技術1 第3図は従来光パワーの測定に用いられている光パワー
センサの裏面図で熱電対群の配列パターンを示す平面図
、第4図は第3図のB−B線の断面図を示す。
[Prior art 1] Fig. 3 is a back view of an optical power sensor conventionally used for measuring optical power, and a plan view showing the arrangement pattern of thermocouple groups. A cross-sectional view is shown.

第4図において、センサとしての受光体31と校正用ヒ
ータ32とが接着剤によって基板34上に接着され、基
板34の反対面には受光体31に発生した熱を測定する
熱電対群(サーモバ、イル)が取り付けられている。
In FIG. 4, a photoreceptor 31 as a sensor and a calibration heater 32 are bonded onto a substrate 34 with an adhesive, and on the opposite side of the substrate 34 there is a group of thermocouples (thermobar , il) is attached.

熱電対群は、第3図に示すように、受光体34に対応す
る基板34の反対面に積層された均熱膜35の周囲に、
温接点36を配置し、それぞれの熱電対を放射状に配置
して隣接する熱電対と冷接点37を直列に接続し熱起電
力を検出する。
The thermocouple group, as shown in FIG.
Hot junctions 36 are arranged, respective thermocouples are arranged radially, and adjacent thermocouples and cold junctions 37 are connected in series to detect thermoelectromotive force.

受光体は通常銅の箔膜に黒色被膜を設けたもので、黒色
被膜としては合焦が利用されていた。基板の裏面、受光
体に対応する部分には温度分布を均一にしてその周囲に
配置されている副数個の熱雷対の高温接点の起電力を均
一にする温度分布校正膜35が接着されている。
The photoreceptor is usually a copper foil coated with a black coating, and focusing was used as the black coating. A temperature distribution calibration film 35 is adhered to the back surface of the substrate, in a portion corresponding to the photoreceptor, to make the temperature distribution uniform and to make the electromotive force of the high-temperature contacts of several sub-thermal lightning pairs arranged around it uniform. ing.

受光体としては全黒被膜は全反射率が低く、機械的振動
や摩擦によって剥落し易く、また、高温条件下で水分を
吸収して反射率が増加するという問題がある。
As a photoreceptor, an all-black film has a low total reflectance, is easily peeled off due to mechanical vibration or friction, and also has the problem of absorbing moisture and increasing the reflectance under high-temperature conditions.

これに対し、発明者らが開発した黒色被膜(特願昭63
−231761号及び特願昭6:l−231760号明
細書に記載)は、ニッケル・リン合金の無電解めっき被
膜を形成し、これを酸化処理して得られ、その全反射率
は0.2%と極めて低く、かつ、その光吸収特性に波長
依存性が小さいという優れた性能を有し、しかも1強度
も十分あるので、機械的振動や摩擦によって剥落しにく
く、周囲温度条件に左右されず、水分を吸収しにくいな
どの利点を有する。
In contrast, a black film developed by the inventors (patent application filed in 1983)
-231761 and Japanese Patent Application No. 6:1-231760) is obtained by forming an electroless plating film of nickel-phosphorous alloy and oxidizing it, and its total reflectance is 0.2. %, and has excellent performance in that its light absorption properties have little wavelength dependence.Moreover, it has sufficient strength, so it is difficult to peel off due to mechanical vibration or friction, and is not affected by ambient temperature conditions. It has the advantage of not absorbing moisture easily.

〔発明が解決しようとする課題1 上記のニッケル・リン黒色被膜を光パワー測定のセンサ
として用いた場合、その感度を上げるためには受光体に
発生した熱を測定するサーモバイルの熱電対数をできる
だけ多くすることが好ましい。
[Problem to be solved by the invention 1 When the above nickel-phosphorus black film is used as a sensor for measuring optical power, in order to increase its sensitivity, the number of thermocouples of the thermopile that measures the heat generated in the photoreceptor should be increased as much as possible. It is preferable to increase the amount.

しかしながら、従来の光パワーセンサにおいては、第4
図に示すように、基板34の裏面に熱電対1例えばビス
マスとアンチモンとを真空蒸着によって順次隣接して配
置し、温接点36と冷接点37とを直列結合してサーモ
バイルを構成していたので、熱電対数を増加させると熱
電対線の幅が極めて狭くなり、そのため抵抗が増加する
ので、熱電対数の増加には限界があり、したがって感度
の向上が困難であった。
However, in conventional optical power sensors, the fourth
As shown in the figure, thermocouples 1, for example bismuth and antimony, were arranged adjacent to each other by vacuum evaporation on the back surface of a substrate 34, and a hot junction 36 and a cold junction 37 were connected in series to form a thermomobile. Therefore, when the number of thermocouples is increased, the width of the thermocouple wire becomes extremely narrow, which increases the resistance, so there is a limit to increasing the number of thermocouples, and it has therefore been difficult to improve sensitivity.

本発明の目的は、このような光パワーセンサにおいて、
感度の優れた光パワーセンサを提供するにある。
The object of the present invention is to provide such an optical power sensor,
The purpose of the present invention is to provide an optical power sensor with excellent sensitivity.

[課題を解決するための手段1 本発明は、従来熱雷対な構成する各金属を基板上に隣接
して配列したのに対し、絶縁層を介して積層配設するこ
とにより上記の課題を解決したものである。
[Means for Solving the Problems 1] The present invention solves the above problem by arranging the metals constituting a thermal lightning pair adjacently on a substrate, but by arranging them in layers with an insulating layer interposed therebetween. It is resolved.

すなわち1本発明は、入射光を吸収して熱に変換する受
光体、変換された熱を熱起電力として検出する熱電対及
び熱電対の検出熱エネルギーを校正する校正ヒータより
なる光パワーセンサにおいて、基板上に直列に配設され
た複数個の熱電対の各熱電対片が絶縁層を介して積層さ
れていることを特徴とする光パワーセンサを提供するも
のである。
That is, the present invention provides an optical power sensor comprising a photoreceptor that absorbs incident light and converts it into heat, a thermocouple that detects the converted heat as a thermoelectromotive force, and a calibration heater that calibrates the detected thermal energy of the thermocouple. The present invention provides an optical power sensor characterized in that thermocouple pieces of a plurality of thermocouples arranged in series on a substrate are laminated with an insulating layer interposed therebetween.

第1図は本発明の光パワーセンサの一実施例の熱電対群
の配置パターンを示し、積層体の一部を欠如して積層状
態を示しである。第2図は第1図のA−A線の断面図で
ある。
FIG. 1 shows an arrangement pattern of a thermocouple group in an embodiment of the optical power sensor of the present invention, and shows a stacked state with a part of the stacked body removed. FIG. 2 is a sectional view taken along line A--A in FIG. 1.

本発明の光パワーセンサにおいて、熱電対群の配置パタ
ーンは次のように行なわれる。
In the optical power sensor of the present invention, the arrangement pattern of the thermocouple group is performed as follows.

基板4の均熱膜5の周囲に、先ず熱伝対素子すが放射状
に配設され、次いでその上を熱雷対素子の温接点部6と
冷接点部7とを残して、絶縁層8で被覆する。さらにそ
の上に熱電対のもう一方の素子aが積層され、その温接
点6aと6bとが接合されて熱雷対が構成される。この
場合、この熱雷対素子aの冷接点部7aは隣の熱雷対の
素子すの冷接点部7bと直接接合される。
First, thermocouple elements are arranged radially around the heat-uniforming film 5 of the substrate 4, and then an insulating layer 8 is placed over the thermocouple elements, leaving the hot junction part 6 and the cold junction part 7 of the thermocouple element. Cover with Furthermore, the other element a of the thermocouple is laminated thereon, and its hot junctions 6a and 6b are joined to form a thermoelectric pair. In this case, the cold junction part 7a of this thermal lightning pair element a is directly joined to the cold junction part 7b of the adjacent thermal lightning pair element A.

すなわち、第1図に示すように、絶縁層8を挟んで積層
された熱電対の一方の素子aの冷接点部の側部が隣接す
る熱雷対の方に突出して接合部7aを形成し、該隣接熱
電対の素子すの突出した接合部7bと直接積層し結合す
る。
That is, as shown in FIG. 1, the side part of the cold junction part of one element a of the thermocouples stacked with the insulating layer 8 in between protrudes toward the adjacent thermal lightning pair to form a joint part 7a. , are directly laminated and connected to the protruding joint portion 7b of the element of the adjacent thermocouple.

一方、接合の行なわれない側の冷接点部は、それぞれの
素子が他の素子の接合部に接触しないよう欠如されたパ
ターンを形成している。直列結合された熱電対群の両端
部にはそれぞれ熱起電力測定用端子9及びIOが設けら
れる。
On the other hand, the cold contact portion on the side where bonding is not performed forms a pattern in which each element is cut out so that it does not come into contact with the bonding portion of other elements. Terminals 9 and IO for measuring thermoelectromotive force are provided at both ends of the series-coupled thermocouple group, respectively.

熱雷対素子aとbとを絶縁する絶縁層8は、温接点部を
残してほぼ円板状で、その外周部の熱雷対素子の上記冷
接点接合部7に対応する部分のみ欠如した凹部な有する
パターンに形成される。
The insulating layer 8 that insulates the thermal lightning couple elements a and b is approximately disk-shaped except for the hot junction, and only the portion of the outer periphery corresponding to the cold junction junction 7 of the thermal lightning couple element is missing. It is formed into a pattern with recesses.

藤 本発明の光パワーセンサの基板としては、絶縁性を有し
、材料としては雲母、セラミックス、ガラス、マイラー
等を挙げることがでる。ここでは厚さ30〜601I+
nのアルミナを用いた。
The substrate of the optical power sensor of Fujimoto's invention has insulating properties, and examples of the material include mica, ceramics, glass, mylar, and the like. Here the thickness is 30-601I+
n alumina was used.

隻光跡 本発明で光センサ素子として用いられる受光体は、光を
吸収してそのエネルギを熱エネルギに変換するものであ
れば任意のものが使用し得る。
As the photoreceptor used as the optical sensor element in the present invention, any photoreceptor can be used as long as it absorbs light and converts the energy into thermal energy.

般には熱容量の小さい、黒色処理された金属の薄膜が用
いられ、前記の全黒被膜、黒色被膜処理された無電解ニ
ッケル・リンめっき等のいずれでもよいが、センサとし
ての感度及び使用上の強度の点から全反射率の極めて小
さい黒色被膜処理された無電解ニッケル・リンめっきを
有する銅の薄膜が好ましく、特に特願昭63−2317
60号及び同63−2:11761号に記載されている
ニッケル・リン合金系黒色被膜を有する金属薄膜が好ま
しい。
In general, a thin film of black-treated metal with a small heat capacity is used, and it may be either the above-mentioned all-black coating or electroless nickel/phosphorus plating with a black coating, but it is difficult to use due to sensitivity and usage as a sensor. From the viewpoint of strength, a copper thin film with electroless nickel phosphorus plating treated with a black coating having extremely low total reflectance is preferred, especially as disclosed in Japanese Patent Application No. 63-2317.
60 and 63-2:11761, metal thin films having a black nickel-phosphorus alloy coating are preferred.

受光体の寸法は任意であるが、例えば直径6mm、厚さ
20μmの円形銅箔上に厚さ50μmの無電解ニッケル
・リンめっきを施し、酸化処理により黒色被膜を形成さ
せたものが用いられる。この受光体は校正用ヒータの上
に接着してもよいし、また1校正用ヒータの上に絶縁膜
を設け、その表面にめっき、蒸着等の手段で、銅層、無
電解ニッケル・リンめっき層を積層し、その表面を黒色
化処理してもよい。
Although the dimensions of the photoreceptor are arbitrary, for example, a circular copper foil having a diameter of 6 mm and a thickness of 20 μm is plated with electroless nickel/phosphorus to a thickness of 50 μm, and a black film is formed by oxidation treatment. This photoreceptor may be glued onto the calibration heater, or an insulating film may be provided on the calibration heater, and the surface may be coated with a copper layer, electroless nickel/phosphorous plating, etc. by plating, vapor deposition, etc. The layers may be laminated and the surfaces thereof may be subjected to blackening treatment.

佼m辷二夕 受光体と基板との間に配置され、熱電対群で検出された
熱起電力なヒータの加熱に要した電気量により校正する
Calibration is performed using the amount of electricity required to heat the thermoelectromotive force heater, which is placed between the photoreceptor and the substrate and detected by a group of thermocouples.

ヒータ材質は任意であるが、窒化タンタル(Ta、N1
等の膜などが用いられ、リング状のパターンの両端より
導線が引き出される。
The material of the heater is arbitrary, but tantalum nitride (Ta, N1
A conductive wire is drawn out from both ends of the ring-shaped pattern.

曳然」 受光体と対応した基板の反対面に積層される均熱膜は、
受光体とほぼ同じ大きさの円板状パターンで、金、銅な
どの熱伝導の良好な金属膜を、蒸着等の方法で積層させ
る。受光体に発生した熱は均熱膜の周囲に配置された熱
雷対の温接点に均等に伝達される。
The soaking film is laminated on the opposite side of the substrate that corresponds to the photoreceptor.
Metal films with good thermal conductivity, such as gold or copper, are laminated using a method such as vapor deposition in a disc-shaped pattern that is approximately the same size as the photoreceptor. The heat generated in the photoreceptor is evenly transferred to the hot junctions of the thermal lightning pairs arranged around the heat-uniforming film.

悠工月 熱電対の構成素子は、必要なパターンが蒸着又はCVD
等の手段で基板上に積層される。熱雷対材料としては、
B1−5b、Au−αGe等が用いられるが、金(Au
)とアモルファスゲルマニウム(αGe)の組み合わせ
が好ましい。
The components of the Yukozuki thermocouple are formed by vapor deposition or CVD.
It is laminated on a substrate by means such as. As thermal lightning protection material,
B1-5b, Au-αGe, etc. are used, but gold (Au
) and amorphous germanium (αGe) is preferred.

この場合、基板上に熱電対素子すとしてαGeのパター
ンを積層した後、絶縁層パターン、及び熱電対素子aと
してNi−Crを下地とするAuのパターンを順次積層
する。
In this case, after an αGe pattern is laminated on the substrate as a thermocouple element, an insulating layer pattern and an Au pattern with a Ni-Cr base as the thermocouple element a are successively laminated.

これらのパターンの積層はそれぞれの素材によって、蒸
着、スパッタリング、CVD等の積層手段、レジストに
よるパターニング及びエツチング等が組み合わされる。
Lamination of these patterns is performed using a combination of lamination methods such as vapor deposition, sputtering, and CVD, resist patterning, and etching, depending on the respective materials.

絶縁材としては窒化けい素、酸化けい素を挙げることが
できるが、一種類の絶縁材の被覆ではピンホール等によ
る絶縁不良を生じ易いので、二種類以上の材料で複層構
造とすることが好ましい、 絶縁層の被覆を施した後、熱雷対素子aを積層すると、
絶縁層のない部分で温接点の接合及び冷接点の直列結合
が行なわれ、熱電対群が構成される。
Silicon nitride and silicon oxide can be used as insulating materials, but coating with one type of insulating material tends to cause insulation defects due to pinholes, etc., so it is recommended to have a multilayer structure with two or more types of materials. Preferably, when the thermal lightning couple element a is laminated after being coated with an insulating layer,
The hot junctions are joined and the cold junctions are coupled in series in the part where there is no insulating layer, thereby forming a thermocouple group.

〔実施例1 以下本発明の実施例を示すが、本発明はこの実施例によ
って限定を受けるものではない。
[Example 1 Examples of the present invention will be shown below, but the present invention is not limited by these Examples.

実施例1 第1図及び第2図で示す形状及びパターンを有する12
対の熱電対群を有する光パワーセンサを作製した。
Example 1 12 having the shape and pattern shown in FIGS. 1 and 2
An optical power sensor with a pair of thermocouple groups was fabricated.

厚さ5haのアルミナ基板4の表面に、CVDによりα
Geを全面に約2am堆積させ、第1図に示す温接点径
7a+mφ、冷接点径161101の熱電対素子aのパ
ターンをフォトエツチングにより形成した。
α was applied to the surface of the alumina substrate 4 with a thickness of 5 ha by CVD.
Ge was deposited to a thickness of about 2 am on the entire surface, and a pattern of a thermocouple element a having a hot junction diameter of 7a+mφ and a cold junction diameter of 161101 as shown in FIG. 1 was formed by photoetching.

アルミナ基板の裏面に校正用ヒータ2の抵抗としてTa
aNを約0.11101スパツタリングし、その上にヒ
ータ用電極(図示せず)として先ずNiCr合金500
人1次いでAu llIn+を順次蒸着し、それぞれフ
ォトエツチングによるパターニングを2回行ない、リン
グ状の抵抗及びその電極を積層した。この校正用ヒータ
は熱処理により抵抗を所定の値に調整する。
Ta is used as the resistance of the calibration heater 2 on the back side of the alumina substrate.
About 0.11101 aN was sputtered, and then a NiCr alloy 500 was first applied as a heater electrode (not shown).
Then, AullIn+ was sequentially deposited, patterning was performed twice by photoetching, and ring-shaped resistors and their electrodes were laminated. The resistance of this calibration heater is adjusted to a predetermined value through heat treatment.

表面の熱電対素子aの上にS iN m層0.2amと
SiO□層0.51111を順次CVDにより2層に積
層し、フォトエツチングにより絶縁層8のパターンを形
成せしめた。
On the thermocouple element a on the front surface, a SiN m layer of 0.2 am and a SiO□ layer of 0.51111 mm were sequentially laminated in two layers by CVD, and a pattern of the insulating layer 8 was formed by photoetching.

更に、その上にNiCr合金(500人)及びAu(l
11mlを順次全面蒸着し、フォトエツチングにより熱
電対素子す、均熱膜及び電極のパターンを形成させた。
Furthermore, NiCr alloy (500 people) and Au (l
11 ml of the solution was sequentially deposited over the entire surface, and patterns of a thermocouple element, a soaking film, and an electrode were formed by photoetching.

裏面の校正用ヒータの上には20μmの銅箔と3011
1t+の無電解ニッケル・リンめっき層を積層し、その
表面を黒化処理して得られた6順φの受光体を接着した
There is a 20 μm copper foil and 3011 on the calibration heater on the back side.
A 6-order diameter photoreceptor obtained by laminating a 1t+ electroless nickel-phosphorus plating layer and blackening the surface was adhered.

比較例1 従来品の例として、第3図に示す6対の熱電対群を有す
る光パワーセンサを作製した。
Comparative Example 1 As an example of a conventional product, an optical power sensor having six thermocouple pairs shown in FIG. 3 was manufactured.

受光体、校正用ヒータ、基板、熱電対素子abは実施例
1と同一であり、熱電対素子の厚さ及び幅も実施例と実
質的に同じであるが、熱雷対素子aとbとを絶縁体を介
して積層せず、第3図のように基板上に隣接した配置さ
れ直列に接続した。
The photoreceptor, the calibration heater, the substrate, and the thermocouple element ab are the same as in Example 1, and the thickness and width of the thermocouple element are also substantially the same as in the example. They were not stacked with an insulator in between, but were placed adjacent to each other on the substrate and connected in series as shown in FIG.

比較例2 比較例1において、熱電対のつい数を12とした以外は
、比較例1と同様に構成した。すなわち熱電対素子a及
びbの幅は約半分とした。
Comparative Example 2 The structure was the same as that of Comparative Example 1 except that the number of thermocouples was 12. That is, the widths of thermocouple elements a and b were approximately half.

以上の31Φの光パワーセンサを比較すると次表のとお
りである。
The following table shows a comparison of the above 31Φ optical power sensors.

表 【作用及び効果1 本発明の光パワーセンサは、熱電対群の熱雷対素子を絶
縁層を介して積層するので、熱雷対の対数を増すことが
でき、検出熱起電力の感度を一トけることができる。ま
た、対数を増加させない場合には熱電対素子の幅を広く
取ることができ熱起電力測定の抵抗値を低くすることが
できる。このことは、いずれの場合にも熱起電力の測定
値に対するに対する測定ノイズの低減効果を有し、従来
より低レベルの光パワーの測定を可能にする。
Table [Function and Effect 1] The optical power sensor of the present invention stacks the thermal lightning pair elements of the thermocouple group via an insulating layer, so the logarithm of the thermal lightning pair can be increased and the sensitivity of the detected thermoelectromotive force can be increased. You can make one hit. Furthermore, when the logarithm is not increased, the width of the thermocouple element can be made wider, and the resistance value for thermoelectromotive force measurement can be lowered. In either case, this has the effect of reducing measurement noise on the measured value of thermoelectromotive force, making it possible to measure optical power at a lower level than in the past.

手続補正書動刻 平成2年 2月16日Procedural amendment document February 16, 1990

Claims (1)

【特許請求の範囲】[Claims] (1)入射光を吸収して熱に変換する受光体、変換され
た熱を熱起電力として検出する熱電対及び熱電対の検出
熱エネルギーを校正する校正ヒータよりなる光パワーセ
ンサにおいて、基板上に直列に配設された複数個の熱電
対の各熱電対片が絶縁層を介して積層されていることを
特徴とする光パワーセンサ。
(1) An optical power sensor consisting of a photoreceptor that absorbs incident light and converts it into heat, a thermocouple that detects the converted heat as thermoelectromotive force, and a calibration heater that calibrates the detected thermal energy of the thermocouple. An optical power sensor characterized in that each thermocouple piece of a plurality of thermocouples arranged in series is laminated with an insulating layer interposed therebetween.
JP1256819A 1989-09-30 1989-09-30 Optical power sensor Expired - Lifetime JPH0760120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256819A JPH0760120B2 (en) 1989-09-30 1989-09-30 Optical power sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256819A JPH0760120B2 (en) 1989-09-30 1989-09-30 Optical power sensor

Publications (2)

Publication Number Publication Date
JPH03122532A true JPH03122532A (en) 1991-05-24
JPH0760120B2 JPH0760120B2 (en) 1995-06-28

Family

ID=17297874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256819A Expired - Lifetime JPH0760120B2 (en) 1989-09-30 1989-09-30 Optical power sensor

Country Status (1)

Country Link
JP (1) JPH0760120B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074486A (en) * 1997-04-22 2000-06-13 Samsung Electronics Co., Ltd. Apparatus and method for manufacturing a semiconductor device having hemispherical grains
US6444262B1 (en) 1999-04-14 2002-09-03 Tokyo Electron Limited Thermal processing unit and thermal processing method
US6953739B2 (en) 1997-04-22 2005-10-11 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor device having hemispherical grains at very low atmospheric pressure using first, second, and third vacuum pumps
US7282712B2 (en) 2001-04-10 2007-10-16 Hamamatsu Photonics K.K. Infrared sensor
JP2020524792A (en) * 2017-06-23 2020-08-20 レーザー ポイント エッセ.エルレ.エルレ.Laser Point S.R.L. Electromagnetic radiation detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208525A (en) * 1989-02-09 1990-08-20 Nissan Motor Co Ltd Infrared rays sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208525A (en) * 1989-02-09 1990-08-20 Nissan Motor Co Ltd Infrared rays sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074486A (en) * 1997-04-22 2000-06-13 Samsung Electronics Co., Ltd. Apparatus and method for manufacturing a semiconductor device having hemispherical grains
US6953739B2 (en) 1997-04-22 2005-10-11 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor device having hemispherical grains at very low atmospheric pressure using first, second, and third vacuum pumps
US6444262B1 (en) 1999-04-14 2002-09-03 Tokyo Electron Limited Thermal processing unit and thermal processing method
US7282712B2 (en) 2001-04-10 2007-10-16 Hamamatsu Photonics K.K. Infrared sensor
JP2020524792A (en) * 2017-06-23 2020-08-20 レーザー ポイント エッセ.エルレ.エルレ.Laser Point S.R.L. Electromagnetic radiation detector

Also Published As

Publication number Publication date
JPH0760120B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US5798684A (en) Thin-film temperature sensor
RU2386934C2 (en) Method for manufacturing of device for detection of heat radiation comprising active microbolometre and passive microbolometre
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
KR100254611B1 (en) Manufacturing method and structure of thin-film infrared sensor
JPH03122532A (en) Light power sensor
JPH0640031B2 (en) Heat flow sensor and manufacturing method thereof
JPH05102534A (en) Optical power sensor
JP4250891B2 (en) Thermoelectric conversion element and temperature sensor
JPH05102533A (en) Manufacture of optical power sensor
JP2020153668A (en) Composite sensor
JPS6057681B2 (en) temperature detection element
JP2011018689A (en) Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion
JP2011018688A (en) Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion
JP2753905B2 (en) Pyroelectric element
EP0323937B1 (en) Support structure for a gas sensor
JP2727541B2 (en) Manufacturing method of thin film thermistor
JP3637665B2 (en) Pyroelectric infrared detector
JP2793615B2 (en) Infrared sensor
JPH02206733A (en) Infrared ray sensor
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
JPH06260686A (en) Layered thermopile and manufacture thereof
JP2901936B2 (en) Multilayer thin film composed of metal and inorganic insulating material
JPH07167715A (en) Composite thermistor temperature sensor
JP2001237464A (en) Infrared sensor
JPS6186622A (en) Thermoelectric effect type power sensor