JPH05102533A - Manufacture of optical power sensor - Google Patents

Manufacture of optical power sensor

Info

Publication number
JPH05102533A
JPH05102533A JP3080432A JP8043291A JPH05102533A JP H05102533 A JPH05102533 A JP H05102533A JP 3080432 A JP3080432 A JP 3080432A JP 8043291 A JP8043291 A JP 8043291A JP H05102533 A JPH05102533 A JP H05102533A
Authority
JP
Japan
Prior art keywords
optical power
film
power sensor
substrate
thermopile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3080432A
Other languages
Japanese (ja)
Inventor
Tadashi Minatoguchi
正 湊口
Yuzuru Kobayashi
譲 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP3080432A priority Critical patent/JPH05102533A/en
Publication of JPH05102533A publication Critical patent/JPH05102533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve the sensitivity of an optical power sensor which detects the heat converted by a photodetector as a thermoelectromotive force with a thermopile. CONSTITUTION:When a thermopile is formed on a substrate by using Au-Ge thermocouples, a Ge film deposited on the substrate is heat-treated at 580-630 deg.C for one minute or more. Thereby the area resistance of the Ge film of the thermocouple element is reduced to be 1/10, so that the number of thermocouples can be remarkably increased by reducing the element width. Hence an optical power sensor of high sensitivity can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光パワーセンサの製造方
法に関し、詳しくは基板上に熱電対の構成素子として金
とゲルマニウムを用いたサーモパイルを有する、受光体
により変換された熱を熱起電力として検出する光パワー
センサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical power sensor, and more particularly, to a thermoelectromotive force for converting heat converted by a photoreceptor having a thermopile using gold and germanium as constituent elements of a thermocouple on a substrate. The present invention relates to a method for manufacturing an optical power sensor for detecting as.

【0002】[0002]

【従来の技術】第3図は従来光パワーの測定に用いられ
ている光パワーセンサのサーモパイル(熱電対群)の配
列パターンを示す平面図、第4図は第3図のA−A線の
断面図を示す。
2. Description of the Related Art FIG. 3 is a plan view showing an arrangement pattern of thermopiles (thermocouple groups) of an optical power sensor conventionally used for measuring optical power, and FIG. 4 is a line AA of FIG. A sectional view is shown.

【0003】第4図において、受光体31が基板34の
受光側の校正用ヒータ32上に接着され、基板34のセ
ンサ側には受光体31に発生した熱を測定する熱電対群
が取り付けられている。
In FIG. 4, a photoreceptor 31 is adhered onto a calibration heater 32 on the light-receiving side of a substrate 34, and a thermocouple group for measuring the heat generated in the photoreceptor 31 is attached to the sensor side of the substrate 34. ing.

【0004】熱電対群は、第3図に示すように、基板3
4の受光側の受光体34に対応するセンサ側の面上に積
層された均熱膜35の周囲に温接点36を配置し、それ
ぞれの熱電対を放射状に配置して隣接する熱電対と冷接
点37を直列に接続してサーモパイルを構成し、その端
部の出力端子38より熱起電力を検出する。
As shown in FIG. 3, the thermocouple group includes a substrate 3
4, the hot junctions 36 are arranged around the heat equalizing film 35 laminated on the surface of the sensor side corresponding to the light receiving body 34 of the light receiving side, and the thermocouples are arranged radially to cool the adjacent thermocouples. The contact 37 is connected in series to form a thermopile, and the thermoelectromotive force is detected from the output terminal 38 at the end thereof.

【0005】このような光パワーセンサを製造するに
は、第4図に示すように、基板34のセンサ側に熱電対
素子、例えばビスマスとアンチモンあるいは金(Au)と
ゲルマニウム(Ge)をCVD、真空蒸着などによって順
次隣接して配置し、温接点36と冷接点37とを直列結
合してサーモパイルを構成し、その末端に出力端子を設
けていた。
To manufacture such an optical power sensor, as shown in FIG. 4, a thermocouple element such as bismuth and antimony or gold (Au) and germanium (Ge) is formed on the sensor side of the substrate 34 by CVD, They are arranged next to each other in sequence by vacuum evaporation or the like, and the hot junction 36 and the cold junction 37 are connected in series to form a thermopile, and an output terminal is provided at the end thereof.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うにして製造される従来の光パワーセンサは、サーモパ
イルの熱電対数を増加させると熱電対素子の幅が極めて
狭くなり、そのため抵抗が増加するので、熱電対数の増
加には限界があり、したがって感度の向上が困難であっ
た。
However, in the conventional optical power sensor manufactured in this manner, when the number of thermocouples in the thermopile is increased, the width of the thermocouple element becomes extremely narrow, and therefore the resistance is increased. There was a limit to the increase in the number of thermocouples, so it was difficult to improve the sensitivity.

【0007】[0007]

【課題を解決するための手段】本発明は、熱電対を構成
する素子として従来用いられていたGeの堆積膜を、特定
温度で熱処理することにより、その抵抗を大幅に低下せ
しめ、サーモパイルの構成熱電対数を大幅に増加するこ
とを可能にし、光パワーセンサの感度を向上せしめたも
のである。
According to the present invention, a Ge deposited film, which has been conventionally used as an element constituting a thermocouple, is heat-treated at a specific temperature to significantly reduce its resistance, thereby forming a thermopile. It is possible to greatly increase the number of thermocouples and improve the sensitivity of the optical power sensor.

【0008】すなわち、本発明は、基板上に熱電対の構
成素子として金とGeを用いたサーモパイルを有する、受
光体により変換された熱を熱起電力として検出する光パ
ワーセンサの製造において、基板上に堆積させたGeを 5
80〜630 ℃の温度で少なくとも1分間熱処理することを
特徴とする光パワーセンサの製造方法である。
That is, the present invention provides a substrate for manufacturing an optical power sensor which has a thermopile using gold and Ge as constituent elements of a thermocouple on a substrate and which detects heat converted by a photoreceptor as a thermoelectromotive force. 5 Ge deposited on top
It is a method for manufacturing an optical power sensor, characterized by performing a heat treatment at a temperature of 80 to 630 ° C. for at least 1 minute.

【0009】図1は本発明の光パワーセンサの一実施例
のセンサ側の平面図で、熱電対群の配置パターンを示
し、図2は図1の受光側の平面図である。
FIG. 1 is a plan view of a sensor side of an embodiment of the optical power sensor of the present invention, showing an arrangement pattern of thermocouple groups, and FIG. 2 is a plan view of the light receiving side of FIG.

【0010】本発明の光パワーセンサの構成は、基本的
には図3の従来の光パワーセンサと同じでよよいが、そ
のサーモパイルを構成する熱電対数を大幅に増加させる
ことができる。
The structure of the optical power sensor of the present invention may be basically the same as that of the conventional optical power sensor of FIG. 3, but the number of thermocouples constituting the thermopile can be greatly increased.

【0011】増加可能な熱電対数は、要求される感度、
全抵抗、形成可能な素子パターン等、実用に即して決め
られるが、通常は図3の従来のサーモパイルを、単層の
ままその対数を増加させることにより必要な感度向上を
計ることができる。また、必要に応じて、熱電対素子を
絶縁層を介して積層したり、サーモパイル自体を複層化
することにより熱電子対数を増加させることも可能であ
る。
The number of thermocouples that can be increased depends on the required sensitivity,
Although the total resistance, the element pattern that can be formed, and the like are determined according to practical use, it is usually possible to increase the necessary sensitivity by increasing the logarithm of the conventional thermopile of FIG. 3 as a single layer. Further, if necessary, it is also possible to increase the number of thermoelectron pairs by laminating thermocouple elements via an insulating layer or by forming the thermopile itself into a multilayer.

【0012】図1に示すように、基板1のセンサ側の均
熱膜2の周囲に、放射状にパタ−ニングされて配設され
た熱伝対素子bとしてのGe膜3と熱電対素子aとしての
NiCr・Au膜4とが温接点5及び冷接点6で接合されてサ
ーモパイルを構成し、サーモパイルの両端部にはそれぞ
れ熱起電力測定用の出力端子7及び8が設けられてい
る。
As shown in FIG. 1, a Ge film 3 as a thermocouple element b and a thermocouple element a, which are radially arranged and arranged around the sensor-side soaking film 2 on the sensor side of the substrate 1. As
The NiCr / Au film 4 is joined to the hot junction 5 and the cold junction 6 to form a thermopile, and output terminals 7 and 8 for measuring thermoelectromotive force are provided at both ends of the thermopile.

【0013】基板1の反対の受光側には、図2に示すよ
うに、校正用ヒータ9とヒータ入力端子10及び11が
設けられ、校正用ヒータ9の表面にはセンサ側の均熱板
に対応する位置に受光体12(省略)が接着されてい
る。
As shown in FIG. 2, a calibration heater 9 and heater input terminals 10 and 11 are provided on the light receiving side opposite to the substrate 1. The calibration heater 9 has a soaking plate on the sensor side on the surface thereof. The light receiver 12 (omitted) is adhered to the corresponding position.

【0014】以下本発明の製造方法について説明する。The manufacturing method of the present invention will be described below.

【0015】本発明の光パワーセンサの基板1として
は、絶縁性を有し、材料としては雲母、セラミックス、
ガラス、マイラー等を挙げることができるが、機械的強
度及び時定数の点でアルミナが好ましく、更にじん性及
び熱伝導度の点で優れているジルコニアは、基板1の厚
さを50μm 以下にすることができ、センサの分解能を高
めることができるので特に好ましい。
The substrate 1 of the optical power sensor of the present invention has an insulating property, and its material is mica, ceramics,
Although glass, mylar, etc. can be mentioned, alumina is preferable in terms of mechanical strength and time constant, and zirconia which is excellent in toughness and thermal conductivity makes the thickness of the substrate 1 50 μm or less. It is particularly preferable because it is possible to improve the resolution of the sensor.

【0016】本発明の熱電対の構成素子としては、Auと
Geの組み合わせが用いられ、まず熱電素子bとしてのGe
を基板1のセンサ側に蒸着又はCVD等の手段で堆積さ
せる。堆積層の厚さは 2μm 程度で、その面積抵抗を 1
20程度とすることが好ましい。
The constituent elements of the thermocouple of the present invention include Au and
A combination of Ge is used. First, Ge as thermoelectric element b is used.
Is deposited on the sensor side of the substrate 1 by means such as vapor deposition or CVD. The thickness of the deposited layer is about 2 μm, and its sheet resistance is 1
It is preferably about 20.

【0017】基板1上に約 2μm に堆積されたアモルフ
ァス又は微結晶のGe膜は、窒素等の不活性ガス中又は真
空中、 580〜630 ℃の温度で、 1〜5 分、好ましくは 2
〜3分間加熱された後、 100℃以下まで徐冷される。こ
の熱処理によりGe膜の抵抗値はもとの堆積層のままより
1/10に下がり、サーモパイルの微細パターン化が可能と
なる。
The amorphous or microcrystalline Ge film deposited to a thickness of about 2 μm on the substrate 1 is in an inert gas such as nitrogen or in vacuum at a temperature of 580 to 630 ° C. for 1 to 5 minutes, preferably 2
After heating for ~ 3 minutes, it is slowly cooled down to 100 ℃ or less. By this heat treatment, the resistance value of the Ge film is
It can be reduced to 1/10, enabling the thermopile to be finely patterned.

【0018】上記熱処理において、加熱温度が上記範囲
より低いときは、Ge膜の抵抗値の低下が不充分であり、
また、上記範囲より高い温度での熱処理でも、抵抗値の
低下が不充分である。加熱及び冷却は 1℃/秒程度の速
度で行ない、急熱及び急冷は好ましくない。
In the above heat treatment, when the heating temperature is lower than the above range, the decrease in the resistance value of the Ge film is insufficient,
Further, even if the heat treatment is performed at a temperature higher than the above range, the reduction of the resistance value is insufficient. Heating and cooling are performed at a rate of about 1 ° C / sec, and rapid heating and rapid cooling are not preferable.

【0019】熱処理されたGe膜は、図1の熱電素子bと
して必要なパターニングをを行なった後、パターン化さ
れたGe膜3の表面を、次の受光側処理のため保護膜で被
覆する。保護膜としては、絶縁性のある窒化けい素が好
ましい。
The heat-treated Ge film is subjected to patterning necessary for the thermoelectric element b of FIG. 1, and then the surface of the patterned Ge film 3 is covered with a protective film for the next light-receiving side treatment. Insulating silicon nitride is preferable as the protective film.

【0020】次いで基板1の反対側(受光側)に校正用
ヒータ9及び導線がスパッタリング、蒸着等で取付けら
れる。ヒータ材質は任意であるが、窒化タンタル(Ta2N)
等の膜などが用いられ、リング状のパターンの両端より
導線が引き出される。
Next, the calibration heater 9 and the lead wire are attached to the opposite side (light receiving side) of the substrate 1 by sputtering, vapor deposition or the like. The heater material is arbitrary, but tantalum nitride (Ta 2 N)
A film such as the above is used, and the conductive wire is drawn from both ends of the ring-shaped pattern.

【0021】センサ側のGe膜パターンの温接点及び冷接
点と中心の均熱膜2に当る部分の保護膜を除去する。
The protective film is removed from the hot and cold junctions of the Ge film pattern on the sensor side and the portion corresponding to the uniform heating film 2 at the center.

【0022】その上にNi-Cr を下地とするAuを積層し、
図1の熱電対素子a、出力端子及び均熱膜2のパターン
化を行ない、サーモパイルが構成される。
On top of that, Au with Ni-Cr as a base is laminated,
A thermopile is formed by patterning the thermocouple element a, the output terminal and the heat equalizing film 2 of FIG.

【0023】これらの各パターンの積層及びパターニン
グは、それぞれの素材によって、蒸着、スパッタリン
グ、CVD等の積層手段、レジストによるパターニング
及びエッチング等が組み合わされる。
For stacking and patterning each of these patterns, a stacking means such as vapor deposition, sputtering, and CVD, patterning and etching with a resist, etc. are combined depending on the respective materials.

【0024】最後にセンサ側の均熱膜2に対応する受光
側の校正ヒータの上に受光体を接着し、必要な検査を行
なった後、サーモパイル出力端子及びヒータ端子に導線
(図示せず)を取付けて光パワーセンサが完成する。
Finally, a photoreceptor is adhered onto the calibration heater on the light receiving side corresponding to the heat equalizing film 2 on the sensor side, and after a necessary inspection is conducted, lead wires (not shown) are connected to the thermopile output terminal and the heater terminal. And the optical power sensor is completed.

【0025】本発明で光センサ素子として用いられる受
光体は、光を吸収してそのエネルギを熱エネルギに変換
するものであれば任意のものが使用し得る。一般には熱
容量の小さい、黒色処理された金属の薄膜が用いられ、
金黒被膜、黒色被膜処理された無電解ニッケル・リンめ
っき等が用いられるが、センサとしての感度及び使用上
の強度の点から、全反射率の極めて小さい、黒色被膜処
理された無電解ニッケル・リンめっきを有する銅の薄膜
が好ましく、特に特願昭63-231760 号及び同63-231761
号に記載されているニッケル・リン合金系黒色被膜を有
する金属薄膜が好ましい。
The light receiving body used as the optical sensor element in the present invention may be any one as long as it absorbs light and converts the energy into heat energy. Generally, a black treated metal thin film with a small heat capacity is used,
Electroless nickel / phosphorus plating with gold black coating or black coating is used, but from the viewpoint of sensitivity as a sensor and strength in use, electroless nickel with black coating with extremely low total reflectance is used. A copper thin film having phosphorous plating is preferable, and especially Japanese Patent Application Nos. 63-231760 and 63-231761.
A metal thin film having a nickel-phosphorus alloy-based black coating described in JP-A No. 1994-242242 is preferable.

【0026】受光体の寸法は任意であるが、例えば直径
6mm、厚さ20 mの円形銅箔上に厚さ50 mの無電解ニッケ
ル・リンめっきを施し、酸化処理により黒色被膜を形成
させたものが用いられる。この受光体は校正用ヒータ9
の上に接着してもよいし、また、校正用ヒータ9の上に
絶縁膜を設け、その表面にめっき、蒸着等の手段で、銅
層、無電解ニッケル・リンめっき層を積層し、その表面
を黒色化処理してもよい。
Although the size of the photoreceptor is arbitrary, for example, the diameter
A circular copper foil with a thickness of 6 mm and a thickness of 20 m is electrolessly plated with nickel-phosphorus with a thickness of 50 m, and a black film is formed by oxidation treatment. This photoreceptor is a heater 9 for calibration.
Alternatively, an insulating film may be provided on the calibration heater 9, and a copper layer and an electroless nickel / phosphorus plating layer may be laminated on the surface by a means such as plating or vapor deposition. The surface may be blackened.

【0027】[0027]

【作用】堆積によって形成されたGe膜を熱処理すること
により、その面積抵抗は1/10に低下するので、サーモパ
イルの対数を増加させて、Ge膜素子の巾の減少及び総長
の増加による抵抗の増加を見込んでも、なおサーモパイ
ルの全抵抗を従来より低くすることができ、光パワーセ
ンサの感度を大幅に向上させることができる。
[Function] When the Ge film formed by deposition is heat-treated, its sheet resistance is reduced to 1/10, so the logarithm of the thermopile is increased to decrease the resistance of the Ge film element due to the decrease in width and increase in the total length. Even if the increase is expected, the total resistance of the thermopile can be made lower than before, and the sensitivity of the optical power sensor can be greatly improved.

【0028】[0028]

【実施例】以下本発明の実施例を示すが、本発明はこの
実施例によって限定を受けるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples.

【0029】実施例1 22mm平方で厚さ50μm のアルミナ基板1上に、厚さ約 2
μm のGe膜をプラズマCVD法により堆積した。堆積層
の面積抵抗は 125Ω/Sq であった。
Example 1 On an alumina substrate 1 having a size of 22 mm square and a thickness of 50 μm, a thickness of about 2
A μm Ge film was deposited by the plasma CVD method. The sheet resistance of the deposited layer was 125 Ω / Sq.

【0030】この堆積基板1を電気炉に入れ、毎秒 1℃
の昇温速度で 600℃まで加熱し、この温度で 2分間保持
した後、毎秒1℃の冷却速度で冷却し、炉内温度が 400
℃になった後は、炉内で 100℃以下まで自然放冷した。
取出した基板1のGe膜層の面積抵抗は10Ω/Sq に低下し
ていた。
This deposition substrate 1 was placed in an electric furnace and was heated at 1 ° C./sec.
It is heated to 600 ℃ at a heating rate of, held at this temperature for 2 minutes, and then cooled at a cooling rate of 1 ℃ per second.
After the temperature reached ℃, it was naturally cooled to 100 ℃ or less in the furnace.
The sheet resistance of the Ge film layer of the taken-out substrate 1 was lowered to 10 Ω / Sq.

【0031】熱処理された基板1上のGe膜膜をフォトエ
ッチングにより図1の熱電対素子bをパターニングし、
更にその表面に紫外線CVDによりSiNxの保護膜を堆積
した。
The heat-treated Ge film on the substrate 1 is photoetched to pattern the thermocouple element b of FIG.
Further, a SiN x protective film was deposited on the surface by ultraviolet CVD.

【0032】次いで基板1の受光側に、金属Taをターゲ
ットとしてAr+N2 によるスパッタリングでTaN 堆積及び
NiCr・Auの蒸着をフォトエッチングによるパターニング
と組合わせて、図2のヒータ回路を形成させた。
Then, TaN is deposited on the light-receiving side of the substrate 1 by sputtering with Ar + N 2 using metallic Ta as a target, and
NiCr / Au deposition was combined with photoetching patterning to form the heater circuit of FIG.

【0033】センサ側の保護膜をパターニングして円形
の均熱膜2部、Ge膜素子の温接点及び冷接点を露出さ
せ、その上にNiCr・Au の蒸着膜を形成し、NiCr・Au 膜を
パターニングして図1の均熱膜2及び熱電対素子aを形
成させ、サーモパイルを完成した。
The protective film on the sensor side is patterned to expose the circular heat equalizing film 2 part, the hot junction and the cold junction of the Ge film element, and the vapor deposition film of NiCr.Au is formed on it to form the NiCr.Au film. Was patterned to form the heat equalizing film 2 and the thermocouple element a in FIG. 1 to complete the thermopile.

【0034】受光側のヒータ上にニッケル・リン合金系
黒色被膜の受光素子を接着し、光パワーセンサとしての
諸性質を測定した結果を表1に示す。
Table 1 shows the results obtained by adhering a nickel-phosphorus alloy black coating light-receiving element on the light-receiving side heater and measuring various properties as an optical power sensor.

【0035】比較例1 従来品の例として、第3図に示す 6対の熱電対群を有す
る光パワーセンサを作製した。
Comparative Example 1 As an example of a conventional product, an optical power sensor having 6 pairs of thermocouples shown in FIG. 3 was manufactured.

【0036】受光体、校正用ヒータ9、基板1、熱電対
素子a,bは実施例1と同一であり、熱電対素子の厚さ
も実施例と実質的に同じであるが、熱電対素子bは熱処
理を行なわなかった。その諸性質を表1に示す。
The photoreceptor, the heater 9 for calibration, the substrate 1, and the thermocouple elements a and b are the same as those of the first embodiment, and the thickness of the thermocouple elements is substantially the same as that of the first embodiment, but the thermocouple element b is used. Was not heat treated. The various properties are shown in Table 1.

【0037】なお、表中の感度及び抵抗値はセンサ自体
の実測値であり、また、雑音電圧はセンサ入力がないと
きの出力電圧で、分解能は測定可能な最小入力であり、
いずれも比較例1の値を1として比較値で示した。
The sensitivity and resistance values in the table are actual measured values of the sensor itself, the noise voltage is the output voltage when there is no sensor input, and the resolution is the minimum measurable input,
In all cases, the value of Comparative Example 1 was set to 1 and shown as a comparative value.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例2 基板1として厚さ30μm のジルコニア板を用いたほか
は、実施例1と同様にして光パワーセンサを作製した。
表1に示すように、雑音電圧及び抵抗値は実施例1と同
等であるが、感度及び分解能が基板1の効果として大幅
に向上した。
Example 2 An optical power sensor was manufactured in the same manner as in Example 1 except that a zirconia plate having a thickness of 30 μm was used as the substrate 1.
As shown in Table 1, the noise voltage and the resistance value are the same as those in the first embodiment, but the sensitivity and the resolution are significantly improved as the effect of the substrate 1.

【0040】[0040]

【発明の効果】本発明の方法による光パワーセンサは、
熱電対素子bのGe膜膜の抵抗値を熱処理によって極めて
小さくなり、一方の素子aのAuの抵抗値は本来極めて小
さいので、素子のパターン巾を従来より狭くでき、サー
モパイルの熱電対数を大幅に増加することができ、か
つ、サーモパイル全体の抵抗値も増加しない。その結果
ノイズの増加なしに出力が増加し、感度及び分解能の改
善された光パワーセンサを得ることができる。
The optical power sensor according to the method of the present invention is
Since the resistance value of the Ge film of the thermocouple element b becomes extremely small by heat treatment, and the resistance value of Au of the other element a is originally extremely small, the pattern width of the element can be made narrower than before, and the number of thermocouples of the thermopile can be greatly increased. It can be increased, and the resistance value of the whole thermopile is not increased. As a result, the output is increased without increasing noise, and an optical power sensor with improved sensitivity and resolution can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光パワーセンサのセンサ側平面図であ
る。
FIG. 1 is a sensor side plan view of an optical power sensor of the present invention.

【図2】図1の光パワーセンサの受光側平面図で受光膜
を省略してある。
FIG. 2 is a plan view of a light receiving side of the optical power sensor of FIG. 1, in which a light receiving film is omitted.

【図3】従来の光パワーセンサの一部削除したセンサの
平面図である。
FIG. 3 is a plan view of a sensor obtained by partially removing the conventional optical power sensor.

【図4】図3のA−A断面図である。4 is a cross-sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

1 基板 2 均熱膜 3 Ge膜膜 4 NiCr・Au 膜 5 温接点 6 冷接点 7 出力端子 8 出力端子 9 校正用ヒータ 10 ヒータ入力端子 11 ヒータ入力端子 12 受光体 1 substrate 2 soaking film 3 Ge film film 4 NiCr / Au film 5 hot junction 6 cold junction 7 output terminal 8 output terminal 9 calibration heater 10 heater input terminal 11 heater input terminal 12 photoreceptor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に熱電対の構成素子として金とゲ
ルマニウムを用いたサーモパイルを有する、受光体によ
り変換された熱を熱起電力として検出する光パワーセン
サの製造において、基板上に堆積させたゲルマニウムを
580〜630 ℃の温度で少なくとも1分間熱処理すること
を特徴とする光パワーセンサの製造方法。
1. In the manufacture of an optical power sensor having a thermopile using gold and germanium as constituent elements of a thermocouple on a substrate and detecting heat converted by a photoreceptor as a thermoelectromotive force, it is deposited on the substrate. Germanium
A method for manufacturing an optical power sensor, which comprises heat-treating at a temperature of 580 to 630 ° C. for at least 1 minute.
【請求項2】 基板としてジルコニウムを用いることを
特徴とする請求項1に記載の光パワーセンサ。
2. The optical power sensor according to claim 1, wherein zirconium is used as the substrate.
JP3080432A 1991-03-20 1991-03-20 Manufacture of optical power sensor Pending JPH05102533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080432A JPH05102533A (en) 1991-03-20 1991-03-20 Manufacture of optical power sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080432A JPH05102533A (en) 1991-03-20 1991-03-20 Manufacture of optical power sensor

Publications (1)

Publication Number Publication Date
JPH05102533A true JPH05102533A (en) 1993-04-23

Family

ID=13718108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080432A Pending JPH05102533A (en) 1991-03-20 1991-03-20 Manufacture of optical power sensor

Country Status (1)

Country Link
JP (1) JPH05102533A (en)

Similar Documents

Publication Publication Date Title
US5393351A (en) Multilayer film multijunction thermal converters
EP0526551B1 (en) Semiconductor film bolometer thermal infrared detector
US5798684A (en) Thin-film temperature sensor
US11567025B2 (en) Gas sensor
US7541582B2 (en) Method for production of a device for thermal detection of radiation comprising an active microbolometer and a passive microbolometer
US5287081A (en) Multilayer thin film multijunction integrated micropotentiometers
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JP5609919B2 (en) Micro heater element
CN117222293A (en) Manufacturing method of multi-stack double-arrangement high-response flow chip
US7541585B2 (en) Radiant-energy-measuring device with two positions
JPH05102533A (en) Manufacture of optical power sensor
JPH03122532A (en) Light power sensor
JPH05102534A (en) Optical power sensor
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
JP2010225608A (en) Thermoelectric conversion element
JPH05307045A (en) Flow speed sensor
JP2727541B2 (en) Manufacturing method of thin film thermistor
KR100395246B1 (en) Resistance thermometer device for micro thermal sensors and its fabrication method
TW406446B (en) Thermopile infrared sensor and manufacture method thereof
KR102119757B1 (en) Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for fabricating the same
JPH0765937B2 (en) Sensor element and manufacturing method thereof
JPH03270084A (en) Manufacture of thermoelectric element
JP2010225609A (en) Thermoelectric conversion element
JPH02206733A (en) Infrared ray sensor
KR20010029228A (en) Sensor of electromagnetic wave detector