JP2901936B2 - Multilayer thin film composed of metal and inorganic insulating material - Google Patents

Multilayer thin film composed of metal and inorganic insulating material

Info

Publication number
JP2901936B2
JP2901936B2 JP9123168A JP12316897A JP2901936B2 JP 2901936 B2 JP2901936 B2 JP 2901936B2 JP 9123168 A JP9123168 A JP 9123168A JP 12316897 A JP12316897 A JP 12316897A JP 2901936 B2 JP2901936 B2 JP 2901936B2
Authority
JP
Japan
Prior art keywords
thin
metal
insulating material
layer
inorganic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9123168A
Other languages
Japanese (ja)
Other versions
JPH1070314A (en
Inventor
輝也 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP9123168A priority Critical patent/JP2901936B2/en
Publication of JPH1070314A publication Critical patent/JPH1070314A/en
Application granted granted Critical
Publication of JP2901936B2 publication Critical patent/JP2901936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、金属及び無機絶縁物質
からなる多層薄膜、殊に、熱電対用の材料として好適で
ある、金属薄膜と無機絶縁物質薄層とが交互になるよう
に、基板上に、厚さ30Å以上のコンスタンタン金属薄層
及び厚さ50Å以上の無機絶縁物質薄層からなる第一層と
厚さ30Å以上の鉄又は銅の金属薄層及び厚さ50Å以上の
無機絶縁物質薄層からなる第二層とが交互に積層されて
いる金属及び無機絶縁物質からなる多層薄膜に係るもの
である。 【0002】本発明に係る金属及び無機絶縁物質からな
る多層薄膜は、絶縁層を介し隣接した異種の金属薄層の
一端を接合することにより一対の熱電対を形成する。 【0003】このようにして形成された熱電対を多層に
亘り直列に接続することにより、高感度の熱電対温度計
や高出力の熱電池として使用することができる。 【0004】 【従来技術】近年、機器の小型軽量化に伴い、各種部品
の小型化及び機能性の改良、向上に関する開発が盛んで
ある。 【0005】熱電対温度計や熱電池等の分野においても
同様であり、温度差を感知する為の熱電対としては、出
来るだけ容積が小さく、しかも、低い常用温度、殊に、
100℃以下の温度で僅かな温度差でも感知できる高感度
なものが要求されている。 【0006】熱電対は、熱起電力を利用する為に直径0.
5mm 程度以上の異種の金属線の一端を接合したものであ
り、異種の金属線としては、従来から、鉄−コンスタン
タン( Cu 60%と Ni 40%からなる合金) 、銅−コンス
タンタン等が用いられている。 【0007】 【発明が解決しようとする課題】熱電対は、前述した通
り、出来るだけ容積が小さく、しかも、低い常用温度、
殊に、 100℃以下の温度で微小温度変化が検出できる高
感度なものであることが必要であるが、前出した公知の
金属線による場合には、直径数mm程度以上であり、しか
も、常用温度は 200℃以上、殊に、 600℃程度と高く、
感度も低いものである。また、感度を高める為に熱電対
を多数直列に接続した場合には、更に大型化するという
欠点があった。 【0008】即ち、熱起電力は、組み合わせる金属線の
種類と熱接点と冷接点との両接点の温度差によって定ま
るものであり、鉄−コンスタンタンでは、冷接点が0
℃、熱接点が 100℃の場合、両接点の温度差における熱
起電力は、5.32mV程度であり、感度を高める為には、鉄
−コンスタンタンの熱電対を多数直列に接続して束ねな
ければならず、また、実用上、金属の周囲を硝子等の絶
縁物質で被覆しなければならない為、必然的に容積が増
大し、実用化に際しての大きな障害となっていた。 【0009】また、銅−コンスタンタンでは、冷接点が
0℃、熱接点が 100℃の場合、両接点の温度差における
熱起電力は4.27mV程度であり、鉄−コンスタンタンの場
合と同様の欠点を有するものであった。 【0010】そこで、熱電対用の材料として、低い常用
温度、殊に、 100℃以下の温度で熱起電力が大きくその
結果、高感度であり、且つ、容積の小さい材料が強く要
望されている。 【0011】 【課題を解決する為の手段】本発明者は、低い常用温
度、殊に、 100℃以下の温度で、熱起電力が大きく、そ
の結果高感度であり、且つ、容積の小さい材料を得るべ
く種々検討を重ねた結果、本発明に到達したのである。 【0012】即ち、本発明は、金属薄層と無機絶縁物質
薄層である MgO薄層又は SiO薄層とが交互になるよう
に、基板上に、厚さ30〜100 Åのコンスタンタン金属薄
膜及び厚さ50〜200 Åの無機絶縁物質薄層からなる第一
層と厚さ30〜100 Åの鉄又は銅の金属薄層及び厚さ50〜
200 Åの無機絶縁物質薄層からなる第二層とが交互に積
層されており、且つ、前記無機絶縁物質薄層の相対する
側面の一端を下部金属薄層より交互に短くすることによ
って前記無機絶縁物質薄層を介して隣接する前記金属薄
層が連続して接合されている金属及び無機絶縁物質から
なる多層薄膜である。 【0013】 【作用】先ず、本発明において最も重要な点は、基板上
に、厚さ30Å以上のコンスタンタン金属薄層及び厚さ50
Å以上の無機絶縁物質薄層からなる第一層と厚さ30Å以
上の鉄又は銅の金属薄層及び厚さ50Å以上の無機絶縁物
質薄層からなる第二層とが交互に薄層状に積層されてい
ることに起因して多層構造を形成している為、容積が小
さくても大きな熱起電力が得られる点である。 【0014】本発明においては、絶縁物質薄層を含む多
層薄膜の厚さが 600Å程度の一対の熱電対の場合、0℃
と 100℃との両接点の温度差で5.32mV程度の熱起電力を
得ることができるので絶縁物質薄層を含む多層薄膜の厚
さが0.6 mm程度の薄いものであっても0℃と 100℃との
両接点の温度差で53200mV 程度の熱起電力を得ることが
できる。 【0015】本発明において、金属及び無機絶縁物質か
らなる多層薄膜を無機絶縁物質薄層を介して隣接する金
属薄層が連続して接合されるように形成することによ
り、金属が接続している側面に対して直角方向に切断す
るのみで多層に亘り直列結線した細線が得られる。 【0016】次に本発明実施にあたっての諸条件につい
て述べる。 【0017】本発明における金属及び無機絶縁物質から
なる薄膜は、真空槽中で蒸発材料を蒸発させ、蒸発源に
対向して設置されている基板上に蒸着させる、所謂、真
空蒸着法により得ることができる。 【0018】本発明における基板の種類としては、耐熱
性及び絶縁性を有する、例えば、ポリエチレンテレフタ
レート等のプラスチックの薄板を使用することができ
る。 【0019】本発明における基板は、温度が常温付近〜
200℃の温度範囲で使用することができるが、本発明に
おける金属を蒸着する場合の密着性を考慮すれば0〜10
0 ℃の範囲が好適である。 【0020】本発明におけるコンスタンタン薄層は、 C
u 60原子%、 Ni 40原子%の組成の合金を蒸発材料とし
て蒸発させ、基板上に蒸着させることにより得ることが
できる。 【0021】コンスタンタン薄層の厚さは、30Å以上で
ある。薄層の厚さが30Å未満である場合には、均質な連
続膜を作成することが困難である。容積の小型化を考慮
すれば、その上限は 100Åである。 【0022】本発明における無機絶縁物質薄層は、絶縁
性を有する無機物質、例えばMgO 又はSiO を蒸発材料と
して蒸発させ、基板上に蒸着させることにより得ること
ができる。 【0023】無機絶縁物質薄層の厚さは、50Å以上であ
る。薄層の厚さが50Å未満である場合には、ピンホール
等が生起し、絶縁性が不十分である。容積の小型化を考
慮すれば、その上限は 200Åである。 【0024】本発明における鉄又は銅の金属薄層は、鉄
又は銅を蒸発材料として蒸発させ、基板上に蒸着させる
ことにより得ることができる。 【0025】鉄又は銅の金属薄膜の厚さは、30Å以上で
ある。薄層の厚さが30Å未満である場合には、均質な連
続膜を作成することが困難である。容積の小型化を考慮
すればその上限は 100Åである。 【0026】 【実施例】次に、実施例並びに使用例により、本発明を
説明する。 【0027】実施例1 10-10torr 台の真空装置内で、コンスタンタン(60Cu-40
Ni) 、SiO 及びFeを電子銃加熱により蒸発させ、水晶発
振式膜厚計と連動し、互いに独立に働くステンレス製の
自動シャッターによって蒸着膜厚を制御しながら、ポリ
エチレンテレフタレートフィルム (厚さ1mm 80mm×80m
m) の基板上にコンスタンタン−SiO −Fe−SiO の順に
交互に蒸着させて金属薄膜及び絶縁物質薄層からなる薄
膜を作製した。 【0028】蒸着速度約 0.1A/sec 、蒸着中の真空度1
×10-8Torr程度、蒸着基板の温度を35℃に保持した条件
下で、コンスタンタン薄層 100Å、SiO 薄層 200Å、Fe
薄層100Å及びSiO 200 Åの一周期の厚さ600 Åの薄膜
を得た。 【0029】実施例2〜5 金属薄層の種類及び厚み、絶縁物質薄層の種類及び厚
み、多層薄膜の周期数及び厚みを種々変化させた以外
は、実施例1と同様にして金属薄層及び絶縁物質薄層か
らなる多層薄膜を作製した。 【0030】この時の主要特性を表1に示した。 【0031】 【表1】 【0032】実施例6 絶縁物質薄層を介して交互蒸着してなる隣接金属薄層の
相対する側面の一端が蒸着接合するように絶縁物質薄層
の蒸着を短くした以外は、実施例3と同様の条件で1000
対直列結線しているFe−コンスタンタンの膜厚 30 μm
の多層薄膜を作製した。 【0033】使用例1 実施例1で作製した薄膜を用いて、幅 1mm、長さ80mmの
細線を切り出し、側面を絶縁性フィルムでコートして一
端のFe薄層とコンスタンタン薄層とを溶接して熱接点と
した。他端は、エナメル被覆銅細線を用い、Fe層及びコ
ンスタンタン薄層に接続して冷接点とし、接点を氷水に
入れたデュワァービン中に設置した。 【0034】Fe薄層側をプラス端子、コンスタンタン薄
層側をマイナス端子として直流電圧計に接続した。熱接
点をガラスチューブに入れ、沸騰水中に差し入れたとこ
ろ 5.3mVを示した。 【0035】使用例2 実施例6で作製した多層膜を用いて、幅10mm、長さ50mm
のFe−コンスタンタンが1000対直列に結線している細線
を切り出し、側面を絶縁性フィルムでコートして、最外
層のFe薄層とコンスタンタン薄層にエナメル被覆銅線を
接続して冷接点とし、他端を熱接点とした。 【0036】熱接点の温度を80℃、冷接点の温度を20℃
とした時、使用例1と同様にして電圧を測定したところ
3.1V であった。ワットメーターによる出力が 2.4mWの
熱電池であった。 【0037】使用例3 使用例2で作製したものをユニットとし、Fe薄層をプラ
ス極、コンスタンタン層をマイナス極として5ユニット
を直列に接続し、ユニットの合体を作った。 【0038】このものは、両接点の温度が各々15℃と10
℃の時測定電圧は、1.25V であった。ワットメーターに
よる出力が 0.4mWの熱電池であった。 【0039】 【発明の効果】本発明に係る金属及び無機絶縁物質から
なる多層薄膜は、前出実施例に示した通り、基板上に、
コンスタンタン金属薄層及び無機絶縁物質薄層からなる
第一層と鉄又は銅の金属薄層及び無機絶縁物質薄層から
なる第二層とが交互に薄層状に積層されていることに起
因して多層構造を形成している為、容積が小さくても大
きな熱起電力が得られるので、高感度の熱電対温度計や
高出力の熱電池用の材料として好適である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer thin film composed of a metal and an inorganic insulating material, and more particularly, to a metal thin film and an inorganic insulating material suitable as a material for a thermocouple. On the substrate, a first layer consisting of a thin layer of constantan metal having a thickness of 30 mm or more and a thin layer of an inorganic insulating material having a thickness of 50 mm or more, and a metal of iron or copper having a thickness of 30 mm or more such that the thin layers alternate. The present invention relates to a multilayer thin film made of a metal and an inorganic insulating material in which a thin layer and a second layer made of an inorganic insulating material having a thickness of 50 mm or more are alternately laminated. [0002] A multilayer thin film comprising a metal and an inorganic insulating material according to the present invention forms a pair of thermocouples by joining one end of adjacent different metal thin layers via an insulating layer. [0003] By connecting the thermocouples thus formed in series over multiple layers, they can be used as a thermocouple thermometer with high sensitivity or a thermal battery with high output. [0004] In recent years, with the miniaturization and weight reduction of equipment, development relating to miniaturization of various components and improvement and improvement of functionality has been actively pursued. [0005] The same applies to the field of thermocouples, thermometers, thermocells, and the like. As a thermocouple for sensing a temperature difference, the volume is as small as possible, and at the same time, low ordinary temperature, especially,
There is a demand for a high-sensitivity sensor that can detect a slight temperature difference at a temperature of 100 ° C. or less. [0006] The thermocouple has a diameter of 0.
One end of a dissimilar metal wire of about 5 mm or more is joined, and as the dissimilar metal wire, iron-constantan (an alloy composed of 60% Cu and 40% Ni), copper-constantan, etc. have been used. ing. [0007] As described above, the thermocouple has a volume as small as possible and has a low ordinary temperature.
In particular, it is necessary to have a high sensitivity capable of detecting a minute temperature change at a temperature of 100 ° C. or less, but in the case of the above-mentioned known metal wire, the diameter is about several mm or more, and The normal temperature is higher than 200 ℃, especially about 600 ℃.
The sensitivity is also low. Further, when a large number of thermocouples are connected in series in order to increase the sensitivity, there is a disadvantage that the size is further increased. That is, the thermoelectromotive force is determined by the type of the metal wire to be combined and the temperature difference between the hot junction and the cold junction.
When the temperature of the hot junction is 100 ° C and the temperature of the hot junction is 100 ° C, the thermoelectromotive force at the temperature difference between the two contacts is about 5.32mV.To increase the sensitivity, a large number of iron-constantan thermocouples must be connected in series and bundled In addition, in practice, the surroundings of the metal must be covered with an insulating material such as glass, so that the volume is inevitably increased, which has been a major obstacle to practical use. In the case of copper-constantan, when the cold junction is at 0 ° C. and the hot junction is at 100 ° C., the thermoelectromotive force at the temperature difference between the two junctions is about 4.27 mV. Had. Therefore, as a material for a thermocouple, a material having a high thermoelectromotive force at a low ordinary temperature, particularly at a temperature of 100 ° C. or less, and as a result, a material having high sensitivity and small volume is strongly demanded. . SUMMARY OF THE INVENTION The present inventor has discovered that at low service temperatures, especially at temperatures below 100 ° C., a high thermoelectromotive force, resulting in a high sensitivity and small volume material. As a result of various studies to obtain the above, the present inventors have reached the present invention. That is, the present invention provides a constantan metal thin film having a thickness of 30 to 100 mm on a substrate such that a thin metal layer and a thin MgO layer or a thin SiO layer as an inorganic insulating material are alternately formed. A first layer consisting of a 50 to 200 mm thick inorganic insulating material thin layer and a 30 to 100 mm thick iron or copper thin metal layer and a 50 to 50 mm thick
A second layer made of a thin layer of inorganic insulating material of 200 mm is alternately laminated, and one end of the opposite side surface of the thin layer of inorganic insulating material is alternately shorter than the lower metal thin layer. It is a multilayer thin film made of a metal and an inorganic insulating material in which adjacent thin metal layers are continuously joined via an insulating material thin layer. First, the most important point in the present invention is that a constantan metal thin layer having a thickness of 30 mm or more and a thickness of 50 mm or more are formed on a substrate.
The first layer consisting of a thin layer of inorganic insulating material of at least 30 mm and the second layer consisting of a thin metal layer of iron or copper having a thickness of at least 30 mm and a thin layer of inorganic insulating material having a thickness of at least 50 mm are alternately laminated in a thin layer. The reason is that a large thermoelectromotive force can be obtained even if the volume is small because the multilayer structure is formed due to the above-mentioned reason. In the present invention, when a pair of thermocouples having a thickness of about 600.degree.
A thermoelectromotive force of about 5.32 mV can be obtained by the temperature difference between the two contacts between the temperature of 100 ° C and 100 ° C. Therefore, even if the thickness of the multilayer thin film including the insulating material thin layer is as thin as 0.6 mm, it is 0 ° C and 100 ° C. A thermoelectromotive force of about 53200 mV can be obtained by the temperature difference between the two contacts with ℃. In the present invention, the metal is connected by forming a multilayer thin film composed of a metal and an inorganic insulating material such that adjacent metal thin layers are continuously joined via the inorganic insulating material thin layer. Only by cutting in a direction perpendicular to the side surface, a thin wire connected in series over multiple layers can be obtained. Next, conditions for implementing the present invention will be described. In the present invention, the thin film composed of a metal and an inorganic insulating material is obtained by a so-called vacuum evaporation method in which an evaporation material is evaporated in a vacuum chamber and is evaporated on a substrate provided opposite to an evaporation source. Can be. As the type of the substrate in the present invention, for example, a plastic thin plate such as polyethylene terephthalate having heat resistance and insulating properties can be used. The substrate according to the present invention has a temperature around normal temperature to
Although it can be used in a temperature range of 200 ° C., it is 0 to 10 in consideration of the adhesion when depositing the metal in the present invention.
A range of 0 ° C. is preferred. In the present invention, the constantan thin layer is C
The alloy can be obtained by evaporating an alloy having a composition of 60 atomic% and 40 atomic% of Ni as an evaporating material and depositing it on a substrate. The thickness of the constantan thin layer is 30 ° or more. When the thickness of the thin layer is less than 30 mm, it is difficult to form a uniform continuous film. Considering miniaturization, the upper limit is 100 mm. The inorganic insulating substance thin layer in the present invention can be obtained by evaporating an inorganic substance having an insulating property, for example, MgO or SiO 2 as an evaporating material, and depositing it on a substrate. The thickness of the thin inorganic insulating material layer is 50 ° or more. When the thickness of the thin layer is less than 50 mm, pinholes and the like are generated, and the insulating property is insufficient. Considering the miniaturization of the volume, the upper limit is 200 mm. The thin metal layer of iron or copper in the present invention can be obtained by evaporating iron or copper as an evaporating material and depositing it on a substrate. The thickness of the iron or copper metal thin film is 30 ° or more. When the thickness of the thin layer is less than 30 mm, it is difficult to form a uniform continuous film. Considering the miniaturization of the volume, the upper limit is 100 mm. Next, the present invention will be described with reference to examples and use examples. Example 1 Constantan (60Cu-40) was placed in a vacuum device of the order of 10 -10 torr.
Ni), SiO and Fe are evaporated by heating with an electron gun, and a polyethylene terephthalate film (thickness: 1 mm 80 mm × 80m
On the substrate m), a thin film composed of a metal thin film and an insulating material thin layer was prepared by alternately depositing constantan-SiO-Fe-SiO in this order. Deposition rate: about 0.1 A / sec, degree of vacuum 1 during deposition
Under conditions of about × 10 −8 Torr and the temperature of the deposition substrate kept at 35 ° C., a thin layer of constantan 100Å, a thin layer of SiO 200Å, Fe
A thin film having a thickness of 100 mm and a thickness of 200 mm of SiO 2 in one cycle was obtained. Examples 2 to 5 Except that the type and thickness of the thin metal layer, the type and thickness of the thin insulating material, and the number of periods and the thickness of the multilayer thin film were variously changed, the same procedure as in Example 1 was carried out. And a multilayer thin film composed of a thin insulating material layer. The main characteristics at this time are shown in Table 1. [Table 1] Example 6 The procedure of Example 3 was repeated except that the deposition of the thin insulating material layer was shortened so that one end of the opposite side face of the adjacent metal thin layer formed by alternate deposition via the thin insulating material layer was joined by vapor deposition. 1000 under similar conditions
Film thickness of Fe-Constantan connected in series 30 μm
Was prepared. Use Example 1 Using the thin film prepared in Example 1, a thin wire having a width of 1 mm and a length of 80 mm was cut out, and the side was coated with an insulating film, and the Fe thin layer at one end and a constantan thin layer were welded. To make a hot junction. The other end was connected to the Fe layer and the thin layer of constantan using an enamel-coated copper fine wire to form a cold contact, and the contact was placed in a Dewar bin in ice water. The thin Fe layer was connected to a DC voltmeter with a plus terminal and the thin Constantan layer was used as a minus terminal. The hot junction was placed in a glass tube and placed in boiling water and showed 5.3 mV. Usage Example 2 Using the multilayer film prepared in Example 6, a width of 10 mm and a length of 50 mm
Cut out a thin wire that is connected in series with 1000 pairs of Fe-Constantan, coat the sides with an insulating film, connect the enamel-coated copper wire to the outermost Fe thin layer and the constantan thin layer to form a cold junction, The other end was a thermal contact. The temperature of the hot junction is 80 ° C. and the temperature of the cold junction is 20 ° C.
And the voltage was measured in the same manner as in Use Example 1.
3.1V. The output of the watt meter was a thermal battery of 2.4 mW. Use Example 3 Five units were connected in series with the unit produced in Use Example 2 as a unit, the thin Fe layer as a positive electrode, and the constantan layer as a negative electrode, to form a united unit. The temperature of both contacts is 15 ° C. and 10 ° C., respectively.
The measured voltage at ℃ was 1.25V. The output of the wattmeter was 0.4 mW. The multilayer thin film comprising a metal and an inorganic insulating material according to the present invention is formed on a substrate as described in the above embodiment.
Due to the fact that the first layer consisting of the constantan metal thin layer and the inorganic insulating material thin layer and the second layer consisting of the iron or copper metal thin layer and the inorganic insulating material thin layer are alternately laminated in a thin layer. Since a multi-layer structure is formed, a large thermoelectromotive force can be obtained even if the volume is small, so that it is suitable as a material for a high-sensitivity thermocouple thermometer or a high-output thermal battery.

Claims (1)

(57)【特許請求の範囲】 1.金属薄層と無機絶縁物質薄層である MgO薄層又は S
iO薄層とが交互になるように、基板上に、厚さ30〜100
Åのコンスタンタン金属薄層及び厚さ50〜200 Åの無機
絶縁物質薄層からなる第一層と厚さ30〜100 Åの鉄又は
銅の金属薄層及び厚さ50〜200 Åの無機絶縁物質薄層か
らなる第二層とが交互に積層されており、且つ、前記無
機絶縁物質薄層の相対する側面の一端を下部金属薄層よ
り交互に短くすることによって前記無機絶縁物質薄層を
介して隣接する前記金属薄層が連続して接合されている
金属及び無機絶縁物質からなる多層薄膜。
(57) [Claims] MgO or S, which is a thin metal layer and a thin inorganic insulating material
On the substrate, a thickness of 30-100
A first layer consisting of a thin layer of a constantan metal and a thin layer of an inorganic insulating material having a thickness of 50 to 200 mm and a thin layer of a metal of iron or copper having a thickness of 30 to 100 mm and an inorganic insulating material having a thickness of 50 to 200 mm A second layer composed of a thin layer is alternately laminated, and one end of an opposite side of the inorganic insulating material thin layer is alternately shortened from a lower metal thin layer to interpose the inorganic insulating material thin layer. A multilayer thin film comprising a metal and an inorganic insulating material, wherein the adjacent metal thin layers are continuously joined.
JP9123168A 1997-04-25 1997-04-25 Multilayer thin film composed of metal and inorganic insulating material Expired - Fee Related JP2901936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9123168A JP2901936B2 (en) 1997-04-25 1997-04-25 Multilayer thin film composed of metal and inorganic insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9123168A JP2901936B2 (en) 1997-04-25 1997-04-25 Multilayer thin film composed of metal and inorganic insulating material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61090880A Division JP2840737B2 (en) 1986-04-19 1986-04-19 Multilayer thin film composed of metal and inorganic insulating material

Publications (2)

Publication Number Publication Date
JPH1070314A JPH1070314A (en) 1998-03-10
JP2901936B2 true JP2901936B2 (en) 1999-06-07

Family

ID=14853875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9123168A Expired - Fee Related JP2901936B2 (en) 1997-04-25 1997-04-25 Multilayer thin film composed of metal and inorganic insulating material

Country Status (1)

Country Link
JP (1) JP2901936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865614B2 (en) * 2011-06-27 2016-02-17 株式会社東芝 Water level detector for nuclear power plant

Also Published As

Publication number Publication date
JPH1070314A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US4969956A (en) Transparent thin film thermocouple
Völklein Thermal conductivity and diffusivity of a thin film SiO2 Si3N4 sandwich system
US8198976B2 (en) Flexible thin metal film thermal sensing system
CN104641208B (en) Temperature sensor
US7449628B2 (en) Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
US7649439B2 (en) Flexible thin metal film thermal sensing system
CN106102979A (en) There is the combination unit of at least two parts and for the method producing this combination unit
JP4084306B2 (en) Heat flux comparator
Herin et al. Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors
US5474619A (en) Thin film high temperature silicide thermocouples
JP2901936B2 (en) Multilayer thin film composed of metal and inorganic insulating material
JP2840737B2 (en) Multilayer thin film composed of metal and inorganic insulating material
JP2007085880A (en) Thin thermocouple and manufacturing method therefor
Homma et al. Simultaneous measurement of the Seebeck coefficient and thermal diffusivity for bulk thermoelectric materials
Scarioni et al. Thermoelectric power in thin film Fe–CuNi alloy (type-J) couples
US4567365A (en) Sensor of energy flux, in particular heat flux and visible and infrared radiation
Laugier The construction and use of thin film thermocouples for the measurement of surface temperature: Applications to substrate temperature determination and thermal bending of a cantilevered plate during film deposition
FR2643717A1 (en) Method and device for measuring the thermal resistance of a body with a low thermal resistance
Hubin et al. Resistivity and thermoelectric power between-100° C and+ 100° C of gold and silver thin films formed and studied in ultrahigh vacuum
US5947601A (en) Thermometer based on CB tunnelling
FR2571493A1 (en) Thermal flux meter with resistors
JPH06258149A (en) Thin-film thermocouple element
RU2537754C1 (en) Manufacturing method of temperature sensors and heat flow (versions)
JP4518226B2 (en) Differential temperature sensor for differential scanning calorimeter
JPH03122532A (en) Light power sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees