JPH03119758A - Solid-state image sensing device and manufacture thereof - Google Patents

Solid-state image sensing device and manufacture thereof

Info

Publication number
JPH03119758A
JPH03119758A JP1255794A JP25579489A JPH03119758A JP H03119758 A JPH03119758 A JP H03119758A JP 1255794 A JP1255794 A JP 1255794A JP 25579489 A JP25579489 A JP 25579489A JP H03119758 A JPH03119758 A JP H03119758A
Authority
JP
Japan
Prior art keywords
region
light
crystal semiconductor
single crystal
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1255794A
Other languages
Japanese (ja)
Inventor
Machio Yamagishi
山岸 万千雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1255794A priority Critical patent/JPH03119758A/en
Publication of JPH03119758A publication Critical patent/JPH03119758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To reduce a smear by a method wherein a photodetecting region and a charge transfer region which are composed of a single-crystal semiconductor layer are structured so as to be surrounded by an insulating film. CONSTITUTION:A photodetecting region 3 whose depth is d1 and which is composed of single-crystal Si is formed in an Si oxide film 2 on an Si substrate 1. A p-type impurity region 5 and an n-type impurity region 6 from the bottom part are formed in the region 3. On the other hand, a charge transfer region 4 which is united to the region 3, whose depth is d2 and which is composed of single-crystal Si is formed on the surface of the film 2. A register part 7 composed of an n-type impurity region and a readout part 8 composed of a p-type impurity region are formed in the region 4. A signal charge generated in the photodetecting region 3 is read out by the register 7 via the readout part 8 and is transferred. An oxide film 9 is formed on the whole surface; a transfer electrode 10 composed of an Si layer is formed on it; an oxide film 11 as an interlayer insulating film wrapping the electrode 10 is formed. A light- shielding film 12 which is opened on the region 3 is formed. Thereby, even when light is incident from an oblique direction, almost all of the light reaches the substrate 1; it is possible to restrain electrons causing an erroneous signal from being generated and to reduce a smear.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、5ol(シリコン・オン・インシュレーク−
)技術を採用することによりスメアの低減が図られる固
体撮像装置及びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides 5ol (silicon-on-insulator)
The present invention relates to a solid-state imaging device and a method for manufacturing the same, in which smear is reduced by employing the above technology.

〔発明の概要〕[Summary of the invention]

本発明は、セル毎に分離される受光領域及び該受光領域
に沿って延在する電荷転送領域が絶縁基体の表面の異な
った深さの単結晶半導体層にそれぞれ形成される固体撮
像装置及びその製造方法において、第一の深さの単結晶
半導体層に上記受光領域を形成し、該受光領域と一体化
される第二の深さの単結晶半導体層に上記電荷転送領域
を形成し、該電荷転送領域上に絶縁膜を介して転送電極
を形成し、上記受光領域上を除いて遮光膜を形成するこ
とにより、スメアの低減が図られるものである。
The present invention provides a solid-state imaging device in which a light-receiving region separated for each cell and a charge transfer region extending along the light-receiving region are formed in a single crystal semiconductor layer at different depths on the surface of an insulating substrate, and a solid-state imaging device thereof. In the manufacturing method, the light receiving region is formed in a single crystal semiconductor layer of a first depth, the charge transfer region is formed in a single crystal semiconductor layer of a second depth that is integrated with the light receiving region, and By forming a transfer electrode on the charge transfer region via an insulating film and forming a light shielding film except on the light receiving region, smear can be reduced.

〔従来の技術〕[Conventional technology]

カラー映像用固体撮像装置として、インターライン転送
型のCCDが広く知られている。このインターライン転
送型のCCDにおいて、通常、受光部はフォトダイオー
ドとされ、入射光はフォトダイオードにて光の強さに比
例した電荷に変換される。そして、フォトダイオードに
沿って垂直レジスタが配設される。フォトダイオードに
一時的に蓄積された電荷は読み出し部を介して垂直レジ
スタに読み出されて転送される。
Interline transfer type CCDs are widely known as solid-state imaging devices for color images. In this interline transfer type CCD, the light receiving section is usually a photodiode, and incident light is converted by the photodiode into an electric charge proportional to the intensity of the light. A vertical resistor is then arranged along the photodiode. The charge temporarily accumulated in the photodiode is read out and transferred to the vertical register via the readout section.

このようなインターライン型のCODイメージヤにおい
て、従来の技術では、第3図に示すように、半導体基板
101上に形成されたp型のウェル領域102の表面に
読み出し部103.垂直レジスタ104及びチャンネル
ストッパ部105とがそれぞれ形成される。読み出し部
103とチャンネルストッパ部105はp型の不純物領
域とされ、垂直レジスタ104はn−型の不純物fiJ
r域とされる。そして、ウェル領域102上の全面に酸
化膜106が形成され、読み出し部103.垂直レジス
タ104及びチャンネルストッパ部105上の上部の酸
化膜106上に電荷転送部の転送電極として機能するポ
リシリコン層107が形成される。ポリシリコン層10
7に囲まれた開口部のウェル領域102の表面にはn〜
型の不純物領域が形成され、フォトダイオード108と
される。
In such an interline type COD imager, in the conventional technology, as shown in FIG. 3, a readout section 103. A vertical register 104 and a channel stopper section 105 are respectively formed. The readout section 103 and the channel stopper section 105 are p-type impurity regions, and the vertical register 104 is an n-type impurity region fiJ.
It is considered to be in the r region. Then, an oxide film 106 is formed on the entire surface of the well region 102, and the readout portion 103. A polysilicon layer 107 functioning as a transfer electrode of a charge transfer section is formed on the oxide film 106 above the vertical register 104 and the channel stopper section 105. polysilicon layer 10
On the surface of the well region 102 in the opening surrounded by
A type impurity region is formed to form a photodiode 108.

また、フォトダイオード108上で開口するパターンで
、ポリシリコン層107の上部に酸化II! 109を
介して遮光F!110が形成される。
Also, in a pattern opening above the photodiode 108, oxide II! Light-shielding F! via 109! 110 is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記遮光膜110の開ロバターンから入
射する光のうちには、半導体基板101の主面に対して
垂直に入射するものに限らずに、フォトダイオード10
8に到達せずにポリシリコン層107や酸化膜106を
透過して垂直レジスタ104へ斜めに入射する光がある
。それが原因で垂直レジスタ104の内部に誤信号が発
生し、このようなスメア成分の低減が固体撮像装置の高
性能化を図るうえで要求されている。
However, the light incident from the open pattern of the light shielding film 110 is not limited to the light incident perpendicularly to the main surface of the semiconductor substrate 101;
Some light passes through the polysilicon layer 107 and the oxide film 106 without reaching the vertical resistor 104 and enters the vertical register 104 obliquely. This causes an erroneous signal to occur inside the vertical register 104, and reduction of such smear components is required in order to improve the performance of solid-state imaging devices.

そこで、本発明は、上述の従来の実情に鑑みて提案され
たものであって、スメアの防止がなされる固体撮像装置
を提供することを目的とする。
Therefore, the present invention has been proposed in view of the above-mentioned conventional situation, and an object of the present invention is to provide a solid-state imaging device that can prevent smearing.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するために、本発明の固体撮像装置は
、絶縁基体に上記第一の深さより浅い第一の深さを有し
てセル毎に分離された単結晶半導体領域からなる受光領
域と、上記絶縁基体の表面に第二の深さを有して上記受
光領域と一体な単結晶半導体領域からなる電荷転送領域
と、上記電荷転送領域上に絶縁膜を介して形成される転
送電極と、上記受光領域上で開口した遮光膜とを有する
ことを特徴とする。
In order to achieve the above object, the solid-state imaging device of the present invention includes a light-receiving region formed of a single crystal semiconductor region separated for each cell and having a first depth shallower than the first depth on an insulating substrate. a charge transfer region formed of a single crystal semiconductor region having a second depth on the surface of the insulating substrate and integral with the light receiving region; and a transfer electrode formed on the charge transfer region via an insulating film. and a light-shielding film having an opening above the light-receiving region.

また、本発明は、単結晶半導体基板の表面をエツチング
して、平面上洛セル毎に分離され第一の高さを有する島
状領域と、その島状領域に隣接し且つ該島状領域同士を
結んで第二の高さを有する帯状領域と、その帯状領域が
延在する方向に沿って該帯状領域に隣接した溝部を形成
する工程と、上記単結晶半導体基板上の全面に絶縁層を
形成する工程と、上記単結晶半導体基板を裏面から少な
くとも上記溝部の底部まで削る工程と、上記帯状領域上
に絶縁膜を介して転送電極を形成する工程と、上記島状
領域上を除いて遮光膜を形成する工程とを有することを
特徴とする。
Further, the present invention etches the surface of a single-crystal semiconductor substrate to form island-like regions separated into planar cells for each cell and having a first height, and adjacent to the island-like regions and between the island-like regions. forming a band-like region having a second height and a groove adjacent to the band-like region along the direction in which the band-like region extends; and forming an insulating layer on the entire surface of the single crystal semiconductor substrate. , a step of shaving the single crystal semiconductor substrate from the back surface to at least the bottom of the groove, a step of forming a transfer electrode on the band-like region via an insulating film, and a step of forming a light-shielding film except on the island-like region. It is characterized by having the step of forming.

なお、上記単結晶半導体基板を裏面から少なくとも上記
溝部の底部まで削る工程の前には、基板同士の貼り合わ
せを行うこともできる。
Note that before the step of cutting the single crystal semiconductor substrate from the back surface to at least the bottom of the groove, the substrates may be bonded together.

〔作用〕[Effect]

受光領域が絶縁基体に囲まれセル毎に互いに分離された
単結晶半導体層とされることにより、光が斜めに入射し
ても、その殆どは上記絶縁基体中に到達する。従って、
誤信号の原因となる電子の発生が抑えられるため、スメ
アが低減される。
Since the light-receiving region is a single crystal semiconductor layer surrounded by an insulating base and separated from each other for each cell, even if light is incident obliquely, most of it reaches the insulating base. Therefore,
Since the generation of electrons that cause erroneous signals is suppressed, smear is reduced.

電荷転送領域は絶縁基体の表面の上記単結晶半導体層の
深さより浅い半導体層に形成されることにより、斜め方
向から光が入射する場合でも、その大半が電荷転送領域
の下部の絶縁膜に入り込むために、スメアの低減が図ら
れる。
The charge transfer region is formed in a semiconductor layer shallower than the depth of the single crystal semiconductor layer on the surface of the insulating substrate, so that even when light is incident from an oblique direction, most of it enters the insulating film below the charge transfer region. Therefore, smear can be reduced.

また、本発明の固体撮像装置の製造方法では、予め単結
晶半導体基板の表面を第一の高さを有する島状領域と第
二の高さを有する帯状領域にそれぞれ加工する。ここで
、島状領域は受光領域とされ、帯状領域は電荷転送領域
とされる。次に、このような表面の加工が施された単結
晶半導体基板の全面に絶縁膜を形成する。この絶縁膜に
よりセル毎の分離や基板同士の貼り合わせも可能となる
Further, in the method for manufacturing a solid-state imaging device of the present invention, the surface of the single crystal semiconductor substrate is processed in advance into an island-like region having a first height and a band-like region having a second height. Here, the island-like region is used as a light-receiving region, and the strip-like region is used as a charge transfer region. Next, an insulating film is formed over the entire surface of the single crystal semiconductor substrate whose surface has been processed in this manner. This insulating film makes it possible to separate each cell and to bond substrates together.

そして、裏面から溝部までの削る工程で上記絶縁膜によ
るセル毎の分離等が行われる。
Then, in the step of cutting from the back surface to the groove portion, the cells are separated by the insulating film.

〔実施例〕〔Example〕

本発明の好適な実施例を図面を参照しながら説明する。 Preferred embodiments of the present invention will be described with reference to the drawings.

本実施例は、シリコン酸化膜の各セル毎に分離された単
結晶シリコン層に形成される受光領域と上記単結晶シリ
コン層と一体な異なった深さを有する単結晶シリコン層
に形成される電荷転送領域を有する固体撮像装置の一例
である。
In this embodiment, a light receiving region is formed in a single crystal silicon layer separated for each cell of a silicon oxide film, and a charge is formed in a single crystal silicon layer integral with the single crystal silicon layer and having different depths. This is an example of a solid-state imaging device having a transfer area.

先ず、本実施例の固体撮像装置の構造を説明する。第1
図に示すように、シリコン基板1上のシリコン酸化膜2
にセル毎互いに分離された深さdを有する単結晶シリコ
ン層からなる受光領域3が設けられる。この受光領域3
には底部よりp型の不純物領域5とn−型の不純物領域
6が順次形成される。このn−型の不純物領域6には光
電変換された信号電荷が蓄積される。受光領域3の深さ
dlは入射光の波長、即ち入射光が到達して電子を生ず
る深さを考慮して設計される。なお、本実施例では、3
〜5μmとされることが好ましい。
First, the structure of the solid-state imaging device of this embodiment will be explained. 1st
As shown in the figure, a silicon oxide film 2 on a silicon substrate 1
A light-receiving region 3 made of a single-crystal silicon layer and having a depth d separated from each other for each cell is provided. This light receiving area 3
A p-type impurity region 5 and an n-type impurity region 6 are sequentially formed from the bottom. In this n-type impurity region 6, photoelectrically converted signal charges are accumulated. The depth dl of the light receiving region 3 is designed in consideration of the wavelength of the incident light, that is, the depth at which the incident light reaches and generates electrons. Note that in this example, 3
It is preferable to set it to 5 micrometers.

一方、シリコン酸化膜2の表面には上記受光領域3に一
体化され深さatを存する電荷転送領域4が形成される
。!荷転送領域4は単結晶シリコン層からなる。このよ
うな電荷転送領域4にはレジスタ部7と読み出し部8が
形成される。p型の不純物領域からなる読み出し部8は
受光領域に隣接して形成される。この読み出し部8に対
して受光領域と反対側にはn型の不純物領域からなるレ
ジスタ部7が形成される。従って、受光領域3で発生し
た信号電荷は読み出し部8を介してこのレジスタ部7に
続出されて転送される。なお、電荷転送領域4の深さd
2は1000〜3000人とされることが好ましく、3
000Å以下と浅くされることで、基板の深い部分で発
生する電荷が電荷転送領域4に流入することがなくなり
、スメアの低減がなされる。
On the other hand, on the surface of the silicon oxide film 2, a charge transfer region 4 is formed which is integrated with the light receiving region 3 and has a depth at. ! The load transfer region 4 is made of a single crystal silicon layer. A register section 7 and a readout section 8 are formed in such a charge transfer region 4. A readout section 8 made of a p-type impurity region is formed adjacent to the light receiving region. A resistor section 7 made of an n-type impurity region is formed on the side opposite to the light-receiving region with respect to the readout section 8 . Therefore, the signal charges generated in the light receiving region 3 are successively outputted and transferred to the register section 7 via the reading section 8. Note that the depth d of the charge transfer region 4
2 is preferably 1000 to 3000 people, and 3
By making the thickness shallower to 000 Å or less, charges generated in a deep part of the substrate will not flow into the charge transfer region 4, and smear can be reduced.

そして、全面の熱酸化により酸化膜9が形成される。上
記受光領域を除いた領域の酸化膜9上にポリシリコン層
からなる転送電極10が形成される。この転送電極10
に所要の駆動パルスを印加することにより転送電極10
の下部のレジスタ部7に読み出された電荷が順次転送さ
れる。
Then, an oxide film 9 is formed by thermal oxidation of the entire surface. A transfer electrode 10 made of a polysilicon layer is formed on the oxide film 9 in an area other than the light receiving area. This transfer electrode 10
By applying a required driving pulse to the transfer electrode 10
The charges read out to the register section 7 below are sequentially transferred.

上記転送電極10を含む全面に層間絶縁膜として機能す
る酸化膜11が形成される。そして、受光kl域3の上
部で開口した遮光膜12が酸化膜11上に形成される。
An oxide film 11 functioning as an interlayer insulating film is formed on the entire surface including the transfer electrode 10. Then, a light shielding film 12 having an opening above the light-receiving kl region 3 is formed on the oxide film 11.

この遮゛光膜12はアルミニウム等を材料とし、遮光膜
12を含む全面に酸化膜13が形成される。
This light shielding film 12 is made of aluminum or the like, and an oxide film 13 is formed on the entire surface including the light shielding film 12.

このように本実施例の固体撮像装置では、シリコン酸化
WJ、2のセル毎に互いに分離された単結晶シリコン層
に受光領域3が形成される。このため、斜め方向から光
が入射しても、その殆どは上記絶縁基体中に到達するこ
とになる。従って、誤信号の原因となる電子の発生が抑
えられるため、スメアが低減される。また、受光領域3
の深さより浅い単結晶シリコン層に電荷転送領域4を形
成することにより、光が斜めから入射した場合でも、そ
の大半が電荷転送領域の下部の絶縁膜に入り込むために
、スメアの低減が図られる。
As described above, in the solid-state imaging device of this embodiment, the light receiving region 3 is formed in the single crystal silicon layer separated from each other for every two cells of the silicon oxide WJ. Therefore, even if light is incident from an oblique direction, most of it will reach the insulating base. Therefore, since the generation of electrons that cause erroneous signals is suppressed, smear is reduced. In addition, the light receiving area 3
By forming the charge transfer region 4 in a single crystal silicon layer shallower than the depth of the charge transfer region 4, even if light is incident from an angle, most of it will enter the insulating film below the charge transfer region, reducing smear. .

次に、本実施例の固体1最像装置の製造方法を説明する
Next, a method of manufacturing the solid-state one-image device of this embodiment will be explained.

先ず、第2図(a)に示すように、単結晶のシリコン基
板21上にシリコン酸化膜2aを形成した後、全面にレ
ジスト膜22を塗布する。そして、マトリクス状に並べ
られた各受光領域のパターンに対応した領域のレジスト
膜22を選択的に露光。
First, as shown in FIG. 2(a), a silicon oxide film 2a is formed on a single crystal silicon substrate 21, and then a resist film 22 is applied to the entire surface. Then, the resist film 22 in areas corresponding to the patterns of the light receiving areas arranged in a matrix is selectively exposed.

現像する。このレジスト膜22をマスクとしてRIE法
によってエツチングを行う。その結果、シリコン基板2
1の表面に各セル毎に分離され高さhlを有する島状領
域23が残存される。
develop. Etching is performed by RIE using this resist film 22 as a mask. As a result, silicon substrate 2
Island-like regions 23 having a height hl and separated from each other for each cell are left on the surface of the substrate 1 .

Mいて、第2図(b)に示すように、レジスト膜22を
残存させながら、全面を覆ってレジスト膜24を塗布す
る。そして、素子分離領域を形成するための溝部26が
設けられるようなマスクパターンを用いてレジスト膜2
4を選択露光する。レジスト膜24のパターンは島状領
域23に沿って帯状に延在される部分と少なくとも上記
島状領域23の一部を覆う部分とからなり、上記帯状に
延在される部分の垂直方向の側部に沿った部分と垂直列
の方向の少なくとも島状領域23の間でシリコン基板2
1が露出する。このようなレジスト膜24を用いてシリ
コン基板21をRrE法等にょってエンチングする。こ
のエツチングにより、上記島状領域23に隣接し且つ該
島状領域23同士を結ぶ高さhz(d2)の帯状領域2
5が残存される。また、帯状領域25に沿って溝部26
が形成され、この溝部26はシリコン基板21の露出し
たパターンにしたがって垂直列の方向の島状領域23同
士の間にも形成される。
Then, as shown in FIG. 2(b), a resist film 24 is applied to cover the entire surface while leaving the resist film 22. Then, a resist film 2 is formed using a mask pattern in which grooves 26 for forming element isolation regions are provided.
Selectively expose 4. The pattern of the resist film 24 consists of a portion extending in a strip shape along the island region 23 and a portion covering at least a part of the island region 23, and a portion extending in the vertical direction of the region extending in the strip shape. between at least the island-like regions 23 in the direction of the vertical rows
1 is exposed. Using such a resist film 24, the silicon substrate 21 is etched by RrE method or the like. By this etching, a band-like region 2 adjacent to the island-like region 23 and having a height hz (d2) connecting the island-like regions 23 is formed.
5 will remain. Further, along the band-shaped region 25, a groove portion 26 is provided.
The grooves 26 are also formed between the island-shaped regions 23 in the vertical column direction according to the exposed pattern of the silicon substrate 21.

そして、レジスト膜22.24をアッシングした後、第
2図(c)に示すように、帯状領域25及び溝部26上
にCVD等を用いて表面が略平坦とさせる程度にシリコ
ン酸化膜2aを形成させる。
After ashing the resist films 22 and 24, as shown in FIG. 2(c), a silicon oxide film 2a is formed on the band-shaped region 25 and the groove 26 using CVD or the like to the extent that the surface is approximately flat. let

続いて、第2図(d)に示すように、単結晶のシリコン
基板1上にシリコン酸化膜2bが形成された基体Bと、
上述のようにして島状領域23等が形成された基体Aと
をシリコン酸化JII2a、2bの表面同士を突き合わ
せて接合する。そして、基板Aのシリコン基板21の裏
面側からエッチバンクを開始し、最初にシリコン酸化膜
2a、即ち溝部26の底部が露出した時点でエンチング
を終了させる。
Subsequently, as shown in FIG. 2(d), a base body B having a silicon oxide film 2b formed on a single-crystal silicon substrate 1;
The base A on which the island-like regions 23 and the like are formed as described above is joined by bringing the surfaces of the silicon oxide JII 2a and 2b into abutment. Then, the etch bank is started from the back side of the silicon substrate 21 of the substrate A, and the etching is finished when the silicon oxide film 2a, that is, the bottom of the groove 26 is first exposed.

第2図(e)に示すように、全面上にゲート酸化膜とし
て機能する酸化膜9が形成される。なお、島状領域23
の単結晶シリコン層は受光領域3となり、帯状領域25
は電荷転送領域4となる。
As shown in FIG. 2(e), an oxide film 9 functioning as a gate oxide film is formed over the entire surface. Note that the island-like region 23
The single-crystal silicon layer becomes the light-receiving region 3, and the band-shaped region 25
becomes the charge transfer region 4.

続いて、全面にポリシリコン層を形成する。そして、第
2図(f)に示すように、上記ポリシリコン層のバター
ニングを行って電荷転送領域4上及びそれに並列するシ
リコン酸化膜2上の酸化膜9上に転送電極】0を形成す
る。この転送電極10は所定の間隔を空けて信号電荷の
読み出し方向に並んだ第一層目のポリシリコン層の間に
第二層目のポリシリコン層が形成されるパターンとされ
る。
Subsequently, a polysilicon layer is formed over the entire surface. Then, as shown in FIG. 2(f), the polysilicon layer is patterned to form a transfer electrode 0 on the charge transfer region 4 and the oxide film 9 on the silicon oxide film 2 parallel thereto. . The transfer electrode 10 has a pattern in which a second polysilicon layer is formed between first polysilicon layers arranged at a predetermined interval in the signal charge readout direction.

このような転送電極lOを含む全面を酸化して、層間絶
縁膜として機能する酸化膜11が形成される。また、受
光領域3にはp型の不純物領域5上にn−型の不純物領
域6が形成される。n−型の不純物領域6には光電変換
された信号電荷が蓄積されることになる。−・方、電荷
転送領域4にはn型の不純物領域からなるレジスタ部7
及びp型の不純物9■域からなる読み出し部8が形成さ
れる。
The entire surface including the transfer electrode IO is oxidized to form an oxide film 11 functioning as an interlayer insulating film. Further, in the light receiving region 3, an n-type impurity region 6 is formed on the p-type impurity region 5. The photoelectrically converted signal charge is accumulated in the n-type impurity region 6. - On the other hand, the charge transfer region 4 has a register section 7 made of an n-type impurity region.
A readout section 8 is formed which includes a p-type impurity region 9.

読み出し部8はn−型の不純物領域6に隣接して形成さ
れ、その読み出し部8と電荷転送領域4に沿って隣接し
たシリコン酸化膜2の間の領域にレジスタ部7が設けら
れる。従って、n−型の不純物領域6に蓄積された信号
電荷は読み出し部8を介してレジスタ部7に読み出され
て転送される。
The readout section 8 is formed adjacent to the n-type impurity region 6, and the register section 7 is provided in a region between the readout section 8 and the adjacent silicon oxide film 2 along the charge transfer region 4. Therefore, the signal charges accumulated in the n-type impurity region 6 are read out and transferred to the register section 7 via the readout section 8.

最後に、受光領域3を除く領域の上部に酸化膜11を介
して遮光膜12が形成される。この遮光膜12の表面に
酸化膜13を形成する。
Finally, a light shielding film 12 is formed on the area excluding the light receiving area 3 with the oxide film 11 interposed therebetween. An oxide film 13 is formed on the surface of this light shielding film 12.

このように本実施例の固体撮像装置の製造方法では、単
結晶のシリコン基板21のエツチングを行って島状領域
23や帯状領域25が形成される。
As described above, in the method for manufacturing the solid-state imaging device of this embodiment, the single-crystal silicon substrate 21 is etched to form the island-like regions 23 and the band-like regions 25.

このようなエツチングにより、予め受光領域3や電荷転
送領域4を形成した後、シリコン基板21上にシリコン
酸化膜2aを形成すれば、複雑な工程を必要とせずに第
2回(e)のような断面構造を有する基体が形成される
ので、製造工程の簡略化が図られる。
If the silicon oxide film 2a is formed on the silicon substrate 21 after forming the light-receiving region 3 and the charge transfer region 4 in advance by such etching, it is possible to form the silicon oxide film 2a on the silicon substrate 21, as in the second step (e), without the need for complicated steps. Since a base body having a cross-sectional structure is formed, the manufacturing process can be simplified.

〔発明の効果〕〔Effect of the invention〕

本発明に固体撮像装置は、上述のように、単結晶半導体
層からなる受光領域や電荷転送領域は絶縁膜により囲ま
れた構造とされることから、斜め方向の光が入射しても
、誤信号の原因となる電子の発生が抑えられてスメアが
低減され、固体撮像装置の高画質化が図られる。また、
電荷転送領域は絶縁基体の表面の受光領域より浅い深さ
の単結晶半導体層に形成されるため、スメアが防止され
る。
As described above, the solid-state imaging device of the present invention has a structure in which the light receiving region and charge transfer region made of a single crystal semiconductor layer are surrounded by an insulating film. The generation of electrons that cause signals is suppressed, smear is reduced, and the image quality of the solid-state imaging device is improved. Also,
Since the charge transfer region is formed in the single crystal semiconductor layer at a shallower depth than the light receiving region on the surface of the insulating substrate, smearing is prevented.

また、本発明の固体撮像装置の製造方法では、単結晶半
導体基板の表面をエツチングして、予め受光領域や電荷
転送領域とされる領域を所要のパターンに形成すること
ができるので、上述の固体撮像装置を簡略化した工程で
製造することができる。
Further, in the method for manufacturing a solid-state imaging device of the present invention, the surface of the single crystal semiconductor substrate can be etched to form regions to be used as light receiving regions and charge transfer regions in advance in a desired pattern. The imaging device can be manufactured through a simplified process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した固体撮像装置の一例の構造を
示す断面図であり、第2図(a)乃至第2図(f)は上
記−例の製造工程を説明するためのそれぞれ工程断面図
である。 第3回は従来の固体撮像装置の一例の構造を示す断面図
である。 21・・・シリコン基板 ・・・シリコン酸化膜 ・・・受光領域 ・・電荷転送領域 6・・・不純物開城 ・・レジスタ部 ・・読み出し部 11.13・・・酸化膜 ・・・転送電極 ・・・遮光膜 24・・・レジスト膜 帯状領域 ・・溝部
FIG. 1 is a sectional view showing the structure of an example of a solid-state imaging device to which the present invention is applied, and FIGS. 2(a) to 2(f) are steps for explaining the manufacturing process of the above-mentioned example. FIG. The third section is a cross-sectional view showing the structure of an example of a conventional solid-state imaging device. 21...Silicon substrate...Silicon oxide film...Light receiving region...Charge transfer region 6...Impurity opening...Register section...Readout section 11.13...Oxide film...Transfer electrode... ...Light-shielding film 24...Resist film band-shaped region...Groove portion

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基体に第一の深さを有してセル毎に分離され
た単結晶半導体領域からなる受光領域と、上記絶縁基体
の表面に上記第一の深さより浅い第二の深さを有して上
記受光領域と一体な単結晶半導体領域からなる電荷転送
領域と、上記電荷転送領域上に絶縁膜を介して形成され
る転送電極と、上記受光領域上で開口した遮光膜とを有
することを特徴とする固体撮像装置。
(1) A light-receiving region consisting of a single crystal semiconductor region separated for each cell and having a first depth on an insulating base, and a second depth shallower than the first depth on the surface of the insulating base. a charge transfer region made of a single crystal semiconductor region integral with the light receiving region; a transfer electrode formed on the charge transfer region via an insulating film; and a light shielding film having an opening above the light receiving region. A solid-state imaging device characterized by:
(2)単結晶半導体基板の表面をエッチングして、平面
上各セル毎に分離され第一の高さを有する島状領域と、
その島状領域に隣接し且つ該島状領域同士を結んで第二
の高さを有する帯状領域と、その帯状領域が延在する方
向に沿って該帯状領域に隣接した溝部を形成する工程と
、上記単結晶半導体基板上の全面に絶縁層を形成する工
程と、上記単結晶半導体基板を裏面から少なくとも上記
溝部の底部まで削る工程と、上記帯状領域上に絶縁膜を
介して転送電極を形成する工程と、上記島状領域上を除
いて遮光膜を形成する工程とを有することを特徴とする
固体撮像装置の製造方法。
(2) etching the surface of the single-crystal semiconductor substrate to form an island-like region having a first height and separated into cells on a plane;
forming a strip region adjacent to the island region and having a second height by connecting the island regions, and a groove adjacent to the strip region along the direction in which the strip region extends; , forming an insulating layer on the entire surface of the single crystal semiconductor substrate; shaving the single crystal semiconductor substrate from the back side to at least the bottom of the groove; and forming a transfer electrode on the band-shaped region via an insulating film. A method for manufacturing a solid-state imaging device, comprising the steps of: forming a light-shielding film except on the island-like region.
JP1255794A 1989-09-30 1989-09-30 Solid-state image sensing device and manufacture thereof Pending JPH03119758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255794A JPH03119758A (en) 1989-09-30 1989-09-30 Solid-state image sensing device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255794A JPH03119758A (en) 1989-09-30 1989-09-30 Solid-state image sensing device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03119758A true JPH03119758A (en) 1991-05-22

Family

ID=17283725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255794A Pending JPH03119758A (en) 1989-09-30 1989-09-30 Solid-state image sensing device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03119758A (en)

Similar Documents

Publication Publication Date Title
KR101688249B1 (en) Back-illuminated solid-state image pickup device
JPH05121711A (en) Infrared ray ccd
JP2866328B2 (en) Solid-state imaging device
JPH10135439A (en) Solid state imaging device and its manufacture
JP2003264284A (en) Solid state imaging element and its manufacturing method
JP4337371B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JPH03119758A (en) Solid-state image sensing device and manufacture thereof
JP2737946B2 (en) Method for manufacturing solid-state imaging device
JP2919697B2 (en) Method for manufacturing solid-state imaging device
JP2002094038A (en) Solid-stage image pickup device and its manufacturing method
JP2514941B2 (en) Method of manufacturing solid-state imaging device
JP3276906B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JPH05152551A (en) Manufacture of solid-state imaging device
JPS6345856A (en) Solid-state image sensor
JP2000106425A (en) Solid-state image pickup device and manufacture thereof
JPS60120555A (en) Solid state image pick-up device
JPH06275809A (en) Solid-state image pickup device
JPS62269355A (en) Solid-state image sensing element
JP2007194359A (en) Solid state imaging element, and manufacturing method thereof
JPH07114275B2 (en) Solid-state imaging device
JPH02278768A (en) Solid-state image sensing device
JP2870048B2 (en) Solid-state imaging device
JPH02278767A (en) Solid-state image sensing device
JPH06310701A (en) Solid state image pickup element
JPH06296008A (en) Manufacture of solid-state image pickup element