JPH03119654A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH03119654A
JPH03119654A JP1258297A JP25829789A JPH03119654A JP H03119654 A JPH03119654 A JP H03119654A JP 1258297 A JP1258297 A JP 1258297A JP 25829789 A JP25829789 A JP 25829789A JP H03119654 A JPH03119654 A JP H03119654A
Authority
JP
Japan
Prior art keywords
active material
electrode active
negative electrode
lead
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1258297A
Other languages
Japanese (ja)
Other versions
JP2913482B2 (en
Inventor
Tomonori Mukasa
武笠 朝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1258297A priority Critical patent/JP2913482B2/en
Publication of JPH03119654A publication Critical patent/JPH03119654A/en
Application granted granted Critical
Publication of JP2913482B2 publication Critical patent/JP2913482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To omit surface treatment by making the negative electrode active material weight larger than the positive electrode active material weight by 15-20%. CONSTITUTION:The negative electrode active material weight is made 115-120% of the positive electrode active material weight in a battery with a copper grid used as a negative electrode grid. The copper grid can be used for the battery as it is with no surface treatment such as electroplating on the surface of the copper grid or the immersion into a molten metal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in lead-acid batteries.

従来の技術とその課題 鉛蓄電池は動力用、移動用、据置用などの電源として広
く用いられており、低価格で高率放電に優れていること
から自動車の起動用に広く採用されている。現在自動車
起動用の鉛蓄電池には、その使用条件などから長寿命化
、耐高温特性の改善などいくつかの要求があるが、その
1つに高出力化の要求がある。
Conventional technology and its challenges Lead-acid batteries are widely used as power sources for power, transportation, and stationary use, and are widely used for starting automobiles due to their low cost and excellent high-rate discharge. Currently, there are several demands on lead-acid batteries for starting automobiles, such as longer life and improved high-temperature resistance due to their usage conditions, and one of them is a demand for higher output.

一般に6セルモノブロツクの構造である自動車起動用の
鉛蓄電池の高出力化の方法としては、セル間接続方法を
改善してセル間接続部分の抵抗を小さくすること、極板
間隔を小さくして極間抵抗を小さくすること、電解液で
ある希硫酸の濃度を高くすることが考えられる。しかし
これらについては既に限界に近いところまで改善が進め
られている。もう1つの方法としては電圧特性の優れた
格子体を用いることであり、斜め棧の入った格子体や放
射線状の桟の入った格子体など形状を最適化すること、
電気伝導性のよい材料を用いることなどが考えられる。
Generally speaking, methods for increasing the output of lead-acid batteries for starting automobiles, which have a 6-cell monoblock structure, include improving the inter-cell connection method to reduce the resistance at the inter-cell connections, and reducing the spacing between the electrode plates. Possible methods include reducing the resistance between the electrodes and increasing the concentration of dilute sulfuric acid, which is the electrolytic solution. However, these improvements have already reached their limits. Another method is to use a grid with excellent voltage characteristics, optimizing the shape such as a grid with diagonal bars or a grid with radial bars.
One possibility is to use a material with good electrical conductivity.

電気伝導性のよい材料としてはコスト面からも考え合わ
せると銅および銅合金が最適である。
Copper and copper alloys are the most suitable materials with good electrical conductivity, considering the cost.

銅あるいは銅合金を格子体に用いる場合、その表面が露
出していると、即ち、銅あるいは銅合金の表面が直接電
解液である希硫酸と接触していると、正極に用いた場合
は銅が溶出して負極板に析出し、負極に用いた場合はそ
の露出部分において鉛IF!池の充放電反応以外の反応
が起こってしまう、即ち、充電中においては水素ガスの
発生反応が起こり負極活物質の充電が不十分になり、放
置中には負極活物質である金属鉛と局部電池を構成して
自己放電を大きくしてしまう、そのため銅あるいは調合
金製の格子体の表面に電気メツキや溶湯に浸漬するなど
して鉛あるいは鉛合金の被膜を形成して使用しなければ
ならない。
When copper or copper alloy is used for the grid, if its surface is exposed, that is, if the surface of the copper or copper alloy is in direct contact with dilute sulfuric acid, which is the electrolyte, copper will be removed when used for the positive electrode. is eluted and deposited on the negative electrode plate, and when used as a negative electrode, lead IF! Reactions other than the charging and discharging reactions of the battery occur; in other words, during charging, a reaction occurs that generates hydrogen gas, resulting in insufficient charging of the negative electrode active material, and when the battery is left unused, metal lead, which is the negative electrode active material, and local This increases self-discharge in the battery structure, so it is necessary to form a lead or lead alloy coating on the surface of a grid made of copper or prepared alloy by electroplating or immersing it in molten metal. .

しかし、銅あるいは調合金製の格子体の表面に、鉛ある
いは鉛合金の被覆を形成するためには、製造工程を新た
に増加することが必要となり、格子体製造のコストアッ
プにもつながる。
However, in order to form a coating of lead or a lead alloy on the surface of a grid made of copper or a prepared alloy, it is necessary to add a new manufacturing process, which also increases the cost of manufacturing the grid.

課題を解決するための手段 本発明は、上記問題を解決するもので、負極に銅格子を
用い板鉛蓄電池において、正極活物質重量に比べ負極活
物質重量を15〜20%多くすることによって、銅格子
表面に電気メツキや溶湯に浸漬するなどの表面処理なし
で、銅格子そのままで電池に使用することを可能にした
ものである。
Means for Solving the Problems The present invention solves the above problems by increasing the weight of the negative electrode active material by 15 to 20% compared to the weight of the positive electrode active material in a plate lead-acid battery using a copper lattice for the negative electrode. This makes it possible to use the copper grid as it is in batteries without any surface treatment such as electroplating or immersion in molten metal.

実施例 以下、本発明を実施例により詳細に説明する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明による鉛蓄電池用極板の製造方法の一実
施例を示す製造工程の概略図で、まず、厚み0.2mm
の銅の圧延シートを展開してエキスバンド格子を作製し
た。このエキスバンド格子に、鉛粉に希硫酸を混ぜて練
膏した通常の負極用ペーストを充填した。ペースト充填
量は、化成後の1セル当りの負極活物質重量が1セル当
りの正極活物質重量の100 、110 、115 、
12<1 、125%となるように5種類変えて行った
。正極板には、鉛粉に希硫酸を混ぜて練膏した正極用ペ
ーストを従来の鋳造格子に充填したものを使用した0次
に、これらの正極板、負極板および通常のセパレータを
用い、1セル電池(公称容量35Ah、 5hR)を作
製した。電池の内容を第1表に示す。
FIG. 1 is a schematic diagram of the manufacturing process showing one embodiment of the method for manufacturing lead-acid battery electrode plates according to the present invention.
An expanded grid was fabricated by rolling out a rolled sheet of copper. This expanded grid was filled with a normal negative electrode paste made by mixing lead powder with dilute sulfuric acid and gluing it together. The paste filling amount is such that the weight of the negative electrode active material per cell after chemical formation is 100, 110, 115 of the weight of the positive electrode active material per cell,
Five types were changed so that 12<1, 125%. For the positive electrode plate, a conventional casting grid was filled with a positive electrode paste made by mixing lead powder with dilute sulfuric acid. A cell battery (nominal capacity 35 Ah, 5 hR) was produced. The contents of the battery are shown in Table 1.

第1表 なお、正極、負極活物質重量はセル全体の既化正極、負
極の活物質重量を意味する。
In Table 1, the weights of the positive and negative electrode active materials refer to the weights of the active materials of the positive and negative electrodes of the entire cell.

通電後、5hR容量試験を2〜行い、その後次の全放電
サイクル試験を行った。
After energization, two or more 5hR capacity tests were performed, and then the next full discharge cycle test was performed.

放電 電流7.OAで終止電圧1.OVまで充電 電流
?、OAで放電量の130%また、全放電サイクル試験
中、電池を充電状態で放置(45℃x16h ) した
時のガス発生量を調査した。その結果を、それぞれ第1
図および第2図に示す、さらに、試験終了後に負極活物
質中に存在するα(%)を分析した結果を第2表に示す
Discharge current7. The final voltage at OA is 1. Charge current to OV? , 130% of the discharge amount at OA.Also, the amount of gas generated when the battery was left in a charged state (45° C. x 16 hours) during the full discharge cycle test was investigated. The results are shown in the first
Further, Table 2 shows the results of analysis of α (%) present in the negative electrode active material after the test, which is shown in FIG. 2 and FIG.

第2表 なお、電池記号1の負極活物質中のCu(%)は、全放
電サイクル試@50〜の値、その他は200〜の値であ
る。また、全放電サイクル試験前の負極活物質中のCu
(%)はO,Ql (%)以下である。
Table 2 Note that Cu (%) in the negative electrode active material of battery symbol 1 is a value of 50~ in the full discharge cycle test, and a value of 200~ in other cases. In addition, Cu in the negative electrode active material before the full discharge cycle test
(%) is less than or equal to O,Ql (%).

第1図より、全放電サイクル寿命試験中の放電持続時間
は、負極/正極活物質重量比にあまり影響されないこと
がわかる。しかし、第2図より明らかなように全放電サ
イクル試聴中のガス発生量は著しく、負極/正極活物質
重量比に影響されることがわかる。電池NO61は、ガ
ス発生量か50〜で極めて多くこの時点で試験を打ち切
り解体調査した。その結果、第2表に示されるように負
極活物質中には、約0.8%の銅(Cu)が検出され、
同時に硫酸鉛も多量に蓄積していた。
From FIG. 1, it can be seen that the discharge duration during the full discharge cycle life test is not significantly influenced by the negative electrode/positive electrode active material weight ratio. However, as is clear from FIG. 2, the amount of gas generated during the entire discharge cycle test is significantly influenced by the weight ratio of the negative electrode/positive electrode active material. For battery No. 61, the amount of gas generated was extremely high at 50 or more, and at this point the test was discontinued and the battery was dismantled and investigated. As a result, as shown in Table 2, approximately 0.8% copper (Cu) was detected in the negative electrode active material.
At the same time, lead sulfate was also accumulated in large quantities.

負[!/正極活物質重量比を1.10とした電池NO,
2ではサイクルと共にガス発生量が増加する傾向があっ
た。このことは負極活物質中のαの分析値を示した第2
表からも、α量の増加が明らかに認められ、負極格子と
して用いたαが一部溶出していると思われる。
negative[! /Battery NO. with positive electrode active material weight ratio of 1.10,
In No. 2, the amount of gas generated tended to increase as the cycle progressed. This shows that the second analysis of α in the negative electrode active material
From the table, an increase in the amount of α is clearly observed, and it seems that some of the α used as the negative electrode lattice is eluted.

負極/正極活物質量比を1.15〜1゜25とした電池
N013〜5は、ガス発生量は全放電サイクル試験中、
はぼ同じで第2表から明らかなように、αは殆んど検出
されなかった。電池N013〜5では、正極活物質重量
に対し負極活物質量が多くなっているので、放電末期に
負極の分極が少なくなり、負極格子として用いた銅の溶
解・析出が防止されたものと推察される。
For batteries Nos. 013 to 5, in which the negative electrode/positive electrode active material ratio was 1.15 to 1°25, the amount of gas generated during the full discharge cycle test was
As is clear from Table 2, α was hardly detected. In batteries Nos. 013 to 5, the amount of negative electrode active material was greater than the weight of positive electrode active material, so it is assumed that the polarization of the negative electrode decreased at the end of discharge, preventing the dissolution and precipitation of the copper used as the negative electrode grid. be done.

第2表および第2図から、負極/正極活物質重量比とし
ては1.15〜1.25が望ましいと思われるが、負極
活物質重量を正極活物質!!量に比べて25%も多くす
ることは、電池重量をいたずらに増加させ、電池の製作
費の増加にもつながるので実際上望ましくない、そのた
め、負極/正極活物質重量比としては1.15〜1.2
0が妥当と考えられる。
From Table 2 and Figure 2, it appears that the negative electrode/positive electrode active material weight ratio is preferably 1.15 to 1.25, but the negative electrode active material weight is different from the positive electrode active material! ! Increasing the weight by 25% is actually undesirable because it unnecessarily increases the weight of the battery and increases the manufacturing cost of the battery. Therefore, the negative electrode/positive electrode active material weight ratio should be 1.15 to 1.15. 1.2
0 is considered appropriate.

発明の効果 上述のごとく、負極格子に銅格子を用いた電池で、負極
活物質重量を正極活物質重量に比べて多くしなものは、
銅格子表面にメツキ、とぶ漬は等の表面処理をする必要
もなく、充分にその性能を発揮することができるので産
業上の価値は極めて大きいといえる。
Effects of the Invention As mentioned above, a battery using a copper grid for the negative electrode grid, in which the weight of the negative electrode active material is greater than the weight of the positive electrode active material, has the following effects:
There is no need to perform surface treatments such as plating or dipping on the surface of the copper grid, and its performance can be fully demonstrated, so it can be said to have extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は全放電サイクル試験における放電持続時間の変
化を示した特性図、第2図は全放電サイクル試験におけ
るガス発生量を示した特性図である。
FIG. 1 is a characteristic diagram showing the change in discharge duration in the full discharge cycle test, and FIG. 2 is a characteristic diagram showing the amount of gas generated in the full discharge cycle test.

Claims (1)

【特許請求の範囲】[Claims] 1、負極に銅格子を用い板鉛蓄電池において、負極活物
質重量を正極活物質重量の115〜120%としたこと
を特徴とする鉛蓄電池。
1. A lead-acid battery using a copper lattice for the negative electrode, characterized in that the weight of the negative electrode active material is 115 to 120% of the weight of the positive electrode active material.
JP1258297A 1989-10-02 1989-10-02 Lead storage battery Expired - Fee Related JP2913482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258297A JP2913482B2 (en) 1989-10-02 1989-10-02 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258297A JP2913482B2 (en) 1989-10-02 1989-10-02 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH03119654A true JPH03119654A (en) 1991-05-22
JP2913482B2 JP2913482B2 (en) 1999-06-28

Family

ID=17318305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258297A Expired - Fee Related JP2913482B2 (en) 1989-10-02 1989-10-02 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2913482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289032A (en) * 1996-04-22 1997-11-04 Furukawa Battery Co Ltd:The Lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289032A (en) * 1996-04-22 1997-11-04 Furukawa Battery Co Ltd:The Lead-acid battery

Also Published As

Publication number Publication date
JP2913482B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
CN102660697B (en) Lead-acid battery grid alloy for power
CN110336086B (en) Formation process of liquid-enriched lead storage battery and lead storage battery
JP3482605B2 (en) Lead storage battery
Rogachev et al. Influence of cycling on the nature of the positive active mass of lead/acid batteries and effect of CaSO4 on the behaviour of the positive plates
JPH03119654A (en) Lead-acid battery
JP4081698B2 (en) Lead-acid battery charging method
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH04196059A (en) Lead-acid battery
JP2506777B2 (en) Method for producing paste type cadmium negative electrode
JPH01302661A (en) Lead acid battery and its manufacture
JPS6216506B2 (en)
JP2001155762A (en) Sealed lead cell for automobile
JPH08115718A (en) Manufacture of lead-acid battery
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JPS6351051A (en) Hydrogen absorption alloy negative electrode for alkaline cell
JPH10241746A (en) Charging method of sealed-type lead storage battery
JP3582068B2 (en) How to charge lead storage batteries
JP4556250B2 (en) Lead acid battery
JPS61198574A (en) Lead storage battery
JPS63187566A (en) Manufacture of lead acid battery
JPH04206150A (en) Lead acid battery
JPH01117279A (en) Lead-acid battery
JPS61161660A (en) Lead-acid battery
JPS63310561A (en) Manufacture of paste type cadmium negative electrode
JPH10134810A (en) Manufacture of lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees