JPH0311732A - Wiring formation of semiconductor device - Google Patents
Wiring formation of semiconductor deviceInfo
- Publication number
- JPH0311732A JPH0311732A JP14696889A JP14696889A JPH0311732A JP H0311732 A JPH0311732 A JP H0311732A JP 14696889 A JP14696889 A JP 14696889A JP 14696889 A JP14696889 A JP 14696889A JP H0311732 A JPH0311732 A JP H0311732A
- Authority
- JP
- Japan
- Prior art keywords
- film
- titanium
- forming
- silicon
- diffusion region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 5
- 230000015572 biosynthetic process Effects 0.000 title abstract description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000010936 titanium Substances 0.000 claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 27
- 238000009792 diffusion process Methods 0.000 claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 239000012535 impurity Substances 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 15
- 238000010438 heat treatment Methods 0.000 abstract description 12
- 239000010410 layer Substances 0.000 abstract description 8
- 229910008479 TiSi2 Inorganic materials 0.000 abstract description 6
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 abstract description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005530 etching Methods 0.000 abstract description 2
- 239000011229 interlayer Substances 0.000 abstract description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 229910008484 TiSi Inorganic materials 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半導体集積回路装置の配線を形成する方法に関
し、特にシリコン基板に形成された不純物拡散領域に接
続されるアルミニウム配線を形成する方法に関するもの
である。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method of forming wiring for a semiconductor integrated circuit device, and more particularly to a method of forming aluminum wiring connected to an impurity diffusion region formed in a silicon substrate. It is something.
(従来の技術)
半導体集積回路装置の配線としてはアルミニウム配線(
アルミニウムに僅かなシリコンを含有させたものも含む
)が主流になっている。シリコン基板の不純物拡散領域
層とアルミニウム配線との電極コンタクト部においては
、アルミニウムと基板シリコンとが反応して合金を生成
する。(Prior art) Aluminum wiring (
(including aluminum containing a small amount of silicon) has become mainstream. At the electrode contact portion between the impurity diffusion region layer of the silicon substrate and the aluminum wiring, aluminum and the substrate silicon react to form an alloy.
半導体集積回路装置が微細化されると不純物拡散領域の
深さが浅くなる。その際、アルミニウムとシリコンの合
金が拡散領域を突き抜ける可能性がある。そこで、アル
ミニウム合金が拡散領域を突き抜けるのを防止し、かつ
、電極コンタクト部におけるコンタクト抵抗を低下させ
るために、不純物拡散領域上の絶縁膜にコンタクト用開
口を形成した後、チタン膜を形成し、窒素雰囲気中で熱
処理を施すことにより低抵抗のTiSi、とTiNを形
成し、その後にアルミニウム膜を形成し。As semiconductor integrated circuit devices become smaller, the depth of impurity diffusion regions becomes shallower. In this case, the aluminum-silicon alloy may penetrate through the diffusion region. Therefore, in order to prevent the aluminum alloy from penetrating the diffusion region and to reduce the contact resistance at the electrode contact portion, a titanium film is formed after forming a contact opening in the insulating film over the impurity diffusion region. Low resistance TiSi and TiN are formed by heat treatment in a nitrogen atmosphere, and then an aluminum film is formed.
電極配線を形成している。Forms electrode wiring.
(発明が鮮決しようとする課題)
不純物拡散領域上にコンタクト用開口を設け、チタン膜
を形成し、熱処理を施すと、チタンはシリコン基板側へ
拡散するが、その拡散速度はシリコン基板の深さ方向よ
りも表面方向の方が大きい。(Problem to be clearly resolved by the invention) When a contact opening is provided on the impurity diffusion region, a titanium film is formed, and heat treatment is performed, titanium diffuses toward the silicon substrate, but the diffusion rate depends on the depth of the silicon substrate. It is larger in the surface direction than in the horizontal direction.
そのため、高温で熱処理を行なうとチタンが表面に沿っ
て拡散し、不純物拡散−領域を横方向に突き抜けてしま
う、そのため、例えば600℃前後というような低温で
の熱処理しか行なうことができない、窒素雰囲気中で6
00℃程度の熱処理では、低抵抗のT i S i、が
形成されず、また、チタン表面にもバリア層となるTi
Nが十分に形成されない。Therefore, when heat treatment is performed at high temperatures, titanium diffuses along the surface and penetrates the impurity diffusion region laterally.Therefore, heat treatment can only be performed at low temperatures, such as around 600°C, in a nitrogen atmosphere. 6 inside
Heat treatment at about 00°C does not form low-resistance TiSi, and TiSi, which forms a barrier layer, does not form on the titanium surface.
Not enough N is formed.
600℃程度の低温熱処理でもシリコン基板の表面方向
へのチ′タンの拡散は起こり、これにより絶縁膜が剥が
れることがある。Even with low-temperature heat treatment at about 600° C., titanium diffuses toward the surface of the silicon substrate, which may cause the insulating film to peel off.
本発明はシリコン基板の不純物拡散領域とアルミニウム
配線との電極コンタクト部において、アルミニウム合金
が拡散領域を突き抜けることを防止するとともに、低抵
抗化を図るためにアルミニウム膜形成に先立ってチタン
膜を形成し、窒素雰囲気中で熱処理を施す際、高温で熱
処理を行なってもチタンが基板表面方向に拡散せず、し
たがって低抵抗のTiSi2を形成し、なおかつ表面に
はTiNを形成することのできる方法を提供することを
目的とするものである。In the present invention, a titanium film is formed before forming an aluminum film in an electrode contact area between an impurity diffusion region of a silicon substrate and an aluminum wiring, in order to prevent the aluminum alloy from penetrating the diffusion region and to lower the resistance. , provides a method in which titanium does not diffuse toward the substrate surface even if the heat treatment is performed in a nitrogen atmosphere at a high temperature, thereby forming low-resistance TiSi2, and also forming TiN on the surface. The purpose is to
(課題を解決するための手段)
本発明は以下の工程(A)から(D)を含んでいる。(
A)シリコン基板上に絶縁膜を形成し。(Means for Solving the Problems) The present invention includes the following steps (A) to (D). (
A) Form an insulating film on a silicon substrate.
不純物拡散領域上にコンタクト用開口を形成する工程、
(B)シリコン膜を形成し、その上にチタン膜を形成し
た後、窒素雰囲気中にて熱処理を施す工程、(C)その
上にメタル膜を形成する工程、CD)前記メタル膜とそ
の下の導電膜をパターン化して電極配線とする工程。forming a contact opening on the impurity diffusion region;
(B) A step of forming a silicon film and a titanium film thereon, and then performing heat treatment in a nitrogen atmosphere; (C) A step of forming a metal film thereon; CD) The metal film and its underside. The process of patterning the conductive film to form electrode wiring.
(作用)
拡散領域上の絶縁膜にコンタクト用開口を形成した後、
チタン膜を形成する前に、多結晶シリコン膜や非晶質シ
リコン膜などのシリコン膜を形成しておくと、チタンが
そのシリコン膜と反応し、チタンが基板表面に沿って拡
散するのが防止される。(Function) After forming a contact opening in the insulating film on the diffusion region,
By forming a silicon film such as a polycrystalline silicon film or an amorphous silicon film before forming a titanium film, titanium reacts with the silicon film and prevents titanium from diffusing along the substrate surface. be done.
(実施例) 第1図から第6図により一実施例を説明する。(Example) One embodiment will be described with reference to FIGS. 1 to 6.
(A)第1図に示されるように、シリコン基板1に半導
体素子を形成するための不純物拡散領域4を形成した後
、シリコン基板1上にPSG膜などの眉間絶縁膜2を例
えば1μm程度の厚さに形成する。(A) As shown in FIG. 1, after forming an impurity diffusion region 4 for forming a semiconductor element on a silicon substrate 1, a glabella insulating film 2 such as a PSG film is formed on the silicon substrate 1 to a thickness of about 1 μm, for example. Form into a thick layer.
眉間絶縁膜2上に形成され□る配線と拡散領域4とを接
続するための開口を形成するために、写真製版によりレ
ジストパターン3を形成する。In order to form an opening for connecting the wiring formed on the glabellar insulating film 2 and the diffusion region 4, a resist pattern 3 is formed by photolithography.
(B)レジストパターン3をマスクにしてドライエツチ
ング法又はウェットエツチング法により絶縁膜2に開口
5を形成する。その後、レジスト3を酸素プラズマなど
により除去すると、第2図に示される状態となる。(B) Using the resist pattern 3 as a mask, an opening 5 is formed in the insulating film 2 by dry etching or wet etching. Thereafter, when the resist 3 is removed by oxygen plasma or the like, the state shown in FIG. 2 is obtained.
(C)次に第3図に示されるように、全面に多結晶シリ
コン膜6をCVD法などにより500〜600人程度の
厚さ程度成する。(C) Next, as shown in FIG. 3, a polycrystalline silicon film 6 is formed on the entire surface by CVD or the like to a thickness of about 500 to 600 layers.
(D)第4図に示されるように、多結晶シリコン膜6上
にチタン膜7をスパッタリング法などにより300〜4
00人程度の厚さ程度成する。(D) As shown in FIG. 4, a titanium film 7 with a thickness of 30 to 4
The thickness is about 00 people.
(E)次に、窒素雰囲気中で750〜850℃で熱処理
を施す、これにより、チタン膜7と多結晶シリコン膜6
は、第5図に示されるように、表面側がTiN膜8、下
層側がTiSi2膜9の2層栂造となる。TiSi2膜
9が形成されることにより、チタンがシリコン基板1の
表面方向(横方向)へ拡散することが防止される。(E) Next, a heat treatment is performed at 750 to 850°C in a nitrogen atmosphere, whereby the titanium film 7 and the polycrystalline silicon film 6
As shown in FIG. 5, this is a two-layer structure with a TiN film 8 on the surface side and a TiSi2 film 9 on the lower layer side. Formation of the TiSi2 film 9 prevents titanium from diffusing in the surface direction (lateral direction) of the silicon substrate 1.
(F)riN膜8上にスパッタリング法によりアルミニ
ウム膜10を形成する。(F) An aluminum film 10 is formed on the riN film 8 by sputtering.
その後、通常の方法に従い、写真製版とエツチングによ
りアルミニウム膜10とTiN膜8及びTiSi2膜9
をパターン化し、第6図に示される配線11を形成する
。Thereafter, the aluminum film 10, the TiN film 8, and the TiSi2 film 9 are etched by photolithography and etching according to the usual method.
is patterned to form wiring 11 shown in FIG.
第3図において、多結晶シリコン膜6に代えて非晶質シ
リコン膜をmmいてもよい。In FIG. 3, instead of the polycrystalline silicon film 6, an amorphous silicon film may be used.
第6図において、配線のアルミニウム膜10は純粋なア
ルミニウムであってもよく、シリコンを僅かに含んだア
ルミニウム合金であってもよい。In FIG. 6, the aluminum film 10 of the wiring may be pure aluminum or may be an aluminum alloy containing a small amount of silicon.
(発明の効果)
本発明ではシリコン基板の不純物拡散領域上の絶縁膜に
コンタクト用開口を形成した後、シリコン膜を形成し、
その上にチタン膜を形成して、窒素雰囲気中で熱処理を
行なうようにしたので、チタンが基板表面に沿って拡散
することを防止することができるようになる。これによ
り、チタン膜の窒素雰囲気中での熱処理を高温で行なう
ことができ、低抵抗で、しかもアルミニウム合金が不純
物拡散領域を突き抜けるのを防止して信頼性の高いアル
ミニウム配線を実現することができる。(Effects of the Invention) In the present invention, after forming a contact opening in an insulating film on an impurity diffusion region of a silicon substrate, a silicon film is formed,
Since a titanium film is formed thereon and heat treatment is performed in a nitrogen atmosphere, titanium can be prevented from diffusing along the substrate surface. As a result, the titanium film can be heat-treated in a nitrogen atmosphere at high temperatures, making it possible to realize highly reliable aluminum wiring with low resistance and preventing the aluminum alloy from penetrating the impurity diffusion region. .
従来のように不純物拡散領域上にチタン膜が直接接触し
ている場合は、窒素雰囲気中での熱処理の際、拡散領域
中の不純物がチタン膜方向に拡散する不純物の吸出し現
象が起こり、拡散領域の不純物濃度が下がって高抵抗に
なる問題があったが、本発明によれば不純物拡散領域と
チタン膜の間にシリコン膜が介在することになり、不純
物拡散領域からの不純物の吸出しも減り、電極コンタク
ト部の低抵抗化が一層可能になる。If the titanium film is in direct contact with the impurity diffusion region as in the past, during heat treatment in a nitrogen atmosphere, an impurity suction phenomenon occurs in which the impurities in the diffusion region diffuse toward the titanium film, causing the diffusion region to However, according to the present invention, a silicon film is interposed between the impurity diffusion region and the titanium film, which reduces the amount of impurities sucked out from the impurity diffusion region. It becomes possible to further reduce the resistance of the electrode contact portion.
第1図から第6図は一実施例を示す工程断面図である6
1・・・・・・シリコン基板、2・・・・・・層間絶縁
膜、4・・・・・・不純物拡散領域、5・・・・・・コ
ンタクト用開口、6・・・・・・多結晶シリコン膜、7
・・団・チタン膜、8・旧・・T i N膜、 9・・
・・・・TiSi2膜、10・・・・・・アルミニウム
膜。1 to 6 are process cross-sectional views showing one embodiment 6 1...Silicon substrate, 2...Interlayer insulating film, 4...Impurity diffusion region , 5... Contact opening, 6... Polycrystalline silicon film, 7
・Group・Titanium film, 8・Old・・TiN film, 9・・
...TiSi2 film, 10... Aluminum film.
Claims (1)
配線形成方法。 (A)シリコン基板上に絶縁膜を形成し、不純物拡散領
域上にコンタクト用開口を形成する工程、(B)シリコ
ン膜を形成し、その上にチタン膜を形成した後、窒素雰
囲気中にて熱処理を施す工程、(C)その上にメタル膜
を形成する工程、 (D)前記メタル膜とその下の導電膜をパターン化して
電極配線とする工程。(1) A method for forming wiring for a semiconductor device, including the following steps (A) to (D). (A) Forming an insulating film on a silicon substrate and forming a contact opening on the impurity diffusion region; (B) Forming a silicon film and forming a titanium film on it; then in a nitrogen atmosphere. (C) forming a metal film thereon; (D) patterning the metal film and the conductive film underneath to form electrode wiring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14696889A JPH0311732A (en) | 1989-06-09 | 1989-06-09 | Wiring formation of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14696889A JPH0311732A (en) | 1989-06-09 | 1989-06-09 | Wiring formation of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0311732A true JPH0311732A (en) | 1991-01-21 |
Family
ID=15419650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14696889A Pending JPH0311732A (en) | 1989-06-09 | 1989-06-09 | Wiring formation of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0311732A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5397742A (en) * | 1993-04-16 | 1995-03-14 | Hyundai Electronics Industries Co., Ltd. | Method for forming tungsten plug for metal wiring |
KR100325704B1 (en) * | 1999-06-28 | 2002-02-25 | 박종섭 | Method of manufacturing a semiconductor device |
-
1989
- 1989-06-09 JP JP14696889A patent/JPH0311732A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5397742A (en) * | 1993-04-16 | 1995-03-14 | Hyundai Electronics Industries Co., Ltd. | Method for forming tungsten plug for metal wiring |
KR100325704B1 (en) * | 1999-06-28 | 2002-02-25 | 박종섭 | Method of manufacturing a semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6173370A (en) | Semiconductor device and method of producing same | |
JPS6213819B2 (en) | ||
JPS62113421A (en) | Manufacture of semiconductor device | |
JPH0311732A (en) | Wiring formation of semiconductor device | |
JPH05121727A (en) | Semiconductor device and manufacturing method thereof | |
JPH01196142A (en) | Semiconductor device | |
JPS62114231A (en) | Semiconductor device | |
JP2874216B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH02260535A (en) | Manufacture of semiconductor device | |
JPH01268150A (en) | Semiconductor device | |
JPS63147346A (en) | Semiconductor integrated circuit device | |
JP3038873B2 (en) | Method for manufacturing semiconductor device | |
JPS62235775A (en) | Semiconductor device and manufacture theeof | |
JPS62262443A (en) | Semiconductor device and manufacture thereof | |
JPH028463B2 (en) | ||
JPH0235773A (en) | Semiconductor device | |
JPH0290610A (en) | Manufacture of semiconductor integrated circuit | |
JPS59211249A (en) | Wirings forming method | |
JPS63299250A (en) | Manufacture of semiconductor device | |
JPH01155641A (en) | Semiconductor integrated circuit device | |
JPH03248533A (en) | Semiconductor integrated circuit device | |
JPH07147403A (en) | Semiconductor device and manufacture thereof | |
JPS59189657A (en) | Manufacture of semiconductor device | |
JPH0287621A (en) | Manufacture of semiconductor device | |
JPS6376424A (en) | Manufacture of semiconductor device |