JPH03116012A - Detecting method for adjacent short-circuit defective part - Google Patents

Detecting method for adjacent short-circuit defective part

Info

Publication number
JPH03116012A
JPH03116012A JP25234589A JP25234589A JPH03116012A JP H03116012 A JPH03116012 A JP H03116012A JP 25234589 A JP25234589 A JP 25234589A JP 25234589 A JP25234589 A JP 25234589A JP H03116012 A JPH03116012 A JP H03116012A
Authority
JP
Japan
Prior art keywords
short
electrode
resistance value
adjacent
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25234589A
Other languages
Japanese (ja)
Inventor
Yuichi Masaki
裕一 正木
Masaaki Suzuki
正明 鈴木
Naoya Nishida
直哉 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25234589A priority Critical patent/JPH03116012A/en
Publication of JPH03116012A publication Critical patent/JPH03116012A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the time for detecting a short-circuit defective part by deriving a position of a short-circuited part, based on a measured resistance value, a resistance value between both ends of each electrode, and length, as for each adjacent electrode which is decided to be short-circuited. CONSTITUTION:As for a short circuit of an adjacent electrode 2, a resistance value between the adjacent electrodes 2 is decided to be lower than usual, and this resistance value is proportional to a distance Xa extending from end part in which it is measured from a short-circuit part 5. Also, length of the electrode is proportional to the short- circuit part, and a resistance between both ends of the electrode is in inverse proportion thereto. Accordingly, based on the resistance value between these adjacent electrodes, and the length and the resistance value between both ends of the electrode, a position of the short-circuit part is derived. That is, when length of the electrode, a resistance value between both ends of the electrode, and a resistance value between adjacent electrode in one end are denoted as l, RE and RS, respectively, and a position of the short-circuit part is denoted by a distance (x) extending from one end thereof to the short-circuit part, the position (x) of the short-circuit part is calculated from an expression I. In such a way, the manhour of an inspection process and a restoration process of a substrate can be decreased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基板上に形成された電極パターンの隣接ショー
ト欠陥部の検出方法に関し、特に液晶セル基板等にスト
ライプ状に形成された電極群の隣接ショート欠陥部の検
出方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for detecting adjacent short-circuit defects in an electrode pattern formed on a substrate, and in particular to a method for detecting adjacent short-circuit defects in an electrode pattern formed on a substrate, and in particular for detecting a group of electrodes formed in a stripe shape on a liquid crystal cell substrate or the like. The present invention relates to a method for detecting adjacent short-circuit defects.

[従来の技術〕 マトリックス液晶セルの基板には非常に近接したストラ
イプパターンが形成されるが、最近の高精細・大画面化
に伴って一基板上に千木以上も形成される例がある。こ
のような場合、電気的に絶縁状態として存在しなければ
ならない各々のストライプ電極について、製造プロセス
において隣りの電極とのショートや途中断線の欠陥発生
率が高く、特に隣接ショートに関しては、レーザ光を利
用した修復手段で良品とする作業をのがれられない。そ
して従来、電気的手段により良品か不良品かの選別のみ
を行ない、欠陥部の検出は目視やパターン認識を利用し
た自動化装置で行なっていた。
[Prior Art] Very closely spaced stripe patterns are formed on the substrate of a matrix liquid crystal cell, but with the recent trend toward higher definition and larger screens, there are cases where more than a thousand stripes are formed on one substrate. In such cases, for each striped electrode that must exist in an electrically insulated state, there is a high rate of defects such as short-circuits and disconnections with adjacent electrodes during the manufacturing process. It is not possible to avoid the process of making the product non-defective using the repair method used. Conventionally, only good or defective products were selected by electrical means, and defective parts were detected by automated equipment using visual inspection or pattern recognition.

[発明が解決しようとする課題] しかしながら、従来のような検査法では、不良の基板に
対して、修復可能な隣接ショートの欠陥部を目視により
探し出す場合、作業者が隣接ショートしているストライ
プ電極の間を最端部から目視によって追いつづける事が
必要であり、欠陥部の検出に多大な時間を必要とした。
[Problems to be Solved by the Invention] However, in the conventional inspection method, when visually searching for repairable adjacent short-circuit defects on a defective board, an operator must detect adjacent short-circuited striped electrodes. It was necessary to catch up visually from the end, and it took a lot of time to detect the defective part.

また、パターン認識を利用した自動化装置によっても、
数μmの欠陥部の分解能を必要とする為に、同様に多大
な時間を費いやす等の欠点がありた。
Additionally, automated equipment that uses pattern recognition can
Since the resolution of defective parts of several μm is required, there are also drawbacks such as a large amount of time being wasted.

そこで、この発明の目的は、ショート欠陥部の検出時間
を極めて短縮化した隣接ショート欠陥部の検出方法を提
供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for detecting adjacent short-circuit defects, which greatly reduces the time required to detect short-circuit defects.

[課題を解決するための手段コ 上記目的を達成するため本発明の隣接ショート欠陥部の
検出方法では、基板上に複数本近接して形成されたスト
ライプ状の電極の少なくとも一端における各隣接電極間
の抵抗値を測定して各隣接電極間のショートの有無を判
断し、シコートシていると判断された各隣接電極につい
ては前記測定された抵抗値ならびに各電極の両端間の抵
抗値および長さに基づいてショート部分の位置を求める
ようにしている。
[Means for Solving the Problems] To achieve the above object, the method for detecting adjacent short-circuit defects of the present invention provides a method for detecting adjacent short-circuit defects between adjacent electrodes at at least one end of a plurality of striped electrodes formed close to each other on a substrate. The presence or absence of a short circuit between adjacent electrodes is determined by measuring the resistance value of the electrode, and for each adjacent electrode that is determined to be short-circuited, the measured resistance value and the resistance value and length between both ends of each electrode are determined. Based on this, the position of the short part is determined.

例えば、ショートしていると判断された各隣接電極につ
いて、電極の長さをρ、電極両端間の抵抗値をRE、一
端における隣接電極間の抵抗値をR8とし、ショート部
分の位置をこの一端からショート部分までの距MXで表
すとすれば、ショート部分の位置Xは ぷ X=      ・ R8 2R。
For example, for each adjacent electrode that has been determined to be short-circuited, the length of the electrode is ρ, the resistance value between both ends of the electrode is RE, the resistance value between adjacent electrodes at one end is R8, and the position of the shorted part is defined as this one end. If it is expressed as the distance MX from to the short part, then the position X of the short part is puX= ・R8 2R.

として算出される。It is calculated as

[作用] この構成において、隣接電極のショートは隣接電極間の
抵抗値が通常より低いものとして判断されるが、この抵
抗値はそれを測定した端部からショート部分までの距離
に比例する。また、電極の長さはショート部分までの距
離に比例し、電極の両端間の抵抗は反比例する。したが
って、これら隣接電極間の抵抗値ならびに電極両端間の
長さおよび抵抗値に基づいてショート部分の位置が求め
られる。
[Operation] In this configuration, a short circuit between adjacent electrodes is determined as a resistance value between the adjacent electrodes that is lower than normal, and this resistance value is proportional to the distance from the end where it is measured to the short portion. Further, the length of the electrode is proportional to the distance to the shorted part, and the resistance between both ends of the electrode is inversely proportional. Therefore, the position of the short portion is determined based on the resistance value between these adjacent electrodes and the length and resistance value between both ends of the electrodes.

より具体的には、同じ形状のストライプ電極が形成され
ている場合、特に隣り合った電極の配線抵抗値R7はほ
とんど等しい、導電膜の形成時に発生する導電率の分布
やパターンユング時の寸法ばらつき等は基板上の大きな
エリア間で発生するからである。これを考慮して、第1
図に示すように、隣接ショートしている電極を等価回路
で表わして考察する。図中、γ8はショート欠陥部の抵
抗である。ここで、例えばマトリクス液晶セルの電極の
場合を考えれば、ショート欠陥部の存する電極がITO
電極である場合でも、隣接ショート抵抗値R8はほとん
どRs J=rR2+ R4で示す事が可能であり、ま
た、R2=R4と考えられるので となる。故に一端部から他端部までの電極の長さlと一
端部から欠陥部までの長さXとの間には、が成り立ち、
この値は欠陥部の発見に極めて有効な数値として利用す
る事が可能である。
More specifically, when striped electrodes of the same shape are formed, the wiring resistance values R7 of adjacent electrodes are almost equal, and the distribution of conductivity that occurs during the formation of a conductive film and dimensional variations during patterning. etc., occur between large areas on the board. Considering this, the first
As shown in the figure, adjacent short-circuited electrodes are expressed and discussed using an equivalent circuit. In the figure, γ8 is the resistance of the short-circuit defect. For example, if we consider the case of the electrode of a matrix liquid crystal cell, the electrode with the short-circuit defect is ITO.
Even in the case of an electrode, the adjacent short resistance value R8 can be almost expressed as Rs J=rR2+R4, and it can be considered that R2=R4. Therefore, between the length l of the electrode from one end to the other end and the length X from one end to the defective part,
This value can be used as an extremely effective value for finding defective parts.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

去J1丸上 第2図に示すような、 長さ1が250mm″1[ 極巾aが0.3mmのITO電極2が電極間距離すを0
.01mmとして複数本ストライプ状に形成されたガラ
ス基板1を用意し、まず、1本の電極2の一端から他端
までの抵抗値をマルチ・メータ3によって測定したとこ
ろ、3.2にΩであった。
As shown in Figure 2 above, the ITO electrode 2 has a length 1 of 250 mm''1 and a pole width a of 0.3 mm, so that the distance between the electrodes is 0.
.. A glass substrate 1 having a plurality of stripes of 0.01 mm in diameter was prepared, and the resistance value from one end of one electrode 2 to the other end was measured with a multimeter 3, and it was found to be 3.2 Ω. Ta.

次に、マニュアルブローバ針4aと4bを一端において
隣接する電極2に接触させてマルチ・メータ3により各
隣接電極2間の抵抗値の測定を順次行った。ショート欠
陥の無い隣接74.極間は10MΩ以上の高い絶縁性を
示すが、ショート欠陥のある電極間においては最大6に
0位のショート抵抗値R5を示した。このショート抵抗
値R5の値を4つの欠陥部(例1−4)について第1表
に示す。
Next, one end of the manual blower needles 4a and 4b was brought into contact with the adjacent electrodes 2, and the resistance value between each adjacent electrode 2 was sequentially measured using the multimeter 3. Adjacent 74 without short defects. The electrode gap showed high insulation of 10 MΩ or more, but the short resistance value R5 between the electrodes with a short defect was 6 to 0 at the maximum. The values of this short resistance value R5 are shown in Table 1 for four defective parts (Example 1-4).

次に、これら欠陥を有する電極2についてそのショート
欠陥部5を顕微鏡によって探し出し、ショート欠陥部5
までの電極の一端からの距taX。
Next, the short defect portion 5 of the electrode 2 having these defects is found using a microscope, and the short defect portion 5 is
The distance from one end of the electrode to taX.

を測定した。また一方、同じ電8i2について、ショー
ト欠陥部までの距!xbを上述の式(1)を用いて算出
することにより検出した。
was measured. On the other hand, for the same electric 8i2, the distance to the short defective part! It was detected by calculating xb using the above equation (1).

これらの結果を5距離X、とxbとの誤差ΔX(=X、
−Xb)とともに第1表に示す。
These results are expressed as the error ΔX (=X,
-Xb) are shown in Table 1.

第 表 第1表に示す様に、本発明の方法によれば、実際の観察
によるショート欠陥部までの値に極めて近い値が求めら
れたことがわかる。更に、算出により求められた距at
 x bをレーザ・リペア機(NEC製5L−432)
へ移動座標として人力する事により従来より早くショー
ト欠陥部の修復が可能となる。
As shown in Table 1, it can be seen that, according to the method of the present invention, values extremely close to the values up to the short defect portion determined by actual observation were obtained. Furthermore, the distance at
x b with laser repair machine (NEC 5L-432)
By manually moving the coordinates to the position, it becomes possible to repair short-circuit defects faster than before.

東1日羨ス 第3図に示すように、実施例1と同様の基板1を用意し
、例えば電8i2 eと2fの両端に2本づつブローバ
探針4a、4b、と4c、4dを接触させ、まずスイッ
チ6aと6dだけオンにして電極2fの配線抵抗値RE
、=3.18にΩを求めた。次に、スイッチ6bと60
だけオンにして電52 eの配線抵抗R,,=3.18
にΩを求めた。その後、スイッチ6aと6bだけオンに
してショート抵抗値Rs+ = 3.785 kΩを求
め、更にスイッチ6Cと6dだけオンにしてショート抵
抗値R52= 2.597にΩを測定した。これらの抵
抗値からショート欠陥部5の抵抗分子を算出し、 を求めた。そして、この結果から欠陥部までの距111
xを算出し を得た。
As shown in FIG. 3, a substrate 1 similar to that in Example 1 is prepared, and two blower probes 4a, 4b, and 4c, 4d are contacted at both ends of the electrodes 8i2e and 2f, for example. First, turn on only switches 6a and 6d to increase the wiring resistance value RE of electrode 2f.
, = 3.18. Next, switches 6b and 60
The wiring resistance R, , = 3.18 when the voltage is turned on is 52
I found Ω. Thereafter, only switches 6a and 6b were turned on to obtain a short resistance value Rs+ = 3.785 kΩ, and only switches 6C and 6d were turned on to measure short resistance value R52 = 2.597 Ω. The resistance molecule of the short-circuit defect portion 5 was calculated from these resistance values, and the following was obtained. From this result, the distance to the defective part is 111
x was calculated and obtained.

この値は更に実際の欠陥位置に正確な値を示すものであ
った。
This value also showed an accurate value for the actual defect location.

[発明の効果コ 以上説明したように本発明によれば、各隣接電極間の抵
抗や電極両端間の抵抗を測定するだけで、ただちにショ
ート欠陥の有無のみならずその位置が検出できるので複
数本のストライプ状電極が形成された基板の検査工程と
修復工程の工数を著しく減らすことができる。また、検
査機能と修復機能が一体化した装置が可能となる。
[Effects of the Invention] As explained above, according to the present invention, by simply measuring the resistance between adjacent electrodes and the resistance between both ends of the electrodes, it is possible to immediately detect not only the presence or absence of a short-circuit defect but also its position. The number of steps for inspecting and repairing the substrate on which the striped electrodes are formed can be significantly reduced. Furthermore, it becomes possible to create a device that integrates inspection and repair functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の検出方法を説明するための隣接ショ
ート欠陥のある電極の電気的等価回路図、 第2図は、本発明の第1の実施例でショート欠陥が検出
される様子を示す基板の斜視図、そして第3図は、本発
明の第2実施例でショート欠陥が検出される様子を示す
基板の平面図である。 1ニガラス基板、2:ITOのストライプ電極、3:マ
ルチメーター 4a、4b、4c。 4d:マニュアル・ブローバ針、5 : Mt!ショー
ト欠陥部、6a、6b、6c、6dニスイツチ。
FIG. 1 is an electrical equivalent circuit diagram of an electrode with an adjacent short defect to explain the detection method of the present invention, and FIG. 2 shows how a short defect is detected in the first embodiment of the present invention. FIG. 3 is a perspective view of the substrate shown, and FIG. 3 is a plan view of the substrate showing how a short circuit defect is detected in the second embodiment of the present invention. 1. Glass substrate, 2: ITO stripe electrode, 3: Multimeter 4a, 4b, 4c. 4d: Manual blowbare needle, 5: Mt! Short defective part, 6a, 6b, 6c, 6d switch.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に複数本近接して形成されたストライプ状
の電極の少なくとも一端における各隣接電極間の抵抗値
を測定して各隣接電極間のショートの有無を判断し、シ
ョートしていると判断された各隣接電極については前記
測定された抵抗値ならびに各電極の両端間の抵抗値およ
び長さに基づいてショート部分の位置を求めることを特
徴とする隣接ショート欠陥部の検出方法。
(1) Measure the resistance value between adjacent electrodes at at least one end of multiple striped electrodes formed close to each other on the substrate to determine whether there is a short circuit between the adjacent electrodes, and if there is a short circuit, A method for detecting an adjacent short defect portion, characterized in that, for each determined adjacent electrode, the position of the short portion is determined based on the measured resistance value and the resistance value and length between both ends of each electrode.
(2)ショートしていると判断された各隣接電極につい
て、電極の長さをl、電極両端間の抵抗値をR_E、一
端における隣接電極間の抵抗値をR_Sとし、ショート
部分の位置をこの一端からショート部分までの距離xで
表すとすれば、ショート部分の位置xは x=(l/2R_E)・R_S として算出される請求項1記載の隣接ショート欠陥部分
の検出方法。
(2) For each adjacent electrode that is determined to be short-circuited, the length of the electrode is l, the resistance value between both ends of the electrode is R_E, the resistance value between adjacent electrodes at one end is R_S, and the position of the shorted part is 2. The method for detecting an adjacent short defective part according to claim 1, wherein the position x of the short part is calculated as x=(l/2R_E)·R_S when expressed by the distance x from one end to the short part.
JP25234589A 1989-09-29 1989-09-29 Detecting method for adjacent short-circuit defective part Pending JPH03116012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25234589A JPH03116012A (en) 1989-09-29 1989-09-29 Detecting method for adjacent short-circuit defective part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25234589A JPH03116012A (en) 1989-09-29 1989-09-29 Detecting method for adjacent short-circuit defective part

Publications (1)

Publication Number Publication Date
JPH03116012A true JPH03116012A (en) 1991-05-17

Family

ID=17235988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25234589A Pending JPH03116012A (en) 1989-09-29 1989-09-29 Detecting method for adjacent short-circuit defective part

Country Status (1)

Country Link
JP (1) JPH03116012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844199A (en) * 1993-12-24 1998-12-01 Tokyo Electron Ltd Conductor pattern check apparatus for locating and repairing short and open circuits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331894A (en) * 1989-06-29 1991-02-12 Asahi Glass Co Ltd Method and device for detecting short circuit between electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331894A (en) * 1989-06-29 1991-02-12 Asahi Glass Co Ltd Method and device for detecting short circuit between electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844199A (en) * 1993-12-24 1998-12-01 Tokyo Electron Ltd Conductor pattern check apparatus for locating and repairing short and open circuits

Similar Documents

Publication Publication Date Title
JPH09152457A (en) Electric wiring inspection method and apparatus
JPH02203380A (en) Production of liquid crystal display element
JPH0472552A (en) Thin film transistor base and method and device for inspecting it
TWI512308B (en) Inspecting method and inspecting apparatus
JP4068248B2 (en) Insulation inspection apparatus for substrate and insulation inspection method thereof
JP2006105795A (en) Insulation inspection method and insulation inspection device
JP4219489B2 (en) Circuit board inspection equipment
JP3765519B2 (en) Wiring pattern inspection method and apparatus
JPH03116012A (en) Detecting method for adjacent short-circuit defective part
JP3589923B2 (en) Electrode pattern inspection apparatus and electrode pattern inspection method
JP2879065B2 (en) Method and apparatus for detecting short circuit between electrodes
JP2002048833A (en) Circuit board inspecting device
JPH09244048A (en) Liquid crystal panel substrate and production of liquid crystal panel
JP2000221227A (en) Apparatus and method for inspecting conductive pattern
JPH07287249A (en) Thin film transistor array and its inspection method
CN1189932C (en) Detection method of electric defect in inner conducting layer of tested area
US7049527B1 (en) Conductor-pattern testing method, and electro-optical device
CN109073695A (en) The inspection method and inspection system of the wiring path of substrate
CN111856239A (en) Test method of cutting repair equipment and display panel
JPS5838874A (en) Electricity conduction pattern inspection
JP5323502B2 (en) Substrate inspection apparatus and substrate inspection method
JP3056574U (en) Conductive pattern inspection equipment
JPH1123668A (en) Defective wiring inspection circuit
KR940009136B1 (en) Method of detecting pattern electrode of lcd
JPS62287135A (en) Method for inspecting electrode pattern