JPH0311429B2 - - Google Patents

Info

Publication number
JPH0311429B2
JPH0311429B2 JP57206316A JP20631682A JPH0311429B2 JP H0311429 B2 JPH0311429 B2 JP H0311429B2 JP 57206316 A JP57206316 A JP 57206316A JP 20631682 A JP20631682 A JP 20631682A JP H0311429 B2 JPH0311429 B2 JP H0311429B2
Authority
JP
Japan
Prior art keywords
oscillation
circuit
moisture content
signal
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57206316A
Other languages
Japanese (ja)
Other versions
JPS5995448A (en
Inventor
Kazutaka Too
Hideji Tamenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP20631682A priority Critical patent/JPS5995448A/en
Publication of JPS5995448A publication Critical patent/JPS5995448A/en
Publication of JPH0311429B2 publication Critical patent/JPH0311429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 この発明は、被検体内に一対の電極を配置し、
その電極間の誘電率で穀物等の被検体の水分率を
測定するようにした水分率の測定装置に関し、特
に被検体の嵩密度に基づく誤差を補償する水分率
の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention places a pair of electrodes inside a subject,
The present invention relates to a moisture content measuring device that measures the moisture content of a sample such as grain using the dielectric constant between the electrodes, and particularly relates to a moisture content measuring device that compensates for errors based on the bulk density of the sample.

穀物等の水分率を、嵩密度に基づく誤差を補償
して測定する装置として、例えば、穀物内に一対
の電極を2組配置し、それぞれの電極を発振コン
デンサとする2個の発振回路で2種類の周波数を
発振させ、各発振周波数の比率から水分率を求め
るようにしたものがある。
As a device for measuring the moisture content of grains, etc. by compensating for errors based on bulk density, for example, two pairs of electrodes are placed inside the grain, and two oscillation circuits each using an oscillation capacitor are used to measure the moisture content of grains. There is one that oscillates different frequencies and calculates the moisture content from the ratio of each oscillation frequency.

この装置は、水分率が電極間の誘電率に比例
し、この誘電率が電極間に加わる発振周波数に比
例することから結果的に水分率が発振周波数に比
例すること、および2種類の発振周波数による誘
電率の比の変化に対して被検体の嵩密度が略一定
であることを利用して、同一嵩密度にある穀物を
電極間で挟んだときの2種類の発振周波数に基づ
いて水分率測定を行うようにしたものである。
This device has two types of oscillation frequencies: the moisture content is proportional to the dielectric constant between the electrodes, and this dielectric constant is proportional to the oscillation frequency applied between the electrodes, resulting in the moisture content being proportional to the oscillation frequency. Taking advantage of the fact that the bulk density of the sample remains almost constant with respect to changes in the dielectric constant ratio, moisture content can be determined based on two types of oscillation frequencies when grains with the same bulk density are sandwiched between electrodes. It is designed to perform measurements.

すなわち、第3図に示すように2種類の発振周
波数による誘電率の比と、被検体の水分率との関
係は、被検体の嵩密度に係わらず略一定であるこ
とから、2種類の発振周波数による誘電率の比か
ら嵩密度に影響されることなく被検体の水分率を
測定することができる。なお、上記第3図は高密
度被検体の嵩密度を低密度被検体に比べて約10%
上昇させ、常温下で測定したものである。
In other words, as shown in Fig. 3, the relationship between the dielectric constant ratio at two types of oscillation frequencies and the moisture content of the specimen is approximately constant regardless of the bulk density of the specimen. The moisture content of the sample can be measured from the ratio of dielectric constant to frequency without being affected by bulk density. In addition, Figure 3 above shows that the bulk density of the high-density specimen is about 10% compared to the low-density specimen.
The temperature was raised and measured at room temperature.

しかしながら、上記の測定装置では、電極が2
組必要であるとともに、それぞれの電極間の嵩密
度が同一であるとはかぎらないため、測定部の構
成が複雑化するとともに正確な水分率測定が出来
ない欠点がある。
However, in the above measuring device, the electrodes are
In addition, since the bulk densities between the electrodes are not necessarily the same, the configuration of the measuring section becomes complicated and accurate moisture content measurement cannot be performed.

この発明の目的は、測定部の構成が簡単で、且
つ水分率測定を正確に出来る測定装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring device having a simple configuration of a measuring section and capable of accurately measuring moisture content.

この発明を要約すれば、 被検体内に一対の電極を配置して、この電極を
共用の発振コンデンサとして2個の発振回路で2
種類の周波数を発振させ、さらにスイツチング回
路によつて上記発振回路を交互に駆動してそれぞ
れの発振信号を1本の伝送ラインに乗せ、受信側
においてフイルタ手段によつて復調し、その復調
した2種類の周波数信号と両信号のスイツチング
時間とから、演算によつて2種類の周波数を求
め、次にその収波数から水分率を求めることを特
徴とする。
To summarize this invention, a pair of electrodes are placed inside the subject, and these electrodes are used as a shared oscillation capacitor to connect two oscillation circuits.
Different frequencies are oscillated, the oscillation circuit is alternately driven by a switching circuit, each oscillation signal is placed on one transmission line, and the receiving side demodulates the signal by a filter means, and the demodulated 2 The method is characterized in that two types of frequencies are determined by calculation from the different types of frequency signals and the switching times of both signals, and then the moisture content is determined from the collection number.

以下この発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の実施例である穀物の水分率
測定装置のブロツク図である。
FIG. 1 is a block diagram of a grain moisture content measuring apparatus according to an embodiment of the present invention.

同図において、コンデンサC1(発振コンデン
サ)の上下電極は穀物を収納するホツパ内に配置
される。コンデンサC1に接続されるコンデンサ
C2、コイルL1,L2はコンデンサC2ととも
に共振回路1を構成する。共振回路1は、第1の
発振回路2と第2の発振回路3との発振部を構成
する。第1の発振回路2の発振駆動部は、正フイ
ードバツクループを有するアンプ20、発振出力
を検波する検波回路21、後述のスイツチング信
号τHと検波回路21の出力とを比較する比較回
路22、比較出力を所定のレベルにしてアンプ2
0の駆動時間を制御するアンプ23から構成され
る。また、第2の発振回路3の発振駆動部は、第
1の発振回路2と同様に、アンプ30、検波回路
31、比較回路32およびアンプ33から構成さ
れる。
In the figure, the upper and lower electrodes of a capacitor C1 (oscillation capacitor) are arranged in a hopper that stores grains. A capacitor C2 connected to the capacitor C1 and coils L1 and L2 constitute a resonant circuit 1 together with the capacitor C2. The resonance circuit 1 constitutes an oscillation section of a first oscillation circuit 2 and a second oscillation circuit 3. The oscillation driving section of the first oscillation circuit 2 includes an amplifier 20 having a positive feedback loop, a detection circuit 21 that detects the oscillation output, a comparison circuit 22 that compares a switching signal τH and the output of the detection circuit 21, which will be described later. Amplifier 2 with the comparative output at the specified level.
It is composed of an amplifier 23 that controls the drive time of 0. Further, the oscillation drive section of the second oscillation circuit 3 is composed of an amplifier 30, a detection circuit 31, a comparison circuit 32, and an amplifier 33, similarly to the first oscillation circuit 2.

共振回路1のコイルL1は、そのリアクタンス
をコイルL2のリアクタンスより非常に大きく設
定している。このため、第1の発振回路2の発振
周波数f1は、 1/(2π√22(1+2)) となり、 第2の発振回路3の発振周波数f2は、 1/(2π√1(1+2)) となる。
The reactance of the coil L1 of the resonant circuit 1 is set to be much larger than the reactance of the coil L2. Therefore, the oscillation frequency f1 of the first oscillation circuit 2 is 1/(2π√22(1+2)), and the oscillation frequency f2 of the second oscillation circuit 3 is 1/(2π√1(1+2)). Become.

すなわち、共振回路1はふたつの発振回路の共
振部を兼用しつつ、第1の発振回路には相対的に
高周波を発振させ、第2の発振回路には相対的に
低周波を発振させる。
That is, the resonant circuit 1 serves as the resonant parts of two oscillation circuits, and causes the first oscillation circuit to oscillate a relatively high frequency, and causes the second oscillation circuit to oscillate a relatively low frequency.

上記ふたつの発振回路2,3はスイツチング回
路を構成するマルチバイブレータ4で交互にスイ
ツチング駆動される。このマルチバイブレータ4
の両方のステージ出力は、それぞれτH,τLとし
て比較回路22,32の比較入力端子に与えられ
る。前述のように、比較回路22,32は、信号
τH,τLと検波回路21,31の出力とを比較す
るが、両者のレベルが同一のときにだけ比較出力
を出すことになるため、発振回路2,3は、それ
ぞれτH,τLの時間に交互にスイツチング駆動さ
れながら相対的に高周波である発振周波数f1、
相対的に低周波である発振周波数f2を時分割的
に出力する。
The two oscillation circuits 2 and 3 are alternately switched and driven by a multivibrator 4 constituting a switching circuit. This multi vibrator 4
The outputs of both stages are applied to comparison input terminals of comparison circuits 22 and 32 as τH and τL, respectively. As mentioned above, the comparison circuits 22 and 32 compare the signals τH and τL with the outputs of the detection circuits 21 and 31, but since the comparison outputs are output only when both levels are the same, the oscillation circuit 2 and 3 are oscillation frequencies f1, which are relatively high frequencies while being alternately switched and driven at times τH and τL, respectively;
The oscillation frequency f2, which is a relatively low frequency, is output in a time-division manner.

高周波信号fH(発振周波数f1)および低周波
信号fL(発振周波数f2)は、V−変換器2
4,34で電圧−電流変換され、コンデンサC3
およびコンデンサC4を介して伝送ライン5に乗
せられる。伝送ライン5は、同軸ケーブルで構成
され、上記発振回路2,3に電圧を供給するため
の電源ラインも兼用する。すなわち、伝送ライン
5は、発振回路2,3への電圧供給と、ふたつの
発振信号の伝送を同時におこなう。フイルタ6
は、このように1本のラインに電源電圧とふたつ
の発振信号が重畳して乗せられることから、伝送
ラインから電源電圧だけを抽出するために設けら
れる。フイルタ6に接続される定電圧電源回路7
は、発振の安定を図り、測定誤差を防止するため
に設けられる。
The high frequency signal fH (oscillation frequency f1) and the low frequency signal fL (oscillation frequency f2) are sent to the V-converter 2.
4, 34 performs voltage-current conversion, and capacitor C3
and is placed on the transmission line 5 via the capacitor C4. The transmission line 5 is composed of a coaxial cable, and also serves as a power supply line for supplying voltage to the oscillation circuits 2 and 3. That is, the transmission line 5 simultaneously supplies voltage to the oscillation circuits 2 and 3 and transmits two oscillation signals. Filter 6
is provided to extract only the power supply voltage from the transmission line, since the power supply voltage and two oscillation signals are superimposed on one line in this way. Constant voltage power supply circuit 7 connected to filter 6
is provided to stabilize oscillation and prevent measurement errors.

伝送ライン5の受信側では、上記発振回路2,
3に電圧を供給するための電源Eと、信号分だけ
を抽出するためのコンデンサC5が接続される。
直流分のカツトされた信号は、アンプ8で適当な
大きさのレベルにされ、さらにフイルタ9で元の
高周波信号fHと低周波信号fLに復調される。復
調された各信号は、エンベロープ検波回路10,
11およびカウンタ12,13に導かれ、エンベ
ロープ信号を遅延回路14,15で遅延させたエ
ンベロープ遅延信号がカウンタ12,13のリセ
ツト端子に導かれる。カウンタ12,13は、エ
ンベロープ遅延信号の立ち下がりでリセツトを繰
り返しながら、高周波信号fH、低周波信号fLを
カウントする。したがつてカウンタ12,13に
は、それぞれスイツチング時間であるτH,τLの
間に信号fH,fLをカウントした結果が保持され
る。レジスタ16,17は、カウンタ12,13
の記憶内容をエンベロープ遅延信号の立ち下がり
タイミングでラツチし、その内容を演算手段であ
るマイクロコンピユータ18に出力する。
On the receiving side of the transmission line 5, the oscillation circuit 2,
A power supply E for supplying voltage to the circuit 3 and a capacitor C5 for extracting only the signal are connected.
The DC component cut signal is made to an appropriate level by an amplifier 8, and further demodulated by a filter 9 into the original high frequency signal fH and low frequency signal fL. Each demodulated signal is sent to an envelope detection circuit 10,
11 and counters 12 and 13, and an envelope delayed signal obtained by delaying the envelope signal in delay circuits 14 and 15 is guided to reset terminals of the counters 12 and 13. The counters 12 and 13 count the high frequency signal fH and the low frequency signal fL while repeatedly being reset at the falling edge of the envelope delay signal. Therefore, the counters 12 and 13 hold the results of counting the signals fH and fL during the switching times τH and τL, respectively. Registers 16 and 17 are counters 12 and 13
The stored contents are latched at the falling timing of the envelope delay signal, and the contents are output to the microcomputer 18, which is an arithmetic means.

第2図は、上記の構成からなる測定装置の要部
の信号波形図である。同図に示すように高周波信
号fHは信号τHがハイのときだけ発生し、また低
周波信号fLは信号τLがハイのときだけ発生する。
それ故、信号τH,τLがハイのときの発振回数を
カウントすれば、そのカウント数と信号τH,τL
がハイにある時間とから信号fH,fLの周波数が
分ることになる。マイクロコンピユータ18は、
周波数の算出を、レジスタ16,17にセツトさ
れた値とエンベロープ信号から得られるスイツチ
ング時間とから求め、その周波数値に基づいて水
分率を演算する。
FIG. 2 is a signal waveform diagram of the main parts of the measuring device having the above configuration. As shown in the figure, the high frequency signal fH is generated only when the signal τH is high, and the low frequency signal fL is generated only when the signal τL is high.
Therefore, if we count the number of oscillations when the signals τH and τL are high, we can calculate the number of oscillations and the signals τH and τL.
The frequencies of the signals fH and fL can be found from the time when the signal is high. The microcomputer 18 is
The frequency is calculated from the values set in the registers 16 and 17 and the switching time obtained from the envelope signal, and the moisture content is calculated based on the frequency value.

この演算は、嵩密度の変化に対する周波数変動
係数をa(10MHz程度の高周波変動係数)、b(1M
Hz程度の低周波変動係数)として、次の式を実行
することでおこなう。なお、これらの係数は、予
めマイクロコンピユータが記憶している。
This calculation calculates the frequency variation coefficient for changes in bulk density by a (high frequency variation coefficient of about 10MHz) and b (1M
This is done by executing the following formula as the low frequency variation coefficient (of the order of Hz). Note that these coefficients are stored in advance in the microcomputer.

p(水分率)=(a・fH)/(b・fL) 以上のようにこの実施例では、同一の発振コン
デンサを用いて高周波と低周波の発振回路を交互
に駆動し、その駆動時間での発振回数をカウント
することで周波数を求め、さらにその周波数から
水分率を求めるようにしている。通常、発振回路
2,3を交互に駆動するスイツチング時間は、被
検体である穀物の動きに対し非常に短く設定され
る。このため、穀物の状態が固定されているとき
に高周波と低周波の両方の周波数が測定されるよ
うになる。すなわち、電極を1組しか使用しない
が、2種類の周波数は同一の条件下で測定され
る。それ故、測定部が簡単になり、且つ測定誤差
が生じない。しかも、発振回路2,3への電圧供
給と、発振信号の伝送とを1本の伝送ケーブルで
おこなつているため、配線が簡単となる利点があ
る。
p (moisture content) = (a・fH)/(b・fL) As described above, in this example, the high frequency and low frequency oscillation circuits are driven alternately using the same oscillation capacitor, and the driving time is The frequency is determined by counting the number of oscillations, and the moisture content is determined from that frequency. Normally, the switching time for alternately driving the oscillation circuits 2 and 3 is set to be very short with respect to the movement of the grain that is the subject. This allows both high and low frequencies to be measured when the grain condition is fixed. That is, only one set of electrodes is used, but two different frequencies are measured under the same conditions. Therefore, the measuring section becomes simple and measurement errors do not occur. Moreover, since a single transmission cable is used to supply voltage to the oscillation circuits 2 and 3 and to transmit the oscillation signal, there is an advantage that wiring is simple.

なお、マルチバイブレータ4の発振周期は、図
示しない時定数回路のCR定数によつて決定され
るが、各発振回路2,3の駆動時間をこのCR定
数を変えて異なるようにしてもよい。また、伝送
ライン5を発振信号専用にして、電源ラインを別
に設けてもよい。
The oscillation period of the multivibrator 4 is determined by a CR constant of a time constant circuit (not shown), but the drive time of each oscillation circuit 2, 3 may be made different by changing the CR constant. Alternatively, the transmission line 5 may be used exclusively for oscillation signals, and a power supply line may be provided separately.

以上のように、この発明によれば、発振コンデ
ンサを1個だけ用いるため、測定部の構成が簡単
になつて、被検体内での電極配置に工夫を施す必
要が生じず、しかも、電極の経時変化は両方の発
振周波数にそれぞれ同じ率だけ影響するため経時
的な電極部の変化に起因する誤差を少なくできる
効果がある。
As described above, according to the present invention, since only one oscillation capacitor is used, the configuration of the measurement section is simplified, and there is no need to make any modifications to the electrode arrangement within the subject. Changes over time affect both oscillation frequencies at the same rate, which has the effect of reducing errors caused by changes in the electrode portion over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例である穀物の水分率
測定装置のブロツク図である。第2図は同装置の
要部の信号波形図である。また、第3図は2種類
の発振周波数による誘電率の比と被検体の水分率
との関係を示した図であり、この発明の前提とな
る測定方法の根拠を示している。 1……共振回路、2……第1の発振回路、3…
…第2の発振回路、4……マルチバイブレータ
(スイツチング回路)、5……伝送ライン、9……
フイルタ(復調用)、18……マイクロコンピユ
ータ、C1……発振コンデンサ。
FIG. 1 is a block diagram of a grain moisture content measuring apparatus according to an embodiment of the present invention. FIG. 2 is a signal waveform diagram of the main parts of the device. Further, FIG. 3 is a diagram showing the relationship between the ratio of dielectric constants at two types of oscillation frequencies and the moisture content of the specimen, and shows the basis of the measurement method that is the premise of this invention. 1...Resonance circuit, 2...First oscillation circuit, 3...
...Second oscillation circuit, 4...Multivibrator (switching circuit), 5...Transmission line, 9...
Filter (for demodulation), 18...microcomputer, C1...oscillation capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 被検体内に配置された一対の電極と、この電
極で発振コンデンサを構成する2種類の周波数の
発振回路と、この発振回路を交互にスイツチング
駆動するスイツチング回路と、前記発振回路の二
つの出力を重畳して伝送する手段と、伝送後の受
信信号を元の発振出力に復調するフイルタ手段
と、復調した発振出力およびスイツチング時間か
ら上記2種類の周波数を求めるとともにその周波
数値に基づいて水分率を求める演算手段と、を有
してなる水分率の測定装置。
1 A pair of electrodes placed inside the subject, an oscillation circuit with two types of frequencies that configures an oscillation capacitor with these electrodes, a switching circuit that alternately switches and drives this oscillation circuit, and two outputs of the oscillation circuit. filter means to demodulate the received signal after transmission to the original oscillation output, and to obtain the above two types of frequencies from the demodulated oscillation output and switching time, and to determine the moisture content based on the frequency values. A moisture content measuring device comprising: arithmetic means for determining .
JP20631682A 1982-11-24 1982-11-24 Measurement device for moisture content Granted JPS5995448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20631682A JPS5995448A (en) 1982-11-24 1982-11-24 Measurement device for moisture content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20631682A JPS5995448A (en) 1982-11-24 1982-11-24 Measurement device for moisture content

Publications (2)

Publication Number Publication Date
JPS5995448A JPS5995448A (en) 1984-06-01
JPH0311429B2 true JPH0311429B2 (en) 1991-02-15

Family

ID=16521274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20631682A Granted JPS5995448A (en) 1982-11-24 1982-11-24 Measurement device for moisture content

Country Status (1)

Country Link
JP (1) JPS5995448A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259944A (en) * 1984-06-06 1985-12-23 Kubota Ltd Moisture measurement
US4658207A (en) * 1985-03-28 1987-04-14 Rockwell International Corporation Device for measuring the water content of ink samples
JPS6385341A (en) * 1986-09-29 1988-04-15 Yasuo Yoshino Moisture measuring apparatus
US10571422B2 (en) 2015-11-05 2020-02-25 Sharp Kabushiki Kaisha Sensor circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459200A (en) * 1977-10-19 1979-05-12 Hitachi Denshi Ltd Moisture detector
JPS564041A (en) * 1979-06-23 1981-01-16 Katsuo Ebara Moisture meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459200A (en) * 1977-10-19 1979-05-12 Hitachi Denshi Ltd Moisture detector
JPS564041A (en) * 1979-06-23 1981-01-16 Katsuo Ebara Moisture meter

Also Published As

Publication number Publication date
JPS5995448A (en) 1984-06-01

Similar Documents

Publication Publication Date Title
US2266114A (en) Moisture determining apparatus
JPS54134479A (en) Wireless temperature measuring device
US4381485A (en) Microwave test apparatus and method
JPH0311429B2 (en)
JPS60190873A (en) Electromagnetic type conductivity meter
RU2088927C1 (en) Method and device for controlling sugar quantity in human blood in cases of diabetes mellitus
US3450988A (en) Capacitor test cell apparatus including error-reducing coupling cables
JPH0311430B2 (en)
JPS5995450A (en) Measurement device for moisture content
EP0162580A1 (en) Massecuite supersaturation monitor
JPS5995449A (en) Measurement device for moisture content
JP3094246B2 (en) Capacitance measurement method
JPH082624Y2 (en) Testing equipment
JP2624237B2 (en) Method for measuring integrated circuit device
JPS6082977A (en) Semiconductor element characteristic measuring device
SU646235A1 (en) Shf meter of impurity concentration
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
SU516003A1 (en) Device for measuring the parameters of quartz resonators
SU1120231A1 (en) Moisture metering unit
SU1264110A1 (en) Device for determining the detuning of resonance transducer circuit
SU1012461A1 (en) Method of measuring relative variation in sensitivity of electroacoustic transducer
SU1679355A1 (en) Device for acoustic testing of medium parameters
SU938182A1 (en) Device for measuring piezo-ceramic resonator resonance frequency
SU794478A1 (en) Device for determining signal level of ultrasonic measuring resonator
JP3505290B2 (en) Π circuit fixture for oscillator measurement