JPS60190873A - Electromagnetic type conductivity meter - Google Patents

Electromagnetic type conductivity meter

Info

Publication number
JPS60190873A
JPS60190873A JP4613384A JP4613384A JPS60190873A JP S60190873 A JPS60190873 A JP S60190873A JP 4613384 A JP4613384 A JP 4613384A JP 4613384 A JP4613384 A JP 4613384A JP S60190873 A JPS60190873 A JP S60190873A
Authority
JP
Japan
Prior art keywords
oscillator
coil
frequency
magnetic core
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4613384A
Other languages
Japanese (ja)
Other versions
JPH0465987B2 (en
Inventor
Tei Saito
斉藤 禎
Hajime Hasegawa
肇 長谷川
Yuji Ogawa
裕路 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP4613384A priority Critical patent/JPS60190873A/en
Publication of JPS60190873A publication Critical patent/JPS60190873A/en
Publication of JPH0465987B2 publication Critical patent/JPH0465987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To make it possible to stably measure conductivity up to a lower degree, by forming a resonance circuit by connecting a condenser to a detection coil and performing the positive feedback of the resonant voltage thereof to draw the frequency of an oscillator in resonance frequency. CONSTITUTION:An electromagnetic induction current is flowed to a water loop by exciting a magnetic core W1 by the output of an oscillator to induce electromotive force in a detection coil L2. A condenser C5 is connected to the coil L2 to form a resonance circuit and the resonant voltage thereof is supplied to a DC ammeter A through an amplifier Q1 and a detector D1. In this case, the output voltage of the amplifier Q1 is positively fed back to the oscillator through an amplifier Q2 and the oscillation frequency of the oscillator is dawn in the frequency of the resonance circuit consisting of L2 and C5 to eliminate the difference between both frequencies. Therefore, detection can be performed always in a stable state with high sensitivity.

Description

【発明の詳細な説明】 率を測定する電磁式導電率計に関する。[Detailed description of the invention] This invention relates to an electromagnetic conductivity meter that measures conductivity.

水を取扱う装置たとえばボイラーやクーリングタワーで
は水負の検査・管理のため水の導電率測定か屡々行われ
る。特にゲイラーでは、給水中の不純物や給水処理剤が
ぎイラーの蒸気発生につれて濃縮されて行き、濃縮過度
になるとスケールの発生、管材の局部過熱、缶水循環不
良を招くので、缶水の濃度管理上、濃度の指標として缶
水の導電率の測定が屡々行われる。
In equipment that handles water, such as boilers and cooling towers, water conductivity measurements are often performed to inspect and manage water negative conditions. In particular, with gaylors, impurities in the feed water and water treatment agents become concentrated as the giler generates steam, and excessive concentration can lead to scale formation, local overheating of the pipe material, and poor can water circulation, so it is important to manage the concentration of can water. , the conductivity of canned water is often measured as an indicator of concentration.

水の導電率測定手段として、水に二つの電極を浸けてそ
れに流れる電流の強さを測定する所謂二電極法、又は該
電極間に更に二つの電極を浸けてその間の電圧降下を測
定する所謂二電極法が知られている。これら電極法は簡
便で良い(前者では測定レン−)5000μs7名以下
、後者では20000μs//crn以下)けれども、
分極(交流を用いても分極は完全に零にならない)や沈
着物による汚れの影響を受けるので、高導電率領域での
測定は困難で、使えても電極の掃除を頻繁に行わなけれ
ばならない不便がある。
As a means of measuring the conductivity of water, there is the so-called two-electrode method, in which two electrodes are immersed in water and the strength of the current flowing through them is measured, or the so-called two-electrode method, in which two electrodes are immersed between the electrodes and the voltage drop between them is measured. A two-electrode method is known. These electrode methods are simple and good (the former requires a measurement range of 5,000 μs for 7 people or less, and the latter uses a measurement range of 20,000 μs//crn or less); however,
Measurements in high conductivity regions are difficult because they are affected by polarization (polarization does not completely go to zero even when using alternating current) and dirt from deposits, and even if they can be used, the electrodes must be cleaned frequently. It's inconvenient.

水の導電率を測定する他の手段として、電磁誘導電流を
用いた電磁式導電率計がある。第1図はその原理を示す
模式図であって、1次コイルし1を巻いた励磁用リング
磁心W、と検出コイルL2を巻いた検出用リング磁心W
2とを絶縁物製のループ管路P上に嵌め、ループ管路P
内に水を導く。
Another means of measuring the conductivity of water is an electromagnetic conductivity meter that uses electromagnetic induction current. FIG. 1 is a schematic diagram showing the principle of the excitation ring magnetic core W having a primary coil 1 wound thereon, and a detection ring magnetic core W having a detection coil L2 wound thereon.
2 onto the loop pipe P made of insulator, and
Channel water inside.

1次コイルし、に一定の大きさ及び周波数の交流電圧を
印加すると、ループ管路P内の水は1ターンコイルの様
に働き、これに図示点線のように電磁誘導電流電流が流
れる。これによυ検出コイルL2に交流起電力が誘起さ
れ、その周波数は1次コイル印加電圧の周波数と同じで
大きさはループ管路P内の水の導電率に比例する。
When an alternating voltage of a constant magnitude and frequency is applied to the primary coil, the water in the loop pipe P acts like a one-turn coil, and an electromagnetic induction current flows through it as shown by the dotted line in the figure. As a result, an alternating current electromotive force is induced in the υ detection coil L2, the frequency of which is the same as the frequency of the voltage applied to the primary coil, and the magnitude thereof is proportional to the conductivity of the water in the loop pipe P.

従って、検出コイルL2に誘起された起電力を測ること
によって水の心電率が測定される。
Therefore, the electrocardiographic rate of water is measured by measuring the electromotive force induced in the detection coil L2.

第2図はこのような原理に基づく電磁式誘導電率針の従
来の回路構成を示すもので、トランジスタTRIのコレ
クタ回路に前記1次コイルL1とコンデンサC4とから
なる同調回路を、また前記磁心W1に巻いた反結合用コ
イルL3をペース回路に設けてコレクタ同調型発振器を
構成し、この発振出力で磁心W、を励磁し、前記検出コ
イルL2に誘起された起電力をオペレーショナルアンプ
Q1+検波器り、を介して直流電流計Aで読み取るもの
である。
FIG. 2 shows a conventional circuit configuration of an electromagnetic induction needle based on such a principle, in which a tuned circuit consisting of the primary coil L1 and the capacitor C4 is connected to the collector circuit of the transistor TRI, and a tuned circuit consisting of the primary coil L1 and the capacitor C4 is connected to the collector circuit of the transistor TRI. An anti-coupling coil L3 wound around W1 is provided in the pace circuit to constitute a collector-tuned oscillator, and the oscillation output excites the magnetic core W, and the electromotive force induced in the detection coil L2 is sent to the operational amplifier Q1 + detector. It is read by a DC ammeter A via the

電磁式導電率計は、先述の電極法のような分極がなく、
沈着物々ど汚れの影響も殆んどないという利点があるが
、従来高導電率領域しか使えない(at:+定しンジ1
0000〜100000pS/cIn)という欠点があ
シ、従って、低い導電率まで測定しようとすれば、コイ
ルの大型化、1次コイル入力の増強、検出コイル出力の
増幅度の引き上げ、ひいては電源能力の引き上げ等の手
段が必要となって装置が複雑高価になるだけでなく、ノ
イズや他の外乱因子を考慮すると、上記手段を講するに
も限度があυ、5000μs/crn以下の導電率を安
定に測定することは難かしかった。
Electromagnetic conductivity meters do not have polarization like the electrode method mentioned above,
It has the advantage of being almost unaffected by deposits and dirt, but conventionally only the high conductivity region can be used (at: + constant range 1).
0,000 to 100,000 pS/cIn). Therefore, if you want to measure conductivity down to a low level, you will need to increase the size of the coil, strengthen the primary coil input, increase the amplification of the detection coil output, and ultimately increase the power supply capacity. Not only do these methods become complicated and expensive, but when considering noise and other disturbance factors, there is a limit to the methods described above. It was difficult to measure.

本発明の目的は従来よシ感度が良く、よシ低い導電率ま
で安定に測定することができ、しかも比較的簡単で安価
な改良された電磁式導電率計を提供するにある。
An object of the present invention is to provide an improved electromagnetic conductivity meter that has better sensitivity than the conventional one, can stably measure conductivities down to much lower values, and is relatively simple and inexpensive.

本発明は、1次コイルの巻かれた磁心および検出コイル
の巻かれた磁心を被測定液のループと鎖交して設置し、
該1次コイルに発振器の交流出力を印加し、該検出コイ
ルに誘起される起電力を測定して被測定液の導電率を測
定するようにした電磁式導電率計において、上記検出コ
イルにコンデンサを接続して共振回路を形成させると共
に、該共振回路の出力電圧を増幅]−で上記発振器に正
帰還して該発振器の発振周波数を該共振回路の共振周波
数に引き込むようにしたことを特徴とするものである。
In the present invention, a magnetic core around which a primary coil is wound and a magnetic core around which a detection coil is wound are installed interlinked with a loop of a liquid to be measured,
In an electromagnetic conductivity meter that measures the conductivity of a liquid to be measured by applying an AC output of an oscillator to the primary coil and measuring the electromotive force induced in the detection coil, a capacitor is attached to the detection coil. is connected to form a resonant circuit, and the output voltage of the resonant circuit is amplified by positive feedback to the oscillator to pull the oscillation frequency of the oscillator into the resonant frequency of the resonant circuit. It is something to do.

第3図は本発明の電磁式導電率計の実施例を示す回路構
成図である。第3図において、WlおよびW2は夫々第
1図のように水のループと鎖交するように配置された励
磁用リング磁心および検出用リング磁心、L、およびL
2ij夫々磁心W1およびW2上に巻かれた1次コイル
および検出コイル、L、は磁心W□上に巻かれた反結合
用コイルである。TRIは発振用トランジスタでちって
、そのコレクタ回路に該コイルL1とコンデンサC1と
からなる同調回路を備えると共に、そのベース回路に反
結合用コイルL3を備えてコレクタ同調型発振器を構成
する。R1+ R2およびR3はノ4イアス抵抗、C□
およびC2はパイノjスコンデンサである。
FIG. 3 is a circuit diagram showing an embodiment of the electromagnetic conductivity meter of the present invention. In FIG. 3, Wl and W2 are an excitation ring magnetic core and a detection ring magnetic core, L and L, respectively, which are arranged to interlink with the water loop as shown in FIG.
2ij, the primary coil and detection coil, L, wound on the magnetic cores W1 and W2, respectively, are anti-coupling coils wound on the magnetic core W□. TRI is an oscillation transistor, and its collector circuit is provided with a tuning circuit consisting of the coil L1 and capacitor C1, and its base circuit is provided with an anti-coupling coil L3 to form a collector-tuned oscillator. R1+ R2 and R3 are resistances, C□
and C2 is a pinosu capacitor.

上記発振器の出力で磁心W1が励磁されることによシ、
第1図で説明したように、水のループに電磁誘導電流が
流れ、検出コイルL2に起電力が誘起される。検出コイ
ルL2にはコンデンサC8が接続されておシ、これら両
者で共振回路を形成させる。この共振回路は上記誘起さ
れた起電力の周波数(すなわち前記発振器の発振周波数
)において鋭い共振ピークを持つように設計されている
By exciting the magnetic core W1 with the output of the oscillator,
As explained in FIG. 1, an electromagnetic induction current flows through the water loop, and an electromotive force is induced in the detection coil L2. A capacitor C8 is connected to the detection coil L2, and the two form a resonant circuit. This resonant circuit is designed to have a sharp resonance peak at the frequency of the induced electromotive force (ie, the oscillation frequency of the oscillator).

この共振回路の出力電圧はオペレーショナルアンfQ、
で増巾され、検波器D1を介して直流電流計Aで指示さ
れる。R1およびRa1d、オペレーショナルアンプQ
、の利得設定用抵抗、C3は平滑用コンデンサ、VR,
は感度調節用可変抵抗である。
The output voltage of this resonant circuit is the operational amplifier fQ,
The signal is amplified by the wave detector D1 and indicated by the DC ammeter A. R1 and Ra1d, operational amplifier Q
, C3 is the smoothing capacitor, VR,
is a variable resistor for sensitivity adjustment.

上記のように検出コイルL2゛にコンデンサCfiを接
続して共振回路を形成したことによplこれを形成しな
い場合に較べ著、シく高い受信感度が得られる。
By connecting the capacitor Cfi to the detection coil L2' to form a resonant circuit as described above, a significantly higher reception sensitivity can be obtained compared to the case where the capacitor Cfi is not formed.

ところで、とのり、と05とからなる共振回路の共振ピ
ークの周波数と前記発振器の発振周波数とは、温度に依
る礎石の磁気特性のy化等の要因によシ、ずれを生じ易
い。しかるに、L 2とC3とからなる共振回路の周波
数特性は急峻な共振ビ′−りを持つように1投泪されて
いるから、」二記両周波数間にずれが生じると、受信感
度は大きく変動[7てし寸う。
By the way, the resonance peak frequency of the resonant circuit consisting of Tonori, and 05 and the oscillation frequency of the oscillator tend to deviate from each other due to factors such as changes in the magnetic properties of the foundation stone depending on temperature. However, since the frequency characteristics of the resonant circuit consisting of L2 and C3 are designed to have a steep resonant beat, if a discrepancy occurs between the two frequencies, the reception sensitivity will be greatly reduced. Fluctuation [7 times.

このことを避けるために、本実施例においては、第3図
に示すように、オペレーショナルアンプQ1から取出し
た該共振回路の出力電圧を、可変抵抗VR2を介しオペ
レーショナルアンfQ2で増幅し、抵抗R6、コンデン
サ−C11を介して前記発振器に正帰還して前記受信側
のり、とCsとからなる共振回路の共振周波数に該発振
器の発振周波数を引き込み、これによシ、画周波数間の
ずれをなくし、常に安定した高感度の検出を可能ならし
めている。
In order to avoid this, in this embodiment, as shown in FIG. 3, the output voltage of the resonance circuit taken out from the operational amplifier Q1 is amplified by the operational amplifier fQ2 via the variable resistor VR2, and the resistor R6, positive feedback to the oscillator via a capacitor C11 to pull the oscillation frequency of the oscillator into the resonant frequency of the resonant circuit consisting of the receiving side beam and Cs, thereby eliminating the deviation between the image frequencies; This enables stable and highly sensitive detection at all times.

可変抵抗VR,およびコンデンサC7はこのような正帰
還のための位相調節用であり、R,iIi正帰還量設定
用抵抗、C0は直流分阻止用コンデンサである。
The variable resistor VR and the capacitor C7 are used for phase adjustment for such positive feedback, and the resistors R and iIi for setting the amount of positive feedback, and C0 are the capacitors for blocking the DC component.

本実施例に基づく試作機によれは、第2図のような従来
回路構成では困難であった500〜5000μS/cm
の導電率を安定に測定することが可能であ垢しかも発振
側および受信側の磁心とも温度の影響の比較的大きい安
価なフェライト磁心を用いても十分安定な作動が得られ
た。
The prototype device based on this example has a distortion of 500 to 5000 μS/cm, which is difficult to achieve with the conventional circuit configuration as shown in Figure 2.
It is possible to stably measure the electrical conductivity of the oscillator, and even with the use of inexpensive ferrite magnetic cores that are relatively affected by temperature on both the oscillating and receiving sides, sufficiently stable operation was obtained.

以上説明したように、本発明によれば、従来の電磁式導
電率計に比べて感度が高く且つ安定で、しかも比較的簡
単で安価な電磁導電率計を得ることができる。沈着物に
よる汚れに殆んど影響されないという電磁式導電率計の
長所は本発明においても保有されることは言うまでもな
い。
As described above, according to the present invention, it is possible to obtain an electromagnetic conductivity meter that is more sensitive and stable than conventional electromagnetic conductivity meters, and is relatively simple and inexpensive. Needless to say, the present invention retains the advantage of the electromagnetic conductivity meter that it is hardly affected by contamination due to deposits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電磁式導電率計の原理を示す模式図、第2図は
従来の回路構成図、第3図は本発明実施例の回路構成図
である。 Wl ・W2・・・磁心、Ll・・・]次コイル、L2
・・・検出コイル、C5・・・共振用コンデンサ、C2
・・・帰還用アンプ。
FIG. 1 is a schematic diagram showing the principle of an electromagnetic conductivity meter, FIG. 2 is a conventional circuit diagram, and FIG. 3 is a circuit diagram of an embodiment of the present invention. Wl ・W2...Magnetic core, Ll...] Next coil, L2
...Detection coil, C5...Resonance capacitor, C2
...Return amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1次コイルの巻かれた磁心および検出コイルの巻かれた
磁心を被測定液のループと鎖交して設置し、該1次コイ
ルに発振器の交流出力を印加し、該検出コイルに誘起さ
れる起電力を測定して被測定液の導電率を測定するよう
にした電磁式導電率計において、上記検出コイルにコン
デンサを接続して共振回路を形成させると共に、該共振
回路の出力電圧を増幅して上記発振器に正帰還して該発
振器の発振周波数を該共振回路の共振周波数に引き込む
ようにしたことを特徴とする電磁式導電率計。
The magnetic core around which the primary coil is wound and the magnetic core around which the detection coil is wound are installed interlinked with the loop of the liquid to be measured, and the alternating current output of the oscillator is applied to the primary coil, and the magnetic core is induced in the sensing coil. In an electromagnetic conductivity meter that measures the conductivity of a liquid to be measured by measuring electromotive force, a capacitor is connected to the detection coil to form a resonant circuit, and the output voltage of the resonant circuit is amplified. An electromagnetic conductivity meter characterized in that the oscillation frequency of the oscillator is pulled into the resonant frequency of the resonant circuit by positive feedback to the oscillator.
JP4613384A 1984-03-10 1984-03-10 Electromagnetic type conductivity meter Granted JPS60190873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4613384A JPS60190873A (en) 1984-03-10 1984-03-10 Electromagnetic type conductivity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4613384A JPS60190873A (en) 1984-03-10 1984-03-10 Electromagnetic type conductivity meter

Publications (2)

Publication Number Publication Date
JPS60190873A true JPS60190873A (en) 1985-09-28
JPH0465987B2 JPH0465987B2 (en) 1992-10-21

Family

ID=12738478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4613384A Granted JPS60190873A (en) 1984-03-10 1984-03-10 Electromagnetic type conductivity meter

Country Status (1)

Country Link
JP (1) JPS60190873A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631961A (en) * 1986-05-30 1988-01-06 コ−ブ・ラボラトリ−ズ・インコ−ポレ−テッド Remote sensor for conductivity
US5089781A (en) * 1990-02-13 1992-02-18 Tosoh Corporation Electromagnetic conductivity meter and a conductivity measuring method
US5510717A (en) * 1992-09-30 1996-04-23 Cobe Laboratories, Inc. Differential conductivity recirculation monitor
US5631552A (en) * 1992-09-30 1997-05-20 Cobe Laboratories, Inc. Hemodynamic monitor for detecting air bubbles
US5813408A (en) * 1991-12-03 1998-09-29 Boston Scientific Technology, Inc. Surgical drape
US5900726A (en) * 1992-09-30 1999-05-04 Cobe Laboratories, Inc. Differential conductivity hemodynamic monitor
US6189388B1 (en) 1997-11-12 2001-02-20 Gambro, Inc. Access flow monitoring using reversal of normal blood flow
JP2001147218A (en) * 1999-11-22 2001-05-29 T & C Technical:Kk Electrodeless sensor
US6726647B1 (en) 1998-10-23 2004-04-27 Gambro Ab Method and device for measuring access flow
JP2014149283A (en) * 2013-02-04 2014-08-21 Horiba Advanced Techno Co Ltd Conductivity measuring instrument and correcting method for measurement values therefrom
JP2014224770A (en) * 2013-05-16 2014-12-04 学校法人東京理科大学 Electrical characteristics measurement device, electrical characteristics measuring method, and program
US20210364460A1 (en) * 2018-04-18 2021-11-25 Universiteit Twente System and method for measuring conductivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823836C2 (en) * 1998-05-28 2000-05-04 Fresenius Medical Care De Gmbh Device and method for non-contact measurement of the conductivity of a liquid in a flow channel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631961A (en) * 1986-05-30 1988-01-06 コ−ブ・ラボラトリ−ズ・インコ−ポレ−テッド Remote sensor for conductivity
US5089781A (en) * 1990-02-13 1992-02-18 Tosoh Corporation Electromagnetic conductivity meter and a conductivity measuring method
US5813408A (en) * 1991-12-03 1998-09-29 Boston Scientific Technology, Inc. Surgical drape
US5510716A (en) * 1992-09-30 1996-04-23 Cobe Laboratories, Inc. Differential conductivity recirculation monitor
US5570026A (en) * 1992-09-30 1996-10-29 Cobe Laboratories, Inc. Altered fluid conductivity monitor
US5631552A (en) * 1992-09-30 1997-05-20 Cobe Laboratories, Inc. Hemodynamic monitor for detecting air bubbles
US6912917B2 (en) 1992-09-30 2005-07-05 Gambro, Inc. Differential fluid parameter determination
US5900726A (en) * 1992-09-30 1999-05-04 Cobe Laboratories, Inc. Differential conductivity hemodynamic monitor
US6075367A (en) * 1992-09-30 2000-06-13 Gambro, Inc. Differential conductivity hemodynamic monitor
US5510717A (en) * 1992-09-30 1996-04-23 Cobe Laboratories, Inc. Differential conductivity recirculation monitor
US6452371B1 (en) 1992-09-30 2002-09-17 Gambro, Inc. Differential conductivity hemodynamic monitor
US6614212B2 (en) 1992-09-30 2003-09-02 Gambro, Inc. Differential conductivity hemodynamic monitor
US6189388B1 (en) 1997-11-12 2001-02-20 Gambro, Inc. Access flow monitoring using reversal of normal blood flow
US7500958B2 (en) 1998-10-23 2009-03-10 Gambro Lundia Ab Switch valve for an extracorporeal blood circuit and circuit including such a switch valve
US6726647B1 (en) 1998-10-23 2004-04-27 Gambro Ab Method and device for measuring access flow
JP2001147218A (en) * 1999-11-22 2001-05-29 T & C Technical:Kk Electrodeless sensor
JP2014149283A (en) * 2013-02-04 2014-08-21 Horiba Advanced Techno Co Ltd Conductivity measuring instrument and correcting method for measurement values therefrom
JP2014224770A (en) * 2013-05-16 2014-12-04 学校法人東京理科大学 Electrical characteristics measurement device, electrical characteristics measuring method, and program
US20210364460A1 (en) * 2018-04-18 2021-11-25 Universiteit Twente System and method for measuring conductivity
US11719659B2 (en) * 2018-04-18 2023-08-08 Universiteit Twente System and method for measuring conductivity

Also Published As

Publication number Publication date
JPH0465987B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
JP3448058B2 (en) Magnetic flowmeter with empty pipe detector
JPS60190873A (en) Electromagnetic type conductivity meter
US5089781A (en) Electromagnetic conductivity meter and a conductivity measuring method
US5606260A (en) Microdevice for measuring the electromagnetic characteristics of a medium including a shield
US4590424A (en) Detection of ion concentration in a liquid
Skyba Notes on measurement methods of mechanical resonators used in low temperature physics
US5446379A (en) Method and system for searching and sensing reinforcing steel in concrete by employing an oscillator driver sensor coil
US3355658A (en) Differentiating metal detector for detecting metal objects and distinguishing between detected diamagnetic and non-diamagnetic objects
GB2054867A (en) Eddy-current distance measuring apparatus
US4357835A (en) Electromagnetic flowmeter in shielded lines
US3931572A (en) Method and apparatus for measuring magnetic fields utilizing odd harmonics of an excitation signal
JPS63134947A (en) Measuring device for measuring content of magnetizable substance
JPS60135753A (en) Noncontacting moisture detector
JPH027031B2 (en)
JPH0224476B2 (en)
US2927266A (en) Test circuit for magnetic core inductive reactors
RU2213934C2 (en) Displacement meter
JPS61501053A (en) Continuous thickness measuring device
JPS6331734B2 (en)
SU766047A1 (en) Method of measuring plasma electron temperature
US2648046A (en) Piezoelectric magnetometer
JPH0827310B2 (en) Induction coil loss measurement method
SU853517A1 (en) Electromagnetic thickness meter
SU1092376A1 (en) Device for impedance dielectric well-logging
DD224946B1 (en) ARRANGEMENT FOR THE MAGNETO-INDUCTION-FREE CHEMICAL-FREE MATERIAL TESTING ACCORDING TO THE RESONANCE METHOD