JPS6331734B2 - - Google Patents

Info

Publication number
JPS6331734B2
JPS6331734B2 JP13007878A JP13007878A JPS6331734B2 JP S6331734 B2 JPS6331734 B2 JP S6331734B2 JP 13007878 A JP13007878 A JP 13007878A JP 13007878 A JP13007878 A JP 13007878A JP S6331734 B2 JPS6331734 B2 JP S6331734B2
Authority
JP
Japan
Prior art keywords
liquid
conductivity
measured
ring electrode
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13007878A
Other languages
Japanese (ja)
Other versions
JPS5557142A (en
Inventor
Katsuo Ebara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13007878A priority Critical patent/JPS5557142A/en
Publication of JPS5557142A publication Critical patent/JPS5557142A/en
Publication of JPS6331734B2 publication Critical patent/JPS6331734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非接触的に液質変化、特にその誘電
率、または導電率の変化を連続的に測定する方法
及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for continuously measuring changes in liquid properties, particularly changes in dielectric constant or conductivity, in a non-contact manner.

〔従来の技術〕[Conventional technology]

従来、液質の連続測定装置として、電極を直接
被測定体に接触させて測定するPHメータ及び伝導
度測定装置が使用されている。
BACKGROUND ART Conventionally, PH meters and conductivity measuring devices, which measure by bringing electrodes into direct contact with a measured object, have been used as continuous measuring devices for liquid quality.

また非接触測定法としては、電磁誘導法が使用
されている。
Furthermore, as a non-contact measurement method, an electromagnetic induction method is used.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、PHメータや伝導度測定装置は、
電極が直接被測定体に接触しているため、電極と
液との化学反応、水酸化物の生成による二次汚
染、物理的摩擦等による測定精度の低下、伝導度
を持たない物質の混入等による液質変化を測定で
きない等の問題がある。
However, PH meters and conductivity measurement devices
Because the electrode is in direct contact with the object to be measured, chemical reactions between the electrode and the liquid, secondary contamination due to the production of hydroxide, reduction in measurement accuracy due to physical friction, etc., and contamination with substances that do not have conductivity, etc. There are problems such as the inability to measure changes in liquid quality due to

また、非接触液質測定法として使用されている
電磁誘導法は、1次コイルによる磁束の変化を、
これとリンクする2次コイルで検出しているため
導電率の低い溶液は測定できないという欠点を有
している。
In addition, the electromagnetic induction method used as a non-contact liquid quality measurement method detects changes in magnetic flux caused by the primary coil.
Since detection is performed using a secondary coil linked to this, it has the disadvantage that solutions with low conductivity cannot be measured.

本発明は上記問題点を解決するためのもので、
非接触方式で、任意の誘電率、導電率を有する液
体の液質変化を測定することができる連続液質変
化測定方法及び装置を提供することを目的とす
る。
The present invention is intended to solve the above problems,
It is an object of the present invention to provide a continuous liquid property change measuring method and device that can measure changes in liquid property of a liquid having arbitrary permittivity and conductivity in a non-contact manner.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の連続液質変化測定方法及び
装置は、被測定液を流す管に巻回した励起用リン
グ電極から電磁波を送信し、所定間隔離れた位置
で管に巻回された検出用コイルにより電磁波を検
出し、検出出力により被測定液の誘電率、または
導電率を検出すること、及び被測定液を流す管の
周囲に巻回された電磁波送信用の励起用リング電
極と、送信用のコイルから所定間隔を置いて配置
された一層に巻回された検出用コイルとを備えた
ことを特徴とする。
To this end, the continuous liquid quality change measuring method and device of the present invention transmits electromagnetic waves from an excitation ring electrode wound around a tube through which the liquid to be measured flows, and detecting coils wound around the tube at predetermined intervals. to detect electromagnetic waves, and to detect the dielectric constant or conductivity of the liquid to be measured using the detection output, and an excitation ring electrode for transmitting electromagnetic waves wound around the tube through which the liquid to be measured flows, and a ring electrode for transmitting electromagnetic waves. It is characterized by comprising a detection coil wound in one layer and arranged at a predetermined distance from the coil.

〔作用〕[Effect]

本発明は、励起用リング電極から電磁波を送信
し、所定間隔離れた位置で検出用コイルにより電
磁波を検出し、検出出力により被測定液の誘電
率、または導電率を検出することができる。
In the present invention, an electromagnetic wave is transmitted from an excitation ring electrode, the electromagnetic wave is detected by a detection coil at a position separated by a predetermined interval, and the dielectric constant or conductivity of the liquid to be measured can be detected from the detection output.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図に示すようにテフロンチユーブのような
絶縁性の非磁性管6に高周波を発振する発振器2
からの交番電場をリング電極1に印加し、これと
独立に少し隔てて配置した検出コイル3の誘導電
圧を検出する。図中、4は増幅器、5は記録計又
はメータである。この場合、検出コイルは図示す
るように一層に巻回する。その結果、コイルの各
ターン間のストレイキヤパシテイは大きなものと
ある。
As shown in Fig. 1, an oscillator 2 that oscillates a high frequency into an insulating non-magnetic tube 6 such as a Teflon tube.
An alternating electric field from the ring electrode 1 is applied to the ring electrode 1, and the induced voltage in the detection coil 3, which is placed a little apart from the ring electrode 1, is detected independently from the alternating electric field. In the figure, 4 is an amplifier, and 5 is a recorder or meter. In this case, the detection coil is wound in one layer as shown. As a result, the stray capacity between each turn of the coil is large.

このような系において、リング電極1に交番電
場を印加した場合の電磁方程式は周知のように以
下で表される。
In such a system, the electromagnetic equation when an alternating electric field is applied to the ring electrode 1 is expressed as follows, as is well known.

rotH=i+eD/eT ……(1) Hは磁場、Dは電束密度 ここで真電流iは媒質の伝導度をσとして i=σE=σE0 ejwt ……(2) で表され、媒体の誘電率をεとすると電束密度D
は D=εE=εE0 ejwt ……(3) で表される。従つて、(1)式は rotH=σE0 ejwt+jωεE0 ejwt =(σ+jωε)E =(σ−ε″ω+jωε′)E ……(4) ただし、ε=ε′+jε″、 ε′:複素誘電率の実数部 ε″:複素誘電率の虚数部 となり、検出コイル3には √(−″)2+(′)2 ……(5) に比例する電圧が得られる。
rotH=i+eD/eT...(1) H is the magnetic field, D is the electric flux density. Here, the true current i is expressed as i=σE=σE 0 e jwt ...(2) where the conductivity of the medium is σ. If the permittivity of is ε, then the electric flux density D
is expressed as D=εE=εE 0 e jwt (3). Therefore, equation (1) is rotH=σE 0 e jwt +jωεE 0 e jwt = (σ+jωε)E = (σ−ε″ω+jωε′)E……(4) However, ε=ε′+jε″, ε′: Real part ε'' of the complex permittivity: This is the imaginary part of the complex permittivity, and a voltage proportional to √(-'') 2 +(') 2 ...(5) is obtained in the detection coil 3.

即ち、検出コイル3における検出出力は導電率
と誘電率の関数として表されるので、誘電率が既
知であれば誘電率を測定することができ、また誘
電率が既知であれば導電率を測定することが可能
となる。この場合、検出コイル3はストレイキヤ
パシテイが大きく、これが液質、即ち誘電率、導
電率により変化し、これとコイルのインダクタン
スとにより共振回路が形成される。検出出力は共
振系のQ値に比例し、Q値は共振系の抵抗、容
量、即ち液体の誘電率、導電率により変化するの
で、検出コイル出力により誘電率、導電率の検出
ができる。
That is, the detection output from the detection coil 3 is expressed as a function of conductivity and permittivity, so if the permittivity is known, the permittivity can be measured, and if the permittivity is known, the conductivity can be measured. It becomes possible to do so. In this case, the detection coil 3 has a large stray capacitance, which changes depending on the liquid quality, that is, the dielectric constant and the conductivity, and a resonant circuit is formed by this and the inductance of the coil. The detection output is proportional to the Q value of the resonance system, and the Q value changes depending on the resistance and capacitance of the resonance system, that is, the permittivity and conductivity of the liquid, so the permittivity and conductivity can be detected from the detection coil output.

以上の検出原理により液質変化の測定を行う
が、実際に検出された現象を共振特性を用いて以
下に説明する。
The liquid quality change is measured using the above detection principle, and the actually detected phenomenon will be explained below using resonance characteristics.

液体の電界質濃度の低い場合にはリング電極1
と検出コイル3との間には並列共振系が形成さ
れ、共振周波数ω、溶体容量と検出コイル3の線
間のストレイキヤパシテイの和をC1、液体の電
気抵抗をR1とすれば、共振のQは Q1=ω1C1R1 ……(6) で表される。
Ring electrode 1 when the electrolyte concentration of the liquid is low.
A parallel resonance system is formed between and the detection coil 3, and if the resonance frequency ω, the sum of the solution capacitance and the stray capacitance between the lines of the detection coil 3 is C 1 , and the electrical resistance of the liquid is R 1 , then , the resonance Q is expressed as Q 11 C 1 R 1 (6).

一方、液体の電解質濃度の高い場合には、直列
系共振が形成され、共振Qは Q2=1/ω2C2R2 ……(7) となり、一般には V=Q1+Q2=ω1C1R1+1/ω2C2R2と表現される。
On the other hand, when the electrolyte concentration of the liquid is high, series resonance is formed, and the resonance Q is Q 2 = 1/ω 2 C 2 R 2 ...(7), and generally V = Q 1 + Q 2 = ω. It is expressed as 1 C 1 R 1 +1/ω 2 C 2 R 2 .

実際に第1図の測定装置により、純水から次第
に電解質の量が増加させながら測定した結果を第
4図に示す。図中C1は純水についての測定結果
であり、電解質濃度を増すことによりC2,C3
如く、共振周波数ω1はほぼ一定のまま共振電圧
は低下する。しかし、一定濃度以上においては共
振周波数は減少してω2に移り、濃度が増すに伴
い共振電圧はCn-2,Cn-1,Cnと上昇する。この
共振周波数ω2の伝導バンドは伝導率によつて主
として共振状態が決定される領域であり、従来の
電磁濃度計でも測定可能であつた領域である。
FIG. 4 shows the results of actual measurement using the measuring device shown in FIG. 1 while gradually increasing the amount of electrolyte starting from pure water. In the figure, C 1 is the measurement result for pure water, and as with C 2 and C 3 , by increasing the electrolyte concentration, the resonant voltage decreases while the resonant frequency ω 1 remains almost constant. However, above a certain concentration, the resonant frequency decreases and shifts to ω 2 , and as the concentration increases, the resonant voltage increases to Cn -2 , Cn -1 , and Cn. This conduction band of resonance frequency ω 2 is a region where the resonance state is mainly determined by conductivity, and is a region that can be measured even with a conventional electromagnetic densitometer.

一方、共振周波数ω1の誘電バンドは共振状態
が主として誘電率εで決定される領域で、本発明
により初めて測定可能となつた領域である。
On the other hand, the dielectric band with the resonant frequency ω 1 is a region in which the resonance state is mainly determined by the dielectric constant ε, and is a region that can be measured for the first time by the present invention.

以上のことは、リング電極1と検出コイル3の
結合様式を第5図の如き等価回路に置き換え、抵
抗Rを変化させた場合の共振周波数と共振電圧の
変化から検証された。図のaは誘電バンド、bは
伝導バンドに対応する。
The above was verified from changes in the resonant frequency and resonant voltage when the coupling mode between the ring electrode 1 and the detection coil 3 was replaced with an equivalent circuit as shown in FIG. 5, and the resistance R was changed. In the figure, a corresponds to the dielectric band, and b corresponds to the conduction band.

本発明の測定装置においては、検出用コイルに
発生するコイル巻線間のストレイキヤパシテイの
変化を共振電圧あるいは共振周波数の変化として
捉えることを大きな特徴とするものであるため、
前述したように検出器コイル3は第1図に示すよ
うな一層巻とし、線間のソトレイキヤパシテイを
できるだけ大きくする必要が生ずる。あるいは第
2図の如く、1ターンのリング電極2,3を並列
に接続し、外部にコイル4を連結してもよい。
The measuring device of the present invention is characterized in that a change in stray capacitance between coil windings occurring in a detection coil is captured as a change in resonant voltage or resonant frequency.
As mentioned above, the detector coil 3 needs to be wound in a single layer as shown in FIG. 1, and it is necessary to make the Sotolay capacity between the wires as large as possible. Alternatively, as shown in FIG. 2, one turn of ring electrodes 2 and 3 may be connected in parallel, and a coil 4 may be connected to the outside.

第3図は上記のような測定装置による測定例を
示したものであり、液体クロマトグラフ用のセン
サとして内径0.5mmテフロンチユーブ中にいとを
相としてアセトニトリル80と水20の混合液を流
し、瞬間的に純水(1)、プロピレンカーボネート
(2)、メタノール(3)、アセトン(4)、キシレン(5)、水
道水(6)を移動相に注入した時の共振電圧の変化を
示したものである。このように検出電圧の変化は
各溶媒の誘電率の差として検出され、誘電率の小
さい液についてもその液質変化を非接触で連続的
に検出することができる。
Figure 3 shows an example of measurement using the above-mentioned measuring device.As a sensor for liquid chromatography, a mixture of 80% acetonitrile and 20% water was poured into a Teflon tube with an inner diameter of 0.5 mm, and the liquid was instantaneous. Purified water (1), propylene carbonate
(2), shows the change in resonance voltage when methanol (3), acetone (4), xylene (5), and tap water (6) are injected into the mobile phase. In this way, a change in detection voltage is detected as a difference in dielectric constant of each solvent, and changes in liquid quality can be continuously detected in a non-contact manner even for liquids with small dielectric constants.

また、励起用電極はリング電極1となつている
ので、電極幅は極めて小さく、微小な液質変化に
対しても極めて鋭いピーク電圧を誘発することを
可能にしたものである。
Furthermore, since the excitation electrode is a ring electrode 1, the electrode width is extremely small, making it possible to induce an extremely sharp peak voltage even in response to minute changes in liquid quality.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、励起用コイルか
ら電磁波を送信し、所定間隔離れた位置で検出用
コイルにより電磁波を検出し、検出出力により電
磁波が伝播した被測定液の誘電率、または導電率
を検出することができる。
As described above, according to the present invention, an electromagnetic wave is transmitted from an excitation coil, the electromagnetic wave is detected by a detection coil at a predetermined distance apart, and the detection output indicates the dielectric constant or conductivity of the liquid to be measured through which the electromagnetic wave propagated. rate can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は
本発明の他の実施例を示す図、第3図は本発明を
液体クロマトグラフに適用した場合の検出出力を
示す図、第4図は共振特性を示す図、第5図は第
1図の装置を等価回路形式で書いた説明図であ
る。 1……リング電極、2……発振器、3……検出
コイル、4……増幅器、5……記録計又はメー
タ。
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, and FIG. 3 is a diagram showing detection output when the present invention is applied to a liquid chromatograph. FIG. 4 is a diagram showing resonance characteristics, and FIG. 5 is an explanatory diagram of the device shown in FIG. 1 in an equivalent circuit format. DESCRIPTION OF SYMBOLS 1... Ring electrode, 2... Oscillator, 3... Detection coil, 4... Amplifier, 5... Recorder or meter.

Claims (1)

【特許請求の範囲】 1 被測定液を流す管に巻回した励起用リング電
極から電磁波を送信し、所定間隔離れた位置で管
に巻回された検出用コイルにより電磁波を検出
し、検出出力により被測定液の誘電率、または導
電率を検出することを特徴とする連続液質変化測
定方法。 2 被測定液を流す管の周囲に巻回された電磁波
送信用の励起用リング電極と、送信用のコイルか
ら所定間隔を置いて配置された一層に巻回された
検出用コイルとを備えた連続液質変化測定装置。
[Claims] 1. Electromagnetic waves are transmitted from an excitation ring electrode wound around a tube through which a liquid to be measured flows, and the electromagnetic waves are detected by a detection coil wound around the tube at a predetermined distance apart, and a detection output is generated. A continuous liquid property change measuring method characterized by detecting the dielectric constant or conductivity of a liquid to be measured. 2 Equipped with an excitation ring electrode for electromagnetic wave transmission wound around the tube through which the liquid to be measured flows, and a detection coil wound in a single layer arranged at a predetermined distance from the transmission coil. Continuous liquid quality change measuring device.
JP13007878A 1978-10-24 1978-10-24 Continuous liquid quality change measuring device by contactless method Granted JPS5557142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13007878A JPS5557142A (en) 1978-10-24 1978-10-24 Continuous liquid quality change measuring device by contactless method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13007878A JPS5557142A (en) 1978-10-24 1978-10-24 Continuous liquid quality change measuring device by contactless method

Publications (2)

Publication Number Publication Date
JPS5557142A JPS5557142A (en) 1980-04-26
JPS6331734B2 true JPS6331734B2 (en) 1988-06-27

Family

ID=15025452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13007878A Granted JPS5557142A (en) 1978-10-24 1978-10-24 Continuous liquid quality change measuring device by contactless method

Country Status (1)

Country Link
JP (1) JPS5557142A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2533705A1 (en) * 1982-09-28 1984-03-30 Pharmuka Lab ION CONCENTRATION DETECTOR IN A LIQUID
CN110243876B (en) * 2019-06-25 2020-11-10 西安交通大学 Conductivity sensor for transient measurement of gas-liquid two-phase flow gas content

Also Published As

Publication number Publication date
JPS5557142A (en) 1980-04-26

Similar Documents

Publication Publication Date Title
US5514337A (en) Chemical sensor using eddy current or resonant electromagnetic circuit detection
US7276916B2 (en) Method and arrangement for measuring conductive component content of a multiphase fluid flow and uses thereof
US4740755A (en) Remote conductivity sensor having transformer coupling in fluid flow path
CA1263146A (en) Remote conductivity sensor
JP2019522784A (en) Non-contact type electrical conductivity and non-conductor dielectric constant change measurement device using RF signal
US4590424A (en) Detection of ion concentration in a liquid
NO753554L (en)
US3404335A (en) Apparatus for measuring electrical conductivity of a conducting medium capable of flowing in a conduit
JPH0465987B2 (en)
US4357835A (en) Electromagnetic flowmeter in shielded lines
JPS6331734B2 (en)
JPS6363856B2 (en)
US3931572A (en) Method and apparatus for measuring magnetic fields utilizing odd harmonics of an excitation signal
US3355661A (en) Apparatus for measuring the conductivity of electrolyte
SU1057833A1 (en) Device for measuring salt content in liquid media
Ismail et al. Measurement of very low concentration of electrolytic solution by a novel contactless eddy-current sensor
Diamond An inductive conductivity meter for monitoring the salinity of dialysis water
US6057683A (en) Induction sensor having conductive concentrator with measuring gap
SU595668A1 (en) Contactless conductometric sensor
SU913202A1 (en) Conductometer
SU775680A1 (en) Conductometer
SU851240A1 (en) Conductivity meter sensing element
SU1020774A1 (en) Device for measuring flow continuity in pipe-line
JPS57192877A (en) Measuring device for intensity of electromagnetic field
SU748214A1 (en) Conductometer immersion-type transducer