JPS631961A - Remote sensor for conductivity - Google Patents
Remote sensor for conductivityInfo
- Publication number
- JPS631961A JPS631961A JP62134751A JP13475187A JPS631961A JP S631961 A JPS631961 A JP S631961A JP 62134751 A JP62134751 A JP 62134751A JP 13475187 A JP13475187 A JP 13475187A JP S631961 A JPS631961 A JP S631961A
- Authority
- JP
- Japan
- Prior art keywords
- transformer
- core
- flow path
- toroidal core
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims description 33
- 230000005284 excitation Effects 0.000 claims description 27
- 238000004804 winding Methods 0.000 claims description 23
- 230000001360 synchronised effect Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/023—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1603—Regulation parameters
- A61M1/1605—Physical characteristics of the dialysate fluid
- A61M1/1607—Physical characteristics of the dialysate fluid before use, i.e. upstream of dialyser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/22—Measuring resistance of fluids
Landscapes
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Emergency Medicine (AREA)
- Vascular Medicine (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- Biochemistry (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- External Artificial Organs (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
あって、入口と出口と該入口及び出口者の二つの流路と
を有し、それにより流体のループを画定す゛ る流路手
段と、
貫通穴を有する第1のコアと該第1のコアの周囲の巻線
とを備える励磁用変圧器であって、前記第1のコアが前
記流路手段と該手段における前記流体のループとの一部
を取り囲む励磁用変圧器と、貫通穴を有する第2のコア
と該第2のコアの周囲の巻線とを備える感知用変圧器で
あって、前記第2のコアが前記流路手段と該手段におけ
る前記流体のループとの一部を取シ囲む感知用変圧器と
、を具備する透析物調製・供給装置。DETAILED DESCRIPTION OF THE INVENTION A flow path means having an inlet and an outlet and two flow paths between the inlet and the outlet thereby defining a fluid loop; a first flow path having a through hole; An excitation transformer comprising a core and a winding around the first core, the first core surrounding a portion of the flow path means and the fluid loop in the means. a sensing transformer comprising: a second core having a through hole; and a winding around the second core; A sensing transformer that partially surrounds the loop; and a dialysate preparation and supply device.
13、前記第1のコアと第2のコアとが環状である特許
請求の範囲第12項記載の透析物調製・供給装置。13. The dialysate preparation/supply device according to claim 12, wherein the first core and the second core are annular.
3、発明の詳細な説明〕
〔産業上の利用分野〕
本発明は導管内を流れる流体の導電率を遠隔に感知する
ものに関し、特に透析物調整・供給機における透析物の
導電率を感知するものに関する。3. Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a system for remotely sensing the conductivity of a fluid flowing in a conduit, and particularly for sensing the conductivity of a dialysate in a dialysate preparation/supply machine. related to things.
透析物調整・供給機における透析物の導電率は、導管の
透析物中に浸漬されるセンサにより通常測定され、膜の
形態、電極上の沈澱物により、又は他の欠点により長期
間のドリフトを受けやすい。The conductivity of the dialysate in a dialysate conditioning and feeding machine is usually measured by a sensor immersed in the dialysate in the conduit and is subject to long-term drift due to membrane morphology, deposits on the electrodes, or other shortcomings. Easy to accept.
無電極型導電率センサ、例えばグレート・レイク・イン
ストルメント株式会社(ミルウオーキー、ウィスコンシ
ン州)から入手できるものは、水質及び処理の制御に用
いられてきた。とれらのセンサの1つにおいては、導管
の中を流れる流体の導電率は、該導管G・(、接続され
る流体のル プと、該ループと結合さfする2つの変圧
器とを備玄−1電流を該流体のループVこ1方の変圧器
でもって誘導し、該流体のループの中の電流によって他
力の変圧器に誘導された電流を測定し、液体中の導電率
を抵抗、電流及び電圧の関係を用い″C決定することに
より遠隔Vこ測定さ、ftろ。Electrodeless conductivity sensors, such as those available from Great Lakes Instrument Inc. (Milwaukee, Wis.), have been used for water quality and treatment control. In one of these sensors, the conductivity of the fluid flowing in the conduit is determined by the conduit G (with a connected fluid loop and two transformers coupled with the loop). -1 current is induced in a transformer on one side of the fluid loop V, the current induced in the other transformer by the current in the fluid loop is measured, and the conductivity in the fluid is determined by the resistance , by using the current and voltage relationships to determine ``V'' and ``ft''.
一般Vこ、本発明は、同−平面にある環状フェライトコ
アを励磁用変圧器と感知用変圧器とに用いることにより
、2−変圧器/流体ループ型の導電率の遠隔センサにお
ける励磁用変圧器と感知用変圧器との間の漏洩結合の減
少を提供する1つの特性に特徴がある。General V This invention provides a method for converting the excitation transformer in a two-transformer/fluid loop type conductivity remote sensor by using coplanar annular ferrite cores for the excitation transformer and the sensing transformer. One characteristic that provides reduced leakage coupling between the transformer and the sensing transformer is characterized.
好ましい実施例にあ・いては、流体のループの長さの流
体の断面積に対する望寸しい低い比は、2つの環状の磁
石を貫通して第1の接続部と第2の接続部とによりT7
Iいに接続される二つの円形部分を有する流体の流れの
導管によってC−Zえられ、環状磁石と該磁石の周囲の
巻線との内径は前記の円形導管部の夕1径にほぼ等しく
、Mi+記の接続導官部(・オ環状磁石と該磁石の周囲
の巻線との直径の長さにほぼ等しい。接続部は、泡が集
−斗る隅部が右在る平らな外面を有して環状の変111
器を適所に保持する。In a preferred embodiment, the desirably low ratio of the length of the fluid loop to the cross-sectional area of the fluid extends through the two annular magnets to the first connection and the second connection. T7
C-Z by a fluid flow conduit having two circular sections connected to the C-Z, the inner diameter of the annular magnet and the winding around said magnet being approximately equal to the diameter of said circular conduit section. , Mi + (approximately equal to the length of the diameter of the annular magnet and the winding around the magnet. 111
Hold the vessel in place.
別の特性に〕ト?いては、本発明(4−般に、2−変圧
器/流体ループ型の導電率の遠隔十ン現の励磁用変圧器
をディジタルタイマーとソリノブノロツブとによりJi
えらfする方形波励磁1b″F3で駆動することを更に
具備する。To another characteristic]? According to the present invention (4-Generally, the current excitation transformer of the 2-transformer/fluid loop type conductivity can be controlled by a digital timer and a solenoid knob.
It further comprises driving with square wave excitation 1b''F3.
好寸しい実施例にあ・いては、励磁用変圧器(・まハイ
ファイラー巻きであり、ソリノブノロツブの1真」の出
力とイ目補の出力の両方に接続される。捷だ、感知用変
圧器に接続される、電流−電圧変換器、交流増幅器及び
同期検出器が存在する。そして、センサを較正するのに
使用するために変圧器の周囲の追加の巻線が存在する。In a preferred embodiment, it is connected to both the output of the excitation transformer (which is high-filter wound and one of the solenoid knobs) and the output of the second transformer. There is a current-to-voltage converter, an AC amplifier, and a synchronous detector connected to the transformer, and there are additional windings around the transformer for use in calibrating the sensor.
別の特性においては、本発明は一般に透析物の導電率を
感知するたy)に無電極型2.停電率センサな使用する
ことに特徴がある。In another aspect, the present invention generally provides an electrodeless method for sensing the conductivity of dialysate. It is characterized by its use as a power outage rate sensor.
本発明の他の利点と特徴は好ましい実施例の以下の記述
と特許請求の範囲から明らかであ勺5゜〔実施例〕
構成
第1図〜第5図に言及すると、図にはプラスチック製の
流体の流れの導管12、励磁用変圧器14及び感知用変
圧器16を備える導電率セル10が示されている。励磁
用変圧器14と感知用変圧器16とは各々、) 1mイ
ダルコ“アI8と該コアに巻かれた電線20とを有する
。導電率セル10は、参照によりここに組込捷れた米国
特許第4371385号に記述された一般の型の透析物
調整・供給機の透析物の流路に、透析物供給導管に沿っ
た位置の濃縮物と水とが混合さJする位置より下流に取
り付けられ、濃縮物を水に付加するのを制御するための
プロセッサに接続さノ9ている。Other advantages and features of the invention will be apparent from the following description of the preferred embodiment and from the claims. A conductivity cell 10 is shown comprising a fluid flow conduit 12, an excitation transformer 14, and a sense transformer 16. The excitation transformer 14 and the sense transformer 16 each have a 1 m Idalko core I8 and a wire 20 wound around the core. Installed in the dialysate flow path of a dialysate preparation and feed machine of the general type described in Patent No. 4,371,385 downstream from the point along the dialysate feed conduit where the concentrate and water are mixed. and is connected to a processor for controlling the addition of concentrate to the water.
チャネル12は人I’l 22、lit I] 24、
円形導管部26.28(変圧器14.16を通る)及び
該導管部26.28間の接続部:30.32を有する。Channel 12 is person I'l 22, lit I] 24,
It has a circular conduit section 26.28 (through the transformer 14.16) and a connection between the conduit sections 26.28: 30.32.
延長1Nts31は、接続部:30と整列し「1、り円
形力、管部26から人口22へ延0・ている。延長部3
5は、接続部;(2と整列り、目つ円形導管部28がら
出[]24−\延びている。接続部30.32は、平ら
な外面と、該接続部の中の流体の流れの通路な画定する
円形の内面33とを有する(第4l−4)。第4図で最
も良くわかるよ’IK、円形導管部26の外径はトロイ
ダルコア18と該コア」二の巻線との内径の寸法に近く
、その結果該l・ロイダルコアの寸法により許容される
流体流路に対する実際的な断面積を最も大きくする。1
だ、円形導管部の高さはトロイダルコア18と該コア七
の巻、線との厚さよりほんの僅かに太きく、ぞして変F
に器1・1と変圧器】6との間の距離は小さい。(つ1
す、円形導管部26と円形#管部28との間の1〆続部
の長さはトロイダルコアと6亥コアー上の巻iflとの
(自作よりほんの僅かに大きい。)こt’L、 1.:
、> 1つの装置!−J、接続部30.32と円形導管
部26.28と!(二より与えら才)る流5体の流れの
ループ:38(第3図の−点鎖線)の長さの流路の断面
積に対する比を低い値にし、その結果、良好な感度を提
供する。−方のコア上の巻線が他方のコア上の巻線の上
に重なり、更に他方のコアに接触する程度にまで変圧器
同士を物理的に極めて接近させることは可能であろうが
、実際には不可能である。それは、変圧器相互間の漏洩
結合の起こる確率を増す傾向にあるからである。The extension 1Nts31 is aligned with the connection part 30 and has a circular force extending from the pipe part 26 to the population 22.Extension part 3
5 is a connection; (aligned with 2 and extending out of the circular conduit section 28 []24-\); the connection 30.32 has a flat outer surface and a (4l-4).As best seen in FIG. is close to the dimension of the inner diameter of the l-roidal core, thereby providing the largest practical cross-sectional area for fluid flow paths allowed by the dimensions of the l-roidal core.1
However, the height of the circular conduit part is slightly thicker than the thickness of the toroidal core 18 and the windings and wires of the core 7, and the height is different.
The distance between transformer 1 and transformer 6 is small. (1)
The length of the first connection between the circular conduit part 26 and the circular pipe part 28 is the length of the toroidal core and the winding ifl on the 6-core core (slightly larger than the self-made one). 1. :
, > One device! -J, connection 30.32 and circular conduit 26.28! Flow loop of 5 bodies (given by two): The ratio of the length of 38 (-dotted chain line in Figure 3) to the cross-sectional area of the flow path is set to a low value, and as a result, good sensitivity is provided. do. Although it would be possible to physically bring transformers so close together that the windings on one core overlap and even touch the windings on the other core, in practice It is impossible. This is because it tends to increase the probability of leakage coupling between transformers.
第5図に見られるように、チャネル12は二つの全く同
じ部品34.36から作られ、該部品34.36はそれ
らの間に変圧器14.16を挿入した後に溶媒結合され
る。As can be seen in FIG. 5, the channel 12 is made from two identical parts 34.36 which are solvent bonded after inserting the transformer 14.16 between them.
第6図に言及すると、図には励磁信号を励磁用変圧器1
4に与えると共に流体の導電率に関係する信号を感知用
変圧器16から受取る電子回路が示されている。変圧器
14は、図の左側で発振器39及び駆動回路40かも1
0KHz の方形波の励磁信号を受取るように接続され
る。右側では、感知用変圧器16は、増幅器58.60
.62.64(LF347)をそれぞれ含む電流−電圧
変換器42、交流増幅器44、同期検出器46及びフィ
ルタ/バッファ48に接続されろ。Referring to FIG. 6, the figure shows the excitation signal being transferred to the excitation transformer 1.
4 and receives a signal from a sensing transformer 16 that is related to the conductivity of the fluid. The transformer 14 is connected to an oscillator 39 and a drive circuit 40 on the left side of the figure.
It is connected to receive a 0 KHz square wave excitation signal. On the right, the sensing transformer 16 is connected to the amplifier 58.60
.. 62 and 64 (LF 347), respectively, to a current-to-voltage converter 42, an AC amplifier 44, a synchronous detector 46, and a filter/buffer 48.
発振器39はタイマー41 (7555)とフリツ、プ
フロツプ43 (74HC74) とを含む。フリッ
プフロップ43の「真」の出力と相補出力との両方は駆
動回路のインターフェース45 (7545] )に接
続され、該インターフェースの「真」の出力と相補の出
力とは変圧器14に接続される。フリップフロップ43
の「真」の出力(Q)は捷た、線50により同期検出器
46にも接続される。The oscillator 39 includes a timer 41 (7555) and a flipflop 43 (74HC74). Both the "true" and complementary outputs of the flip-flop 43 are connected to the drive circuit interface 45 (7545]), the "true" and complementary outputs of the interface being connected to the transformer 14. . flip flop 43
The "true" output (Q) of is also connected to the sync detector 46 by a shortened line 50.
励磁用変圧器14は巻回数43のバイフアイラー巻変圧
器である。感知用変圧器16の巻回数は89である。励
磁用変圧器14と感知用変圧器16との各々には捷た、
巻線52.54が1回巻かれており、該巻き線52.5
4は較正用ピン56に接続されて、装置を較正するのに
使用される抵抗に接続される。第6図の残りの部品の数
値は以下のとおりである。The excitation transformer 14 is a bifilar transformer with 43 turns. The number of turns of the sensing transformer 16 is 89. Each of the excitation transformer 14 and the sensing transformer 16 includes a
The winding 52.54 is wound once, and the winding 52.5
4 is connected to calibration pin 56, which is connected to a resistor used to calibrate the device. The numerical values of the remaining parts in FIG. 6 are as follows.
部 品 値捷たは番号C80,00
56
CIOO,001
C1,C2,C5,C6,0,1
C13,C14,C15
C90,47
CI 2 、 C161,0
C3,C4,C710,0
C111oopf
抵抗
R613,0
R13100,0
R100,28K
R7,R112,4K
R410,2K
R9,R1214,0K
R1,R223,7K
R82B、0K
R349,9K
R141000K
R5274,OK
トランジスタ Ql 2N3904
動作
動作において、透析物は入口22に流入し、ループ38
を通って出口24へ流出する。その際、該透析物は入口
22と出口24間の全ての流体の流路に充満し、変圧器
14.16と結合される流体のループをつくる。接続部
30.32を通る流路が水平に対して45°の角度をな
すように導電率セル10は取シ付げられているので、空
気の泡(それは測定値を歪ませる)が停滞する隅部が存
在しない。こうして、との空気の泡も追い出される。Parts price or number C80,00
56 CIOO,001 C1,C2,C5,C6,0,1 C13,C14,C15 C90,47 CI 2 , C161,0 C3,C4,C710,0 C111oopf Resistance R613,0 R13100,0 R100,28K R7,R112 , 4K R410, 2K R9, R1214, 0K R1, R223, 7K R82B, 0K R349, 9K R141000K R5274, OK Transistor Ql 2N3904
In operation, dialysate flows into inlet 22 and exits loop 38.
through to outlet 24. The dialysate then fills all fluid flow paths between inlet 22 and outlet 24, creating a fluid loop that is coupled to transformer 14,16. The conductivity cell 10 is mounted so that the flow path through the connections 30, 32 makes an angle of 45° to the horizontal, so that air bubbles (which distort the measurements) stagnate. There are no corners. In this way, the air bubbles are also expelled.
発振器39は、駆動回路40により励磁用変圧器14に
加えられる10KHz 方形波を提供する。Oscillator 39 provides a 10 KHz square wave that is applied to excitation transformer 14 by drive circuit 40 .
方形波は安い部品から簡単に発生されて一定の振幅を与
え、正弦波のように制御する必要がないので、方形波は
有利である。駆動回路40は発振器39から受取った方
形波の電圧を5Vの論理レベルから12Vへ増大させる
。Square waves are advantageous because they are easily generated from cheap components, give constant amplitude, and do not need to be controlled like sine waves. Drive circuit 40 increases the square wave voltage received from oscillator 39 from a logic level of 5V to 12V.
励磁用変圧器14は流体のループ38の中に電流を誘導
し、該電流は感知用変圧器16により感知さノする。、
変圧器16に誘導された電i’ik +4ループ38
(1)中ノift□L’ll¥率IC比例すイ、4、変
圧器16はコンチン日ノr’Jど、Vり増幅i+S 5
8に容量的に結合さ、tlろ。子のためDCACオフセ
ット≦111!をれ交流、仙弓のみが増幅さ!シる1、
増幅器58の出力はループ38の中のΔに雌の習tB率
(′に比例−する市川であて)。コンテン−リ−CI2
に−3、I) Cオフセットを阻11ゾ」イ)ために用
い「庸1、増幅器60は交流電圧のみ4・増幅−する6
、
同期検出器・46は増幅器44がらの交流市川を111
流′市圧の出力に変換すると共に、不安周波数4・除去
する。トランジスタQ1がフリノブフロップ4:3によ
り駆動されてターン・]ンさ才すると、該トランジスタ
(21は接地へのグυ絡とじて働き、増幅器62は−1
の利得をもつ反転増幅器と(〜で動作する。とのとき、
交流、増幅器44の出力(J負であり、同期4莢出器4
6からl−の出力が生Iる。トランジスタQ1がターン
・」]さI′1イ)と、該トランジスタQ1は回教回路
として働き、増幅器62は」−1の利得を角する。この
ときは、交流増幅器44の出力44市であり、同期検出
’AI’、46がら市の4出力が再び生じる。Excitation transformer 14 induces a current in fluid loop 38 that is sensed by sense transformer 16 . ,
Electricity induced in transformer 16 i'ik +4 loop 38
(1) Medium no.ift□L'll\r\ratio IC proportional s, 4, transformer 16 is contin day no r'J, V ri amplification i+S 5
Capacitively coupled to 8, tl. DCAC offset for child ≦111! Now, only Senyumi is amplified! Shiru 1,
The output of amplifier 58 is applied to Δ in loop 38, which is proportional to the female current rate ('). Contently-CI2
1) The amplifier 60 is used to prevent C offset 11) 1) The amplifier 60 only amplifies AC voltage 4 and 6
, The synchronous detector 46 connects the AC Ichikawa of the amplifier 44 to 111.
In addition to converting it into the output of the current city pressure, it also removes the uneasy frequency 4. When the transistor Q1 is turned on, driven by the Flinob flop 4:3, the transistor Q1 acts as a ground to ground and the amplifier 62
When an inverting amplifier with a gain of and (operating at ),
AC, output of amplifier 44 (J negative, synchronous 4 output device 4
6 produces an output of l-. When the transistor Q1 is turned on, the transistor Q1 acts as a circuit, and the amplifier 62 has a gain of -1. At this time, the output of the AC amplifier 44 is 44, and the synchronous detection 'AI' and 4 outputs of 46 are generated again.
同期(す冒11器・16の出力は抵抗14な介L7て:
1ンテン川16を充電I゛る。10KHz 以外の周波
数が介在ず乙馬合1;l’、 、長い期間(・ζわたっ
ては止の成分と負の成分と閣、X17均化される。
]、 OJ(ilz の周波数伯−弓のみが一丁)1〜
でコンテンリ−C,1,6を充に12、フィルり/バッ
ファ48の増中畠暑χ6・1を’IJ′1′!過する。Synchronization (the output of step 11 and 16 is connected to resistor 14 through L7:
I am charging 160 meters. There is no intervening frequency other than 10 KHz, and over a long period (・ζ), the constant component and the negative component are equalized by X17.
], OJ (ilz's frequency count - only one bow) 1~
So content C, 1, 6 are filled with 12, fill/buffer 48 Masunaka Hatatsu χ6・1 is 'IJ'1'! pass
フィル1り/バッファ18σ)出力It導電率(J(比
例する直1′Δv′市FT−である。顔向k fl〕圧
(土、体j%l ’f、!I−許第4,371.385
4−VC記j−1t;さh −j−、イる一般(7)
7jl、1の透析物調製 供給機な割付ずイ)た1\/
)にJLlい(’)、liろディジタルプロセッサ(図
示せス) K 、1、リ−4/D変換器(図示ぜず)を
介し−てブイ−7〉タルイF、け(′こ変換される。Fill 1 / Buffer 18σ) Output It conductivity (J (proportional direct 1'Δv' city FT-. Facial direction k fl] pressure (Soil, body j%l 'f, !I-H4th, 371.385
4-VC note j-1t; sa h -j-, iru general (7)
7jl, 1 dialysate preparation No assignment of feeder a) ta1\/
) is converted to JL1('), via a digital processor (not shown), and a 4/D converter (not shown). Ru.
第6図の回路は、ビン56同士(I)[(11に既知の
藺の抵抗を設け、液体をループ38からIト出し−C1
(変圧器14.16を単一巻線52.5・1を介し7て
のツメ結合させ)、フィルタ/バッファー18の出力を
抵抗の既知の抵抗値と叱較−ずろことにより較正されう
ろ。The circuit of FIG.
The output of the filter/buffer 18 may be calibrated by comparing the output of the filter/buffer 18 with the known resistance of the resistor (by coupling the transformer 14.16 to the claws through a single winding 52.5.1).
他の実施例 本発明の他の実施例は特許請求の範囲内に含まれる。Other examples Other embodiments of the invention are within the scope of the claims.
第1図は本発明による導電率セルの透視図である。
第2図は第1図のセルの部分断面図である。
第3図は第1図のセルの立面図である。
第4図は第1図のセルの第2図の4−4の断面について
の縦断面図である。
第5図は第1図のセルの断面図である。
第6図は第1図のセルに接続されろ励磁・感知用回路図
である。
10:導電率セル 12:導管 14:励磁用変圧
器 16:感知用変圧器 18ニドロイダルコア
2o:電線 22:入口24:出口 26.28
:導管 30,32:接続部 33:内面 38
:流体の流れのループ 39:発振器 4o:駆動
回路41:タイマー 42二電流−電圧変換器43:
フリップフロップ 44:交流増幅器(1′/)
45:インターフェース 、16.同期検出器48゛
フイルタ/バツフア 5o、線52.54:巻線
56:較正用ピン58.60.62.64:増幅器
(1B)FIG. 1 is a perspective view of a conductivity cell according to the invention. FIG. 2 is a partial cross-sectional view of the cell of FIG. 1. FIG. 3 is an elevational view of the cell of FIG. FIG. 4 is a longitudinal cross-sectional view of the cell shown in FIG. 1 taken along section 4--4 in FIG. FIG. 5 is a cross-sectional view of the cell of FIG. 1. FIG. 6 is a diagram of an excitation/sensing circuit connected to the cell of FIG. 1. 10: Conductivity cell 12: Conduit 14: Excitation transformer 16: Sensing transformer 18 Nidroidal core
2o: Electric wire 22: Entrance 24: Exit 26.28
: Conduit 30, 32: Connection part 33: Inner surface 38
: Fluid flow loop 39: Oscillator 4o: Drive circuit 41: Timer 42 Two current-voltage converter 43:
Flip-flop 44: AC amplifier (1'/) 45: Interface, 16. Synchronous detector 48゛ filter/buffer 5o, wire 52.54: winding
56: Calibration pin 58.60.62.64: Amplifier (1B)
Claims (1)
、 供給管の中の流体の流路を画定する手段であつて、入口
と出口と該入口及び出口間の2つの流路とを設け、それ
により流体のループを画定する流体の流路手段と、 貫通穴を有する第1のトロイダルコアと該第1のトロイ
ダルコアの周囲の巻線とを備える励磁用変圧器であつて
、前記第1のトロイダルコアが前記流路手段と該流路手
段における前記流体のループとの一部を取り囲むように
してなる励磁用変圧器と、 貫通穴を有する第2のトロイダルコアと該第2のトロイ
ダルコアの周囲の巻線とを備える感知用変圧器であつて
、前記第2のトロイダルコアが前記流路手段と該流路手
段における前記流体のループとの一部を取り囲むように
してなる感知用変圧器と、 を具備し、 前記第2のトロイダルコアの前記貫通穴の軸に垂直であ
る前記第2のトロイダルコアの対称面が、前記第1のト
ロイダルコアの前記貫通穴の軸に垂直である前記第1の
トロイダルコアの対称面と同一平面にあり、それにより
前記励磁用変圧器と前記感知用変圧器との間の漏洩結合
を減ずることを特徴とするセル。 2、前記流路手段が、第1の長さの2つの円形導管部と
、該2つの円形導管の中心間を測定した第2の長さを有
し、前記円形導管部の端と端との間に設けられた2つの
接続部とを具備し、 各々の前記導管部の外径が前記トロイダルコアと該トロ
イダルコア上の前記巻線との内径にほぼ等しく、前記第
1の長さが前記トロイダルコアと該トロイダルコア上の
前記巻線との厚さにほぼ等しく、前記第2の長さが前記
トロイダルコアと該トロイダルコア上の前記巻線との外
径にほぼ等しいことを特徴とする特許請求の範囲第1項
記載のセル。 3、前記接続部が、その中に流体の円形の流路を画定し
、互いに対向してその間に前記トロイダルコアの部分を
制限する平らな面を有することを特徴とする特許請求の
範囲第2項記載のセル。 4、前記流路手段が同じ部分からなり、前記同じ部分の
各々が前記接続部と各々の前記円形導管部の半分とを有
することを特徴とする特許請求の範囲第2項記載のセル
。 5、1方の前記接続部と整列して、1方の前記円形導管
への入口を越えて前記入口の方へ延びる第1の延長部が
存在し、かつ他方の前記接続部と整列して、他方の前記
円形導管への入口を越えて前記出口の方へ反対の方向に
延びる第2の延長部が存在し、前記接続部における流路
と個々の延長部における流路とが連続していて、水平に
対して角度をつけて取り付けられる場合に泡が停滞しな
いようにすることを特徴とする特許請求の範囲第2項記
載のセル。 6、通過する流体の導電率を遠隔感知する装置であつて
、 流体のループを有する流体の流路を画定する手段と、前
記流体のループの部分を取り囲むコアを各々有する励磁
用変圧器と感知用変圧器とを含むセルと、 方形波励磁信号を前記励磁用変圧器に与えるように接続
されたディジタルタイマー及びフリップフロップと、 を具備することを特徴とする装置。 7、前記励磁用変圧器がバイフアイラー巻きであり、か
つ前記フリップフロップの「真」の出力と相補の出力と
の両方に接続される特許請求の範囲第6項記載の装置。 8、前記感知用変圧器に接続される電流−電圧変換器を
更に具備する特許請求の範囲第6項記載の装置。 9、前記電流−電圧変換器に接続される交流増幅器を更
に具備する特許請求の範囲第8項記載の装置。 10、前記装置を較正するのに使用するための、前記励
磁用変圧器に対する一回の巻線と前記感知用変圧器に対
する一回の巻線とを更に具備する特許請求の範囲第6項
記載の装置。 11、前記ディジタルタイマーと前記交流増幅器とに接
続される同期検出器を更に具備し、該検出器が直流電圧
の出力を与えることを特徴とする特許請求の範囲第10
項記載の装置。 12、透析物供給管と、 流体の流路を前記供給管に画定する流路手段であつて、
入口と出口と該入口及び出口間の二つの流路とを有し、
それにより流体のループを画定する流路手段と、 貫通穴を有する第1のコアと該第1のコアの周囲の巻線
とを備える励磁用変圧器であつて、前記第1のコアが前
記流路手段と該手段における前記流体のループとの一部
を取り囲む励磁用変圧器と、貫通穴を有する第2のコア
と該第2のコアの周囲の巻線とを備える感知用変圧器で
あつて、前記第2のコアが前記流路手段と該手段におけ
る前記流体のループとの一部を取り囲む感知用変圧器と
、を具備する透析物調製・供給装置。 13、前記第1のコアと第2のコアとが環状である特許
請求の範囲第12項記載の透析物調製・供給装置。[Scope of Claims] 1. A cell for remotely sensing the electrical conductivity of a fluid passing therethrough, comprising means for defining a fluid flow path in a supply pipe, the inlet and the outlet, and the connection between the inlet and the outlet. an excitation transformer comprising: a first toroidal core having a through hole; and a winding around the first toroidal core. an excitation transformer in which the first toroidal core partially surrounds the flow path means and the fluid loop in the flow path means; and a second toroidal core having a through hole. A sensing transformer comprising a core and a winding around the second toroidal core, the second toroidal core connecting a portion of the flow path means and the fluid loop in the flow path means. a sensing transformer surrounding the second toroidal core, the plane of symmetry of the second toroidal core perpendicular to the axis of the through hole of the second toroidal core being a cell characterized in that it is coplanar with a plane of symmetry of said first toroidal core that is perpendicular to the axis of the through hole, thereby reducing leakage coupling between said excitation transformer and said sensing transformer; . 2. The channel means has two circular conduit sections of a first length and a second length measured between the centers of the two circular conduit sections, and the channel means has two circular conduit sections of a first length and a second length measured between the centers of the two circular conduit sections, and two connecting portions provided between the conduit portions, each of the conduit portions having an outer diameter approximately equal to an inner diameter of the toroidal core and the winding on the toroidal core, and wherein the first length is approximately equal to the inner diameter of the toroidal core and the winding on the toroidal core. The thickness of the toroidal core and the winding on the toroidal core is approximately equal, and the second length is approximately equal to the outer diameter of the toroidal core and the winding on the toroidal core. A cell according to claim 1. 3. The connecting portion has planar surfaces defining a circular flow path for fluid therein and opposing each other and delimiting portions of the toroidal core therebetween. Cell described in section. 4. A cell according to claim 2, characterized in that said channel means are comprised of identical parts, each said identical part having said connection part and half of each said circular conduit part. 5. In alignment with one said connection, there is a first extension extending beyond the inlet to one of said circular conduits towards said inlet, and in alignment with the other said connection; , there is a second extension extending in the opposite direction beyond the inlet to the other circular conduit towards the outlet, and the flow path at the connection and the flow path in the respective extension are continuous. 3. A cell according to claim 2, characterized in that the cell prevents foam from stagnation when mounted at an angle to the horizontal. 6. An apparatus for remotely sensing the electrical conductivity of a fluid passing therethrough, comprising means for defining a fluid flow path having a fluid loop, an exciting transformer each having a core surrounding a portion of the fluid loop; An apparatus comprising: a cell including a transformer for excitation; and a digital timer and a flip-flop connected to provide a square wave excitation signal to the transformer for excitation. 7. The apparatus of claim 6, wherein said excitation transformer is bifilar wound and connected to both the "true" output and the complementary output of said flip-flop. 8. The apparatus of claim 6 further comprising a current-to-voltage converter connected to the sensing transformer. 9. The device according to claim 8, further comprising an AC amplifier connected to the current-voltage converter. 10. Claim 6, further comprising one winding on the excitation transformer and one winding on the sensing transformer for use in calibrating the device. equipment. 11. Claim 10, further comprising a synchronous detector connected to the digital timer and the AC amplifier, the detector providing a DC voltage output.
Apparatus described in section. 12. A dialysate supply tube; and a flow path means for defining a fluid flow path in the supply tube,
having an inlet, an outlet, and two flow paths between the inlet and the outlet,
An excitation transformer comprising: a flow path means thereby defining a fluid loop; a first core having a through hole; and a winding around the first core, the first core A sensing transformer comprising: an excitation transformer surrounding a portion of the flow path means and the fluid loop in the means; a second core having a through hole; and a winding around the second core. a sensing transformer in which said second core surrounds a portion of said flow path means and said fluid loop in said means. 13. The dialysate preparation/supply device according to claim 12, wherein the first core and the second core are annular.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/869,087 US4825168A (en) | 1986-05-30 | 1986-05-30 | Remote conductivity sensor using square wave excitation |
US869087 | 1986-05-30 | ||
US06/869,132 US4740755A (en) | 1986-05-30 | 1986-05-30 | Remote conductivity sensor having transformer coupling in fluid flow path |
US869132 | 1986-05-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS631961A true JPS631961A (en) | 1988-01-06 |
JPH076947B2 JPH076947B2 (en) | 1995-01-30 |
Family
ID=27128091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62134751A Expired - Fee Related JPH076947B2 (en) | 1986-05-30 | 1987-05-29 | Fluid conductivity remote sensing cell |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPH076947B2 (en) |
DE (1) | DE3718111A1 (en) |
FR (1) | FR2599515B1 (en) |
GB (2) | GB2191293B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001147218A (en) * | 1999-11-22 | 2001-05-29 | T & C Technical:Kk | Electrodeless sensor |
JP2002516995A (en) * | 1998-05-28 | 2002-06-11 | フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Apparatus and method for contactlessly measuring the conductivity of a liquid present in a flow passage |
JP2007327901A (en) * | 2006-06-09 | 2007-12-20 | Invensys Systems Inc | Nonmetal flowing-water type electroless conductive sensor, and leak detector |
JP2014149283A (en) * | 2013-02-04 | 2014-08-21 | Horiba Advanced Techno Co Ltd | Conductivity measuring instrument and correcting method for measurement values therefrom |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5612622A (en) * | 1994-12-28 | 1997-03-18 | Optical Solutions, Inc. | Apparatus for identifying particular entities in a liquid using electrical conductivity characteristics |
DE102005029047B4 (en) | 2005-06-21 | 2007-06-21 | Miele & Cie. Kg | Sensor device and method for producing a sensor device |
DE102011002766A1 (en) | 2011-01-17 | 2012-07-19 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Measuring arrangement for determining an electrical conductivity of a measuring liquid |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236990U (en) * | 1975-09-08 | 1977-03-16 | ||
JPS60190873A (en) * | 1984-03-10 | 1985-09-28 | Japan Organo Co Ltd | Electromagnetic type conductivity meter |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL132706C (en) * | 1946-06-11 | |||
GB695058A (en) * | 1951-05-03 | 1953-08-05 | Fielden Electronics Ltd | Improvements relating to the measurement of conductivity of liquids |
GB831692A (en) * | 1956-11-15 | 1960-03-30 | Wayne Kerr Lab Ltd | Improvements in or relating to the measurement of the electrical conductance of liquids |
DE1129232B (en) * | 1960-02-12 | 1962-05-10 | Siemens Ag | Device for the electrodeless measurement of the electrical conductivity of fluids flowing in pipelines |
US3404336A (en) * | 1965-07-26 | 1968-10-01 | Beckman Instruments Inc | Apparatus for measuring electrical conductivity of a fluid |
US3566841A (en) * | 1969-07-11 | 1971-03-02 | Research Corp | Milk monitor and system |
US3603873A (en) * | 1970-01-14 | 1971-09-07 | Nus Corp | Conductivity sensor |
DE2108771C3 (en) * | 1970-02-27 | 1981-11-12 | Smiths Industries Ltd., London | Device for detecting particles as they pass along a continuous path |
GB1395493A (en) * | 1971-06-16 | 1975-05-29 | Secr Defence | Apparatus for controlling the conductivity of an electro lyte |
FR2266891B1 (en) * | 1974-04-05 | 1978-11-17 | Citroen Sa | |
NZ180087A (en) * | 1976-02-23 | 1978-11-13 | Ahi Operations Ltd | Mastitis detector: conductivity bridge with comparator outputs |
US4138639A (en) * | 1977-07-14 | 1979-02-06 | Hutchins Thomas B | Fluid conductivity measurement |
DE2822943A1 (en) * | 1978-05-26 | 1979-11-29 | Tesch Gmbh & Co Kg | Probe which measures electrical conductivity of liq. - uses coils to generate and detect induced voltage in liq. |
-
1987
- 1987-05-12 GB GB8711173A patent/GB2191293B/en not_active Expired - Lifetime
- 1987-05-26 FR FR878707398A patent/FR2599515B1/en not_active Expired - Lifetime
- 1987-05-29 DE DE19873718111 patent/DE3718111A1/en active Granted
- 1987-05-29 JP JP62134751A patent/JPH076947B2/en not_active Expired - Fee Related
-
1989
- 1989-12-18 GB GB8928473A patent/GB2226141B/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236990U (en) * | 1975-09-08 | 1977-03-16 | ||
JPS60190873A (en) * | 1984-03-10 | 1985-09-28 | Japan Organo Co Ltd | Electromagnetic type conductivity meter |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002516995A (en) * | 1998-05-28 | 2002-06-11 | フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Apparatus and method for contactlessly measuring the conductivity of a liquid present in a flow passage |
JP2001147218A (en) * | 1999-11-22 | 2001-05-29 | T & C Technical:Kk | Electrodeless sensor |
JP2007327901A (en) * | 2006-06-09 | 2007-12-20 | Invensys Systems Inc | Nonmetal flowing-water type electroless conductive sensor, and leak detector |
JP2014149283A (en) * | 2013-02-04 | 2014-08-21 | Horiba Advanced Techno Co Ltd | Conductivity measuring instrument and correcting method for measurement values therefrom |
Also Published As
Publication number | Publication date |
---|---|
FR2599515B1 (en) | 1990-04-06 |
GB2226141B (en) | 1990-10-17 |
GB8928473D0 (en) | 1990-02-21 |
GB2191293A (en) | 1987-12-09 |
FR2599515A1 (en) | 1987-12-04 |
JPH076947B2 (en) | 1995-01-30 |
DE3718111A1 (en) | 1987-12-03 |
DE3718111C2 (en) | 1989-06-15 |
GB2226141A (en) | 1990-06-20 |
GB2191293B (en) | 1990-10-17 |
GB8711173D0 (en) | 1987-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4740755A (en) | Remote conductivity sensor having transformer coupling in fluid flow path | |
US4825168A (en) | Remote conductivity sensor using square wave excitation | |
US4195515A (en) | In line electromagnetic flow measurement transducer | |
US5417119A (en) | Dual electromagnet partially disposable fluid flow transducer with side-by-side electrodes | |
US4346604A (en) | Electromagnetic flow probe | |
US6626048B1 (en) | Magnetic flow meter | |
US7798015B2 (en) | Magneto-inductive flowmeter and measuring tube for such | |
GB1158790A (en) | Improvements in Fluid Density Meters | |
JPS631961A (en) | Remote sensor for conductivity | |
JPS5927958B2 (en) | Insulated two-wire transmission device | |
JP2003344126A (en) | Magnetic flow measuring system having separable magnet /electrode assembly | |
CN205506136U (en) | Electromagnetic type flow sensing device | |
JPH04295722A (en) | Residual-magnetism type electromagnetic flowmeter | |
US4137766A (en) | Integral field magnetic flowmeter | |
US4261210A (en) | Stacked wafer helical flowmeter | |
US5767418A (en) | Electromagnetic flowmeter with single bobbin coil | |
US5708212A (en) | Apparatus for sensing liquid flow rate and conditioning velocity profile and associated methods | |
EP3628982B1 (en) | Full bore magnetic flowmeter assembly | |
US20200256714A1 (en) | Full bore magnetic flowmeter assembly with temperature sensing element | |
FI74540B (en) | SYSTEM OCH ANORDNING FOR MAETNING AV EN VAETSKAS HOEJDNIVAO. | |
EP0459480A1 (en) | Electromagnetic blood flowmeter probe | |
JP2004138457A (en) | Electromagnetic flowmeter | |
CN209910736U (en) | Wide-range bidirectional measurement flowmeter capable of automatically correcting | |
KR102038706B1 (en) | Electromagnetic flowmeter | |
CN203657868U (en) | Electromagnetic and ultrasonic integrated-design flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |