JPS5995450A - Measurement device for moisture content - Google Patents

Measurement device for moisture content

Info

Publication number
JPS5995450A
JPS5995450A JP20631882A JP20631882A JPS5995450A JP S5995450 A JPS5995450 A JP S5995450A JP 20631882 A JP20631882 A JP 20631882A JP 20631882 A JP20631882 A JP 20631882A JP S5995450 A JPS5995450 A JP S5995450A
Authority
JP
Japan
Prior art keywords
oscillation
circuits
frequency
temp
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20631882A
Other languages
Japanese (ja)
Inventor
Kazutaka Too
東尾 一孝
Hideji Tamenaga
為永 秀司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP20631882A priority Critical patent/JPS5995450A/en
Publication of JPS5995450A publication Critical patent/JPS5995450A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Abstract

PURPOSE:To obtain a measurement device which compensates the error occurring in the bulk density and temp. of an object to be measured itself and the error occurring in the temp. drift of oscillation circuits by disposing a pair of electrodes in the object to be detected and measuring the moisture content of said object from the dielectric contant between the electrodes. CONSTITUTION:A resonance circuit 1 makes the common use of the oscillation section of oscillation circuits, 2, 3. The circuits 2, 3 output time-dividedly an oscillation frequency f1 which is relatively at a high frequency and an oscillation frequency f2 which is relatively at a low frequency while the circuits are alternately switched and driven respectively at times tauH and tauL. The high frequency signal fH and the low frequency signal fL are subjected to a voltage to current conversion in V-I converters 24, 34, and are put in a transmission line 5 via capacitors C3, C4; further the signals are demodulated to the original signals fH, fL by a filter 9. The frequency calculated from the set values in registers 16, 17 and the switching time by envelope signals is determined. The count value correlating to the temp. of the grain detected by a thermistor 4a is stored in the register 42 and the count value correlating to the temp. in the oscillation section detected by a thermistor 4b is stored in the register 45. A microcomputer 18 calculates the moisture content from the frequency including the change in the bulk density and the temp. of the grain stored beforehand therein and the temp. in the oscillation circuit section.

Description

【発明の詳細な説明】 この発明は、被検体内に一対の電極を配置し、その電極
間の誘電率で穀物等の被検体の水分率を測定するように
した水分率の測定装置に関し、特に被検体の嵩密度、温
度および発振回路部の温度に基づく誤差を補償する水分
率の測定装置に藺する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a moisture content measuring device in which a pair of electrodes are arranged inside the subject, and the moisture content of a subject such as grain is measured by the dielectric constant between the electrodes. This applies particularly to a moisture content measuring device that compensates for errors based on the bulk density and temperature of the sample and the temperature of the oscillation circuit.

穀物等の水分率を、嵩密度に基づく誤差を補償して測定
する装置として、例えば、穀物内に一対の電極を2組配
置し、それぞれの電極を発振コンデンサとする2個の発
振回路で2種類の周波数を発振させ、各発振周波数の比
率から水分率を求めるようにしたものがある。
As a device for measuring the moisture content of grains, etc. by compensating for errors based on bulk density, for example, two pairs of electrodes are placed inside the grain, and two oscillation circuits each using an oscillation capacitor are used to measure the moisture content of grains. There is one that oscillates different frequencies and calculates the moisture content from the ratio of each oscillation frequency.

この装置は、水分率が電極間の誘電率に比例し、従って
発振周波数に比例すること、また嵩密度が2種類の発振
周波数の変化分の比に椙ね比例すること(相対的に高周
波では嵩密度の変化に対し相対的に周波数変化分が大き
くなるから。)を利用して、同一嵩密度にある穀物を電
極間で挟んだときの2種類の発振周波数に基づいて水分
率測定を行うようにしたものである。
In this device, the moisture content is proportional to the dielectric constant between the electrodes, and therefore the oscillation frequency, and the bulk density is proportional to the ratio of changes in two types of oscillation frequencies (relatively at high frequencies). (This is because the frequency change becomes large relative to the change in bulk density.) Moisture content is measured based on two types of oscillation frequencies when grains with the same bulk density are sandwiched between electrodes. This is how it was done.

しかしながら、上記の測定装置では、電極が2組必要で
あるとともに、それぞれの電極間の嵩密度が同一である
とはかぎらないため、測定部の構成が複雑化するととも
に正確な水分率測定が出来ない欠点がある。
However, the above measuring device requires two sets of electrodes, and the bulk density between the electrodes is not necessarily the same, which complicates the configuration of the measuring section and makes accurate moisture content measurement difficult. There are no drawbacks.

この発明は、上記の欠点を解消し、さらに水分率測定の
精度を高めるために、被検体自身の有する温度に基づく
誤差および発振回路の温度ドリフトに基づく誤差を補償
する水分率の測定装置の提供を目的とする。
In order to eliminate the above-mentioned drawbacks and further improve the accuracy of moisture content measurement, the present invention provides a moisture content measuring device that compensates for errors based on the temperature of the subject itself and errors based on the temperature drift of the oscillation circuit. With the goal.

この発明を要約すれば次のようになる。This invention can be summarized as follows.

被検体内に一対の電極を配置して、この電極を共用の発
振コンデンサとしてH1!itの発振回路で2種類の周
波数を発振させる。このとき2個の発振回路の駆動は、
スイッチング回路で交互におこなう。被検体内には電極
と別に被検体自身の温度を測定する被検体温度センサが
設けられ、さらに発振回路部の温度を検出する発振部温
度検出センサが設けられる。そして被検体温度検出セン
サの出力に応して上記スイッチング回路のいずれか一方
の発振回路に対するスイッチング時間を変え、また発振
部温度検出センサの出力に応して他方の発振回路に対す
るスイッチング時間を変える。それぞれの発振回路の出
力は、重畳して伝送ラインに乗せられ、受信側で、フィ
ルタによって元の発振出力を得る。第47られた発振出
力は、それ自身、スイッチング時間情報を備えているた
め、そのスイッチング時間内の発振回数をカウントする
ことによって周波数が求まる。また一方の発振回路のス
イッチング時間情報単独から被検体の温度が求まる。さ
らに他方の発振回路のスイッチング時間情報単独から発
振回路の温度が求まる。演算手段であるマイクロコンビ
−ユータは、これらの演算をおこない、さらに求めた周
波数に嵩密度変化1発振部の温度ドリフトそれぞれに対
する変動係数を乗じて新たな周波数を求め、この新たな
周波歓心こ基づいて水分率を求める。なお、嵩密度変化
に対する2種類の周波数それぞれの変動係数と、発振部
の温度ドリフトに対する2種類の周波数の変動イ系数と
は、あらかじめマイクロコンピユニタに記憶されている
A pair of electrodes is placed inside the subject, and these electrodes are used as a shared oscillation capacitor for H1! The IT oscillation circuit oscillates two types of frequencies. At this time, the driving of the two oscillation circuits is
This is done alternately using a switching circuit. In addition to the electrodes, a subject temperature sensor is provided within the subject to measure the temperature of the subject itself, and an oscillation section temperature detection sensor is further provided to detect the temperature of the oscillation circuit section. Then, the switching time for one of the oscillation circuits of the switching circuits is changed in accordance with the output of the object temperature detection sensor, and the switching time for the other oscillation circuit is changed in accordance with the output of the oscillation section temperature detection sensor. The outputs of the respective oscillation circuits are superimposed and sent to the transmission line, and on the receiving side, the original oscillation output is obtained by a filter. Since the 47th oscillation output itself has switching time information, the frequency can be determined by counting the number of oscillations within the switching time. Further, the temperature of the object can be determined from the switching time information of one of the oscillation circuits alone. Furthermore, the temperature of the oscillation circuit is determined from the switching time information of the other oscillation circuit alone. The microcomputer, which is the calculation means, performs these calculations, and then multiplies the obtained frequency by the coefficient of variation for each temperature drift of the bulk density change 1 oscillation part to obtain a new frequency, and then calculates the new frequency based on this new frequency. to find the moisture content. Note that the coefficients of variation of the two types of frequencies with respect to changes in bulk density and the coefficients of variation of the two types of frequencies with respect to the temperature drift of the oscillation section are stored in advance in the microcomputer.

以下この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の実施例である穀物の水分率測定装置
のブロック図である。
FIG. 1 is a block diagram of a grain moisture content measuring apparatus according to an embodiment of the present invention.

同図において、コンデンサC1(発振コンデンサ)の上
下電極は穀物を収納するホ・7/々内Gこ配置される。
In the same figure, the upper and lower electrodes of a capacitor C1 (oscillation capacitor) are placed in a hole in which grains are stored.

コンデンサCIに接続されるコンデンサC2,コイルL
L、L2はコンデンサC2とともに共振回路1を構成す
る。共振回路1は、第1の発振回路2と第2の発振回路
3との発振部を構成す、る。第1の発振回路2の発振駆
動部は、正フィードハックループを有するアンプ201
発振出力を検波する検波回路21.後述のスイ・ノアン
グ信号τHと検波回路21の出力とを比較する比較回路
22.比較出力を所定のレベルにしてアンプ20の駆動
時間を制御するアンプ23から構成される。また、第2
の発振回路3の発振駆動部は、第1の発振回路2と同様
に、アンプ30.検波回路31、比較回路32およびア
ンプ33から構成される。
Capacitor C2 and coil L connected to capacitor CI
L and L2 constitute a resonant circuit 1 together with a capacitor C2. The resonance circuit 1 constitutes an oscillation section of a first oscillation circuit 2 and a second oscillation circuit 3. The oscillation drive section of the first oscillation circuit 2 includes an amplifier 201 having a positive feed hack loop.
A detection circuit 21 that detects the oscillation output. A comparator circuit 22 that compares a switch-no-ang signal τH, which will be described later, with the output of the detection circuit 21. It is composed of an amplifier 23 that controls the driving time of the amplifier 20 by setting the comparison output to a predetermined level. Also, the second
Similar to the first oscillation circuit 2, the oscillation driving section of the oscillation circuit 3 includes an amplifier 30. It is composed of a detection circuit 31, a comparison circuit 32, and an amplifier 33.

共振回路1のコイルL1は、そのリアクタンスをコイル
L2のリアクタンスより非常に大きく設定している。こ
のため、第1の発振回路2の発振周波数11は、 1/(2π L2CIC2/ (CI十C2))となり
、 第2の発振回路3の発振周波数f2は、1/(2π L
l  (C]、+C2))となる。
The reactance of the coil L1 of the resonant circuit 1 is set to be much larger than the reactance of the coil L2. Therefore, the oscillation frequency 11 of the first oscillation circuit 2 is 1/(2π L2CIC2/ (CI + C2)), and the oscillation frequency f2 of the second oscillation circuit 3 is 1/(2π L2CIC2/ (CI + C2)).
l (C], +C2)).

すなわち、共振回路1はふたつの発振回路の共振部を兼
用しつつ、第1の発振回路には相対的に高周波を発振さ
せ、第2の発振回路には相対的Gこ低周波を発振させる
That is, the resonant circuit 1 serves as the resonant parts of two oscillation circuits, and causes the first oscillation circuit to oscillate a relatively high frequency, and causes the second oscillation circuit to oscillate a relatively low frequency.

上記ふたつの発振回路2,3はスイッチング回路を構成
するマルチバイブレーク4で交互にスイッチング駆動さ
れる。このマルチパイプレーク4は、スイッチング周期
を決定するための2個のCR時定数回路(図示せず)を
有するが、その一方の時定数回路のR部はホッパ内に配
置されたサーミスタ4aで構成されている。また、他方
の時定数回路のR部は発振回路基板上に配置されたサー
ミスタ4bで構成されている。マルチパイプレーク4の
両方のステージ出力のうち、上記サーミスタ4aの影響
を受けるステージ出力はτHとして、比較回路22の比
較入力端子に与えられ、上記サーミスタ4bの影響を受
けるステージ出力はτLとして、比較回路32の比較入
力端子に与えられる。すなわち、ステージ出力τH1τ
Lに関しては、マルチバイブレーク4は温度一時間変換
部を構成する。前述のように、比較回路22.’32は
、信号τH2τLと検波回路21.31の出力とを比較
するが、両者のレベルが同一のときにだけ比較出力を出
す。このため、発振回路2,3は、それぞれτH2τL
の時間に交互にスイッチング駆動されながら相対的に高
周波である発振周波数fl、相対的に低周波である発振
周波数f2を時分割的に出力する。
The two oscillation circuits 2 and 3 are alternately switched and driven by a multi-by-break 4 constituting a switching circuit. This multi-pipe lake 4 has two CR time constant circuits (not shown) for determining the switching period, and the R section of one of the time constant circuits is composed of a thermistor 4a placed inside the hopper. has been done. Further, the R section of the other time constant circuit is composed of a thermistor 4b arranged on the oscillation circuit board. Of both stage outputs of the multi-pipe lake 4, the stage output affected by the thermistor 4a is given as τH to the comparison input terminal of the comparison circuit 22, and the stage output affected by the thermistor 4b is given as τL for comparison. It is applied to a comparison input terminal of circuit 32. That is, the stage output τH1τ
As for L, the multi-by-break 4 constitutes a temperature one-hour converter. As mentioned above, the comparator circuit 22. '32 compares the signal τH2τL with the output of the detection circuit 21.31, but outputs a comparison output only when the levels of both are the same. Therefore, the oscillation circuits 2 and 3 each have τH2τL
The oscillation frequency fl, which is a relatively high frequency, and the oscillation frequency f2, which is a relatively low frequency, are outputted in a time-division manner while being alternately switched and driven during times of.

高周波信号fH(発振周波数fl)および低周波信号f
L(発振周波数f2)は、V−1変換器24.34で電
圧−電流変換され、コンデンサC3およびコンデンサC
4を介して伝送ライン5に乗せられる。伝送ライン5は
、同軸ケーブルで構成され、上記発振回路2,3に電圧
を供給するための電源ラインも兼用する。すなわち、伝
送ライン5は、発振回路2.3への電圧供給と、ふたつ
の発振信号の伝送を同時におこなう。フィルタ6は、こ
のように1本のラインに電源電圧とふたつの発振信号が
重畳して乗せられることから、伝送ラインから電源電圧
だけを抽出するために設けられる。フィルタ6に接続さ
れる定電圧電源回路7は、発振の安定を図り、測定誤差
を防止するために設けられる。
High frequency signal fH (oscillation frequency fl) and low frequency signal f
L (oscillation frequency f2) is voltage-current converted by V-1 converter 24.34, and capacitor C3 and capacitor C
4 and onto the transmission line 5. The transmission line 5 is composed of a coaxial cable, and also serves as a power supply line for supplying voltage to the oscillation circuits 2 and 3. That is, the transmission line 5 simultaneously supplies voltage to the oscillation circuit 2.3 and transmits two oscillation signals. Since the power supply voltage and two oscillation signals are superimposed on one line in this way, the filter 6 is provided to extract only the power supply voltage from the transmission line. A constant voltage power supply circuit 7 connected to the filter 6 is provided to stabilize oscillation and prevent measurement errors.

伝送ライン5の受信側には、上記発振回路2゜3に電圧
を供給するための電源Eと、信号分だけを抽出するため
のコンデンサC5が接続される。
A power source E for supplying voltage to the oscillation circuit 2.3 and a capacitor C5 for extracting only the signal are connected to the receiving side of the transmission line 5.

直流分のカントされた信号は、アンプ8で適当な大きさ
のレベルにされ、さらにフィルタ9で元の高周波信号f
Hと低周波信号fLに復調される。
The canted DC signal is made to an appropriate level by an amplifier 8, and is further converted to the original high frequency signal f by a filter 9.
It is demodulated into H and low frequency signal fL.

復調された各信号は、エンベロープ検波回路10.11
およびカウンタ12,1’3に導かれ、エンヘロープ信
号を遅延回路14.15で遅延させたエンベロープ遅延
信号がカウンタ12,13のりセント端子に導かれる。
Each demodulated signal is sent to an envelope detection circuit 10.11.
The signal is then guided to the counters 12, 1'3, and an envelope delayed signal obtained by delaying the envelope signal by a delay circuit 14.15 is guided to the positive terminals of the counters 12, 13.

カウンタ12,13は、エンベロープ遅延信号の立ち下
がりでリセットを繰り返しながら、高周波信号fH,低
周波信号fLをカウントする。したがってカウンタ12
,13には、それぞれスイッチング時間であるτH。
The counters 12 and 13 count the high frequency signal fH and the low frequency signal fL while repeatedly being reset at the falling edge of the envelope delay signal. Therefore counter 12
, 13 are respectively switching times τH.

τLの間に信号fH,fLをカウントした結果が保持さ
れる。レジスタ16’、17は、カウンタ12.13の
記憶内容をエンベロープ遅延信号の立ち下がりタイミン
グでラッチし、その内容を演算手段であるマイクロコン
ピュータ18に出力する第2図は、上記の構成からなる
1、lJ定装置の要部の信号波形図である。同図に示す
ように高周波信号fHは信号τHがハイのときだけ発生
し、また低周波信号fLは信号τLがノλイのときだけ
発生する。それ故、信号τH2τLがハイのときの発振
回数をカウントすれば、信号fH,fLの周波数が分る
ことになる。マイクロコンピュータ18は、レジスタ1
6.17にセントされた値とエンヘロープ信号から得ら
れるスイ・7アンプ時間とから、最初の演算として周波
数を求める。
The results of counting the signals fH and fL during τL are held. The registers 16' and 17 latch the contents stored in the counters 12 and 13 at the falling timing of the envelope delay signal, and output the contents to the microcomputer 18, which is an arithmetic means. , is a signal waveform diagram of the main part of the lJ constant device. As shown in the figure, the high frequency signal fH is generated only when the signal τH is high, and the low frequency signal fL is generated only when the signal τL is low. Therefore, by counting the number of oscillations when the signal τH2τL is high, the frequencies of the signals fH and fL can be found. The microcomputer 18 has register 1
As a first calculation, the frequency is determined from the value set at 6.17 and the Sui-7 amplifier time obtained from the envelope signal.

一方上記の復調された信号のうち高周波信号fHは、エ
ンベロープ検波回路40にも入力し、スイッチング信号
τHの有効な時間と同信号の立ち下がりタイミングとが
検出される。前者の時間。
On the other hand, the high frequency signal fH among the demodulated signals described above is also input to the envelope detection circuit 40, and the valid time of the switching signal τH and the falling timing of the signal are detected. Time for the former.

すなわち高周波のスイッチング時間は一定のクロックを
入力パルスとするカウンタ41の作動時間として使われ
る。また後者の立ち下がりタイミングは、上記カウンタ
41に設定された値をレジスタ42にセットするための
ランチ信号として使われる。したがって、レジスタ42
には、サーミスタ4aで検出した穀物の温度に相関する
カウント値が記憶され、マイクロコンピュータ18がそ
のカウント値から予め定めた相関係数に基づいて穀物温
度を求める。
That is, the high frequency switching time is used as the operating time of the counter 41 which uses a constant clock as an input pulse. The latter falling timing is used as a launch signal for setting the value set in the counter 41 in the register 42. Therefore, register 42
A count value correlated to the temperature of the grain detected by the thermistor 4a is stored, and the microcomputer 18 determines the grain temperature from the count value based on a predetermined correlation coefficient.

同様に、低周波信号fLも、エンベロープ回路43に入
力し、スイッチング信号τLの有効な時間と同信号の立
ち下がりタイミングとが検出される。そして、前者の信
号の有効な時間、カウンタ44で一定の入力パルスをカ
ウントし、後者の信号でカウンタ値をレジスタ45にラ
ンチする。したがって、レジスタ45には、サーミスタ
4bで検出した発振回路部の温度に相関するカウンタ値
が記憶され、マイクロコンピュータ18がそのカウンタ
値から予め定めた相関係数に基づいて発振回路部の温度
を求める。
Similarly, the low frequency signal fL is also input to the envelope circuit 43, and the valid time of the switching signal τL and the falling timing of the signal are detected. Then, during the valid period of the former signal, a constant input pulse is counted by the counter 44, and the counter value is launched into the register 45 by the latter signal. Therefore, the register 45 stores a counter value that correlates with the temperature of the oscillation circuit section detected by the thermistor 4b, and the microcomputer 18 calculates the temperature of the oscillation circuit section from the counter value based on a predetermined correlation coefficient. .

こうして周波数と穀物温度および発振回路部温度とを求
めると、次に、水分率を求めるための演算をおこなう。
After determining the frequency, grain temperature, and oscillation circuit temperature in this way, calculations are then performed to determine the moisture content.

この演算は、嵩密度の変化に対する周波数変動係数をa
  (IOMH2程度の高周波変動係数)。
This calculation calculates the frequency variation coefficient for changes in bulk density as a
(High frequency variation coefficient of about IOMH2).

b (IMH2程度の低周波変動係数)とし、穀物温度
の変化に対する周波数変動係数をc、dさらに発振回路
部の温度ドリフトに対する周波数変動係数をe、fとし
て、次の式を実行することでおこなう。なお、これらの
係数は、予めマイクロコンピュータ18が記憶している
b (low frequency coefficient of variation of about IMH2), c and d are the frequency variation coefficients with respect to changes in grain temperature, and e and f are frequency variation coefficients with respect to temperature drift of the oscillation circuit section, and execute the following formula. . Note that these coefficients are stored in advance in the microcomputer 18.

p(水分率) =(a−c−e−fH)/(b−d−f−fL)以上の
ようにこの実施例では、同一の発振コンデンサを用いて
高周波と低周波の発振回路を交互に駆動し、その駆動詩
画での発振回数をカウントすることで周波数を求め、さ
らにその周波数から水分率を求めるようにしている。通
常、発振回路2.3を交互に駆動するスイッチング時間
は、被検体である穀物の動きに対し非常に短く設定され
る。このため、穀物の状態が固定されているときに高周
波と低周波の両方の周波数が測定されるようになる。す
なわち、電極を1組しか使用しないが、2種類の周波数
は同一の条件下で測定される。それ故、測定部が簡単に
なり、且つ測定誤差が生じない。しかも、発振回路2.
3への電圧供給と、発振信号の伝送とを1本の伝送ライ
ンでおこなっているため、配線が簡単となる利点がある
p (moisture content) = (a-c-e-fH)/(b-d-f-fL) As described above, in this embodiment, the high frequency and low frequency oscillation circuits are alternately operated using the same oscillation capacitor. The frequency is determined by counting the number of oscillations in the driving poem, and then the moisture content is determined from that frequency. Normally, the switching time for alternately driving the oscillation circuits 2.3 is set to be very short with respect to the movement of the grain that is the subject. This allows both high and low frequencies to be measured when the grain condition is fixed. That is, only one set of electrodes is used, but two different frequencies are measured under the same conditions. Therefore, the measuring section becomes simple and measurement errors do not occur. Furthermore, the oscillation circuit 2.
Since the voltage supply to 3 and the transmission of the oscillation signal are performed by one transmission line, there is an advantage that the wiring is simple.

さらに、穀物の温度情報をスイッチング信号τHのパル
ス間隔で得るようにし、また発振回路部の温度情報をス
イッチング信号τLのパルス間隔で得るようにしている
ため、温度情報伝送用の別の伝送ラインを不要とする利
点がある。
Furthermore, since the grain temperature information is obtained at the pulse interval of the switching signal τH, and the temperature information of the oscillation circuit section is obtained at the pulse interval of the switching signal τL, a separate transmission line for transmitting the temperature information is required. It has the advantage of not being necessary.

なお、上記の実施例では伝送ライン5を電圧供給兼用に
したが、伝送ライン5を発振信号専用にして、電源ライ
ンを別に設けてもよい。
In the above embodiment, the transmission line 5 is also used for voltage supply, but the transmission line 5 may be used exclusively for oscillation signals and a separate power supply line may be provided.

以上のように、この発明によれば、発振コンデンサを1
個だけ用いるため、測定部の構成が簡単になって、被検
体内での電極配置に工夫を施す必要が生じず、しかも、
電極の経時変化は両方の発振周波数にそれぞれ同じ率だ
け影響するため経時的な電極部の変化に起因する誤差を
少なくできる効果がある。また、被検体の温度情報およ
び発振回路部の温度情報はスイッチング時間で伝送され
るため、電圧レヘルで伝送するときのようなノイズ対策
を施す必要がない。このため、伝送部の構成が簡略化し
、しかも伝送ラインが長くなっても高精度が保たれる効
果がある。
As described above, according to the present invention, the oscillation capacitor is
Since only one electrode is used, the configuration of the measurement unit is simplified, and there is no need to make any efforts to arrange the electrodes inside the subject.
Changes in the electrode over time affect both oscillation frequencies by the same rate, which has the effect of reducing errors caused by changes in the electrode portion over time. Furthermore, since the temperature information of the object and the temperature information of the oscillation circuit section are transmitted in the switching time, there is no need to take noise countermeasures as in the case of transmission at the voltage level. This has the effect of simplifying the configuration of the transmission section and maintaining high accuracy even if the transmission line becomes long.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例である穀物の水分率測定装置
のプロ・ツク図である。第2図番よ同装置の要部の信号
波形図である。 1−共振回路、2−第1の発振回路、3−第2の発振回
路、4−マルチノーイブレーク(スイッチング回路)、
4a−サーミスタ(被検体温度検出センサ)、4b−サ
ーミスタ(発振回路温度検出センサ)、5H云送ライン
、9−フィルタ ((K KEI用)、18−マイクロ
コンピュータ、  C1−Q[iiコンデンサ。 出願人 久保田鉄工株式会社 代理人 弁理士 小森欠夫 第1図 1112図 手続子l↑正書く自発) 昭和58年 1月10日 庁長官 殿 明の名称 水分率の測定装置 正をする者 事件との関係 特許出願人 住所 大阪市浪速区敷津束1丁目2番47号名称 (1
05)久保田鉄工株式会社 代表者  三野重和 7人 1所 Q543大阪市天王寺区四天王寺1丁目14番2
2号日進ビル702号 王による増加する発明の数 なし 王の対象 明細書の「発明の詳細な説明」の冊 8 補正の内容 (1)明細書第6頁第13行目の rl/ (2π L2CIC2/ (CI+C2))」
を’1/(2π L’2CIC2/(CI+C2))、
Tと補正する。 (2)明細書第6頁第16行目の ’1/(2yr  T、1 (CI+C2))Jをrl
/(2πVπ1  (C丁”C2))Jと補正する。
FIG. 1 is a schematic diagram of a grain moisture content measuring apparatus according to an embodiment of the present invention. FIG. 2 is a signal waveform diagram of the main parts of the same device as shown in FIG. 1-resonant circuit, 2-first oscillation circuit, 3-second oscillation circuit, 4-multi-no-e break (switching circuit),
4a-thermistor (subject temperature detection sensor), 4b-thermistor (oscillation circuit temperature detection sensor), 5H transmission line, 9-filter ((for K KEI), 18-microcomputer, C1-Q[ii capacitor. Application Person: Kubota Iron Works Co., Ltd. Agent, Patent Attorney, Ketsuo Komori (Figure 1, Figure 1, 1112, Procedural child l ↑ Self-directed) January 10, 1981, Director General of the Agency, Mr. Akira, Name of Person Who Corrects a Moisture Content Measuring Device Incident Related Patent Applicant Address 1-2-47 Shikitsuzuka, Naniwa-ku, Osaka Name (1
05) Kubota Iron Works Co., Ltd. Representative Shigekazu Mino 7 people 1 location Q543 1-14-2 Shitennoji, Tennoji-ku, Osaka City
No. 2 Nissin Building No. 702 Increasing number of inventions by King None Volume 8 of "Detailed Description of the Invention" in the subject specification of King Contents of amendment (1) rl/ (2π) on page 6, line 13 of the specification L2CIC2/ (CI+C2))
'1/(2π L'2CIC2/(CI+C2)),
Correct with T. (2) rl '1/(2yr T, 1 (CI+C2))J on page 6, line 16 of the specification
/(2πVπ1 (Cd”C2))J.

Claims (1)

【特許請求の範囲】[Claims] (1)被検体内に配置された一対の電極と、この電極で
発振コンデンサを構成する2種類の周波数の発振回路と
、被検体の温度を検出する被検体温度検出センサと、前
記発振回路の温度を検出する発振部温度検出センサと、
前記発振回路を交互にスイッチング駆動するとともに前
記被検体温度検出センサの出力に応じて前記発振回路の
いずれか一方の発振回路のスイッチング駆動時間を変え
、且つ前記発振部温度検出センサの出力に応じて他方の
発振回路のスイッチング駆動時間を変えるスイッチング
回路と、前記発振回路の二つの出力を重畳して伝送する
手段と、伝送後の受信信号を元の発振出力に復調するフ
ィルタ手段と、復調した発振出力およびスイッチング時
間から上記2種類の周波数を求めるとともに上記一方の
発振回路のスイッチング時間から被検体の温度を求め、
且つ上記他方の発振回路のスイッチング時間から発振回
路の温度を求め、それらの値に基づいて水分率を求める
?!4算手段と、を有してなる水分率の測定装置。
(1) A pair of electrodes placed inside the subject, an oscillation circuit with two types of frequencies that configures an oscillation capacitor using these electrodes, a subject temperature detection sensor that detects the temperature of the subject, and the oscillation circuit. an oscillator temperature detection sensor that detects temperature;
The oscillation circuits are alternately switched and driven, and the switching drive time of one of the oscillation circuits is changed according to the output of the object temperature detection sensor, and the switching drive time of one of the oscillation circuits is changed according to the output of the oscillation section temperature detection sensor. a switching circuit that changes the switching drive time of the other oscillation circuit; a means for superimposing and transmitting the two outputs of the oscillation circuit; a filter means for demodulating the received signal after transmission into the original oscillation output; and a demodulated oscillation circuit. Determine the above two types of frequencies from the output and switching time, and determine the temperature of the object from the switching time of one of the oscillation circuits,
Also, determine the temperature of the oscillation circuit from the switching time of the other oscillation circuit, and determine the moisture content based on those values? ! A moisture content measuring device comprising: a 4-calculation means.
JP20631882A 1982-11-24 1982-11-24 Measurement device for moisture content Pending JPS5995450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20631882A JPS5995450A (en) 1982-11-24 1982-11-24 Measurement device for moisture content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20631882A JPS5995450A (en) 1982-11-24 1982-11-24 Measurement device for moisture content

Publications (1)

Publication Number Publication Date
JPS5995450A true JPS5995450A (en) 1984-06-01

Family

ID=16521308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20631882A Pending JPS5995450A (en) 1982-11-24 1982-11-24 Measurement device for moisture content

Country Status (1)

Country Link
JP (1) JPS5995450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251054A (en) * 1988-08-12 1990-02-21 Noboru Yamaguchi Temperature/humidity detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251054A (en) * 1988-08-12 1990-02-21 Noboru Yamaguchi Temperature/humidity detector

Similar Documents

Publication Publication Date Title
JPS5995450A (en) Measurement device for moisture content
JPS61278767A (en) Measurement of resonance frequency
JPS5995451A (en) Measurement device for moisture content
JPH0311429B2 (en)
JPS5995449A (en) Measurement device for moisture content
US6590377B2 (en) Narrow band frequency detection circuit
US5302907A (en) Method of and apparatus for ascertaining a characteristic value of a high-frequency oscillator
JP2795099B2 (en) Device for measuring DUT using electromagnetic waves
SU1183886A1 (en) Apparatus for measuring concentration of undissolved gas in liquid
JP2917580B2 (en) Signal amplitude measurement device
SU1061030A1 (en) Device for measuring concentration of various subtances
SU1078237A1 (en) Method of measuring metal film thickness
JPS60155982A (en) Partial discharge measuring apparatus
SU1161828A1 (en) Device for determining unbalance of branches of quartz crystal vibrator tuning fork
US3568076A (en) Receiver phase shift stabilizer
JPS6056265A (en) Surface-electrometer
SU646235A1 (en) Shf meter of impurity concentration
SU960725A1 (en) Device for determination of resonance characteristic frequency and quality factor
JPS61233373A (en) Measuring method for electrostatic capacity
SU728091A1 (en) Qartz resonator parameter heter
SU1319823A1 (en) Apparatus for determining own parameters of resonant bodies
SU1145302A1 (en) Complex resistance frequency converter
SU382038A1 (en) RADIOTELEGIGROMETER
SU676940A1 (en) Frequency short-time instability meter
SU1596303A1 (en) Apparatus for measuring group delay time of four-terminal networks with high attenuation