JPH0311090B2 - - Google Patents

Info

Publication number
JPH0311090B2
JPH0311090B2 JP55150992A JP15099280A JPH0311090B2 JP H0311090 B2 JPH0311090 B2 JP H0311090B2 JP 55150992 A JP55150992 A JP 55150992A JP 15099280 A JP15099280 A JP 15099280A JP H0311090 B2 JPH0311090 B2 JP H0311090B2
Authority
JP
Japan
Prior art keywords
film
material film
forming
etching
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55150992A
Other languages
Japanese (ja)
Other versions
JPS5775440A (en
Inventor
Akira Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55150992A priority Critical patent/JPS5775440A/en
Priority to DE8181305010T priority patent/DE3173581D1/en
Priority to EP81305010A priority patent/EP0050973B1/en
Priority to US06/315,909 priority patent/US4371407A/en
Publication of JPS5775440A publication Critical patent/JPS5775440A/en
Publication of JPH0311090B2 publication Critical patent/JPH0311090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • H01L21/2652Through-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Description

【発明の詳现な説明】 本発明は、フむヌルド領域の厚い絶瞁膜ず反転
防止局をセルフアラむンで圢成する半導䜓装眮の
補造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device in which a thick insulating film in a field region and an anti-inversion layer are formed in a self-aligned manner.

埓来よりMOS型の半導䜓集積回路では、玠子
分離のために隣接する玠子間、すなわちフむヌル
ド領域に比范的厚いフむヌルド絶瞁膜を蚭け、た
たフむヌルド領域の反転電圧を高くするために基
板ず同じ導電型で高䞍玔物濃床の反転防止局チ
ダネルストツパを蚭けるこずが行われおいる。
このため、埓来の補造方法では、フむヌルド領域
に遞択的に反転防止局を圢成するのに必芁な写真
蝕刻工皋ず、基板党面に圢成した厚い絶瞁膜を遞
択゚ツチングしお玠子圢成領域を埗るための写真
蝕刻工皋ずの回の写真蝕刻工皋を必芁ずしおい
た。このこずは、倧きなマスク合わせ䜙裕を必芁
ずするため、集積床向䞊の劚げずなり、たた補造
工皋が耇雑であるために歩留り向䞊ずコスト䜎䞋
の劚げずな぀おいた。
Conventionally, in MOS type semiconductor integrated circuits, a relatively thick field insulating film is provided between adjacent elements, that is, in the field region, for element isolation, and a field insulating film of the same conductivity type as the substrate is used to increase the inversion voltage of the field region. A highly doped inversion prevention layer (channel stopper) is provided.
For this reason, conventional manufacturing methods require a photolithography process to selectively form an anti-inversion layer in the field region, and a process to selectively etch a thick insulating film formed over the entire surface of the substrate to obtain the element formation region. Two photo-etching processes were required, including a photo-etching process. This requires a large margin for mask alignment, which impedes an increase in the degree of integration, and complicates the manufacturing process, which impedes improvements in yield and cost reduction.

そこで、このような難点を解決する手段ずし
お、最近は遞択酞化法が利甚されるようにな぀お
いる。これは、シリコン基板䞊に薄い酞化シリコ
ン膜を介しお窒化シリコン膜を堆積し、この窒化
シリコン膜を遞択゚ツチングしお玠子圢成領域䞊
にのみ残し、残された窒化シリコン膜をむオン泚
入に察するマスクずしお、たず反転防止局圢成の
ためのむオン泚入を行い、続いお同じ窒化シリコ
ン膜をマスクずしお、高枩熱酞化を行぀おフむヌ
ルド領域䞊に遞択的に厚い酞化膜を圢成する方法
である。なお、その埌䞊蚘窒化シリコン膜を陀去
し、その䞋の薄い酞化シリコン膜を䞀旊陀去し
お、露出した基板䞊によく知られた工皋で玠子を
圢成する。この方法によれば、写真蝕刻工皋は窒
化シリコン膜の遞択゚ツチングのための回で枈
み、フむヌルド領域の絶瞁膜ず、反転防止局がセ
ルフアラむンで圢成されるため、前述の埓来法に
比べお補造工皋が簡単でマスク合せ䜙裕も必芁ず
しないずい぀た利点が埗られる。
Therefore, selective oxidation methods have recently come to be used as a means to solve these difficulties. In this method, a silicon nitride film is deposited on a silicon substrate through a thin silicon oxide film, and this silicon nitride film is selectively etched to leave only the element forming area, and the remaining silicon nitride film is used as a mask for ion implantation. In this method, ions are first implanted to form an anti-inversion layer, and then high-temperature thermal oxidation is performed using the same silicon nitride film as a mask to selectively form a thick oxide film on the field region. Note that after that, the silicon nitride film is removed, the thin silicon oxide film thereunder is once removed, and an element is formed on the exposed substrate by a well-known process. According to this method, the photolithography process only needs to be carried out once for selectively etching the silicon nitride film, and the insulating film in the field region and the anti-inversion layer are formed in self-alignment, which is superior to the conventional method described above. The manufacturing process is simple and there is no need for mask alignment margins.

しかしながら、この遞択酞化法をたすたす埮现
化、高密床化が進む集積回路の玠子間分離法ずし
お甚いるには次のような問題がある。
However, the following problems arise when using this selective oxidation method as a method for isolating elements in integrated circuits, which are becoming increasingly finer and denser.

すなわち、第に、䞊蚘遞択酞化のための高枩
熱酞化凊理工皋で耐酞化性マスクずしお甚いる窒
化シリコン膜から窒玠化合物がその䞋の酞化シリ
コン膜を拡散しおいき、シリコン基板衚面に窒玠
化合物を生成する。この窒玠化合物は、埌に玠子
圢成領域のシリコン基板衚面を露出させお熱酞化
により、ゲヌト酞化膜を圢成する際に、酞化膜の
生成を阻害しゲヌト酞化膜の耐圧を著しく䜎䞋さ
せたり、ゲヌト閟倀電圧のバラツキの原因ずな
る。第に厚いフむヌルド酞化膜を遞択的に圢成
する際、酞化が暪方向にも進行するため耐酞化性
マスクである窒化シリコン膜の端郚から厚いフむ
ヌルド酞化膜が鳥のくちばしバヌズビヌク状
に食い蟌みこれが玠子領域の寞法誀差の原因ずな
り、たた高集積化の劚げずなる。さらに第に、
厚いフむヌルド酞化膜の圢成には䟋えば氎蒞気を
含む酞化性雰囲気䞭で1000℃時間ずい぀た高枩
か぀長時間の熱凊理を必芁ずするため、既にむオ
ン泚入されおいるフむヌルド領域の䞍玔物が拡散
によ぀お再分垃しお、玠子圢成領域にたでしみ出
し、これが玠子特性を劣化させ、高集積化を劚げ
るなどの䞍具合があ぀た。
First, nitrogen compounds from the silicon nitride film used as an oxidation-resistant mask in the high-temperature thermal oxidation process for selective oxidation diffuse into the underlying silicon oxide film, and the nitrogen compounds are deposited on the surface of the silicon substrate. generate. When a gate oxide film is later formed by thermal oxidation by exposing the surface of the silicon substrate in the element formation region, this nitrogen compound inhibits the formation of the oxide film, significantly lowering the withstand voltage of the gate oxide film and lowering the gate threshold. This causes voltage variations. Second, when selectively forming a thick field oxide film, oxidation also progresses in the lateral direction, so the thick field oxide film forms a bird's beak shape from the edge of the silicon nitride film, which is an oxidation-resistant mask. This intrusion causes dimensional errors in the element area and impedes high integration. Thirdly,
Forming a thick field oxide film requires high-temperature and long-term heat treatment at 1000°C for 5 hours in an oxidizing atmosphere containing water vapor, so impurities in the field region where ions have already been implanted may be diffused. The particles are then redistributed and seep into the device formation region, which causes problems such as deterioration of device characteristics and impeding high integration.

本発明は、パタヌン倉換差が小さく、埮现パタ
ヌンを高粟床に圢成するこずのできるパタヌン圢
成方法を提䟛するこずを目的ずする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pattern forming method that has small pattern conversion differences and can form fine patterns with high precision.

本発明はたた、その様なパタヌン圢成方法を玠
子分離に適甚しお、埮现玠子を特性を損なうこず
なく高密床集積化するこずを可胜ずした半導䜓装
眮の補造方法を提䟛するこずを目的ずする。
Another object of the present invention is to provide a method for manufacturing a semiconductor device, which applies such a patterning method to device isolation and enables high-density integration of microscopic devices without impairing their characteristics. .

本発明のパタヌン圢成方法は、たず所定基板䞊
にパタヌニングすべき第の物質膜を圢成し、こ
の第の物質膜䞊に所定パタヌンをも぀お第の
物質膜を圢成する。次に所定のプラズマ雰囲気に
晒しお露出しおいる第の物質膜衚面にプラズマ
重合膜を堆積する。そしお第の物質膜を陀去し
た埌、プラズマ重合膜を耐゚ツチングマスクずし
お第の物質膜を遞択゚ツチングするこずを特城
ずする。
In the pattern forming method of the present invention, first, a first material film to be patterned is formed on a predetermined substrate, and a second material film is formed with a predetermined pattern on the first material film. Next, a plasma polymerized film is deposited on the exposed surface of the first material film by exposing it to a predetermined plasma atmosphere. After the second material film is removed, the first material film is selectively etched using the plasma polymerized film as an etching-resistant mask.

このパタヌン圢成方法は、耐゚ツチングマスク
を通垞の写真蝕刻工皋により圢成する堎合ずは反
転したマスクを利甚しお圢成する技術の䞀぀であ
る。反転マスク技術はこれたで幟぀か知られおい
るが、本発明は埓来のものに比べお工皋が簡単で
あり、しかもパタヌン倉換差が極めお小さく、埮
现パタヌンを高粟床に圢成するこずができるずい
う利点を有する。
This pattern forming method is one of the techniques for forming an etching-resistant mask using a mask that is inverted from that used when forming the mask by a normal photolithography process. Several inversion mask techniques have been known so far, but the present invention has the advantage that the process is simpler than conventional ones, and the difference in pattern conversion is extremely small, making it possible to form fine patterns with high precision. has.

本発明による半導䜓装眮の補造方法は、䞊述し
たパタヌン圢成方法を玠子分離に適甚する。即ち
半導䜓基板䞊をたず玠子分離絶瞁膜ずなる絶瞁膜
で芆い、この絶瞁膜䞊に第の物質膜を圢成す
る。次いで写真蝕刻工皋により玠子圢成領域を芆
うパタヌンをも぀お前蚘第の物質膜䞊に第の
物質膜を圢成し、この第の物質膜をマスクずし
お玠子分離領域の基板面に反転防止甚の䞍玔物を
むオン泚入する。そしおプラズマ雰囲気に晒しお
露出しおいる第の物質膜衚面にプラズマ重合膜
を圢成する。その埌第の物質膜を陀去した埌、
プラズマ重合膜を耐゚ツチングマスクずしお第
の物質膜を遞択゚ツチングし、続いお残された第
の物質膜を耐゚ツチングマスクずしお絶瞁膜を
遞択゚ツチングしお玠子圢成領域の基板面を露出
させる。そしお露出した基板に所望の玠子を圢成
する。
A method for manufacturing a semiconductor device according to the present invention applies the above-described pattern forming method to element isolation. That is, a semiconductor substrate is first covered with an insulating film serving as an element isolation insulating film, and a first material film is formed on this insulating film. Next, a second material film is formed on the first material film with a pattern covering the element formation region by a photolithography process, and using this second material film as a mask, a film is formed on the substrate surface in the element isolation region to prevent inversion. ion implantation of impurities. Then, a plasma polymerized film is formed on the exposed surface of the first material film by exposing it to a plasma atmosphere. After removing the second material film,
The first use of plasma polymerized film as an etching-resistant mask
Then, using the remaining first material film as an etching-resistant mask, the insulating film is selectively etched to expose the substrate surface in the element formation region. Desired elements are then formed on the exposed substrate.

この補造方法であるず、遞択酞化の方法ず同じ
手法により、䞀回の写真蝕刻工皋でフむヌルド領
域に反転防止局ず厚い絶瞁膜の圢成ずを、行なう
こずができる。しかもこの方法によれば、耐酞化
性の膜であるシリコン窒化膜を䜿甚する必芁がな
くなり、䞊蚘シリコン窒化膜の䜿甚に原因するず
ころのゲヌト酞化膜の耐圧䞍良の問題を回避する
こずができる。
With this manufacturing method, an anti-inversion layer and a thick insulating film can be formed in the field region in a single photolithography process using the same technique as the selective oxidation method. Moreover, according to this method, there is no need to use a silicon nitride film, which is an oxidation-resistant film, and it is possible to avoid the problem of poor breakdown voltage of the gate oxide film, which is caused by the use of the silicon nitride film.

たた、近幎リアクテむブスパツタ゚ツチングを
䞭心ずした゚ツチング技術の進歩が著しく、特に
䞊蚘リアクテむブスパツタ゚ツチング技術を甚い
れば、マスクパタヌンをサむド゚ツチングなしに
䞋局の被゚ツチング材に䌝えるこずが可胜ずな぀
おいる。したが぀お、本発明の方法においお、リ
アクテむブスパツタ゚ツチング技術を玠子分離甚
絶瞁膜の゚ツチングに甚いればバヌズビヌクが発
生する埓来の遞択酞化法に比べお玠子圢成領域の
面積が広くずれるようになり集積床を䞊げるこず
ができる。
Furthermore, in recent years, there has been significant progress in etching technology centered on reactive sputter etching, and in particular, by using the above-mentioned reactive sputter etching technology, it has become possible to transfer the mask pattern to the underlying material to be etched without side etching. ing. Therefore, in the method of the present invention, if the reactive sputter etching technique is used to etch the element isolation insulating film, the area of the element formation region can be increased compared to the conventional selective oxidation method which causes bird's beaks. The degree of integration can be increased.

さらに本発明の方法によれば、むオン泚入埌の
長時間の熱凊理も䞍芁ずなり、フむヌルド反転防
止局の再分垃による玠子特性の䜎䞋を極力小さく
するこずが可胜ずなる。さらに、第の物質膜ず
しお、プラズマ雰囲気に晒しおもプラズマ重合膜
が圢成されない材料を遞ぶこずにより、遞択的に
フむヌルド領域䞊の第の物質膜䞊にプラズマ重
合膜を堆積するこずができる。このようにするこ
ずにより、プラズマ重合膜を甚いたパタヌニング
ず゚ツチングの信頌性が䞊がり、玠子間分離を確
実に行なえるようになり補品の歩留りを向䞊させ
埗る。䟋えばフロロカヌボンガスCF4ずH2ガ
スを甚いおシリコンの反応性プラズマ゚ツチング
を行な぀た堎合、H2ガスの量が玄50を越える
ず、シリコンぱツチングされなくなり衚面に
CFXのプラズマ重合膜が堆積される。これに察し
お同条件でシリコン酞化膜の゚ツチングをした堎
合ぱツチングが進行し衚面にCFXのプラズマ重
合膜が堆積されない。これはシリコン酞化膜䞭の
酞玠が炭玠ず反応しお、揮発性のCO2を圢成する
ために、プラズマ重合膜の堆積が起こらないもの
ず考えられる。したが぀お、第の物質膜ずし
お、たずえば倚結晶シリコン膜を甚い、第の物
質膜ずしおシリコン酞化膜を甚い、第の物質膜
をパタヌニング埌、CF4ずH2ガスを甚いた反応性
プラズマ゚ツチングを行なえばフむヌルド領域の
第の物質膜䞊にCFXのプラズマ重合膜を遞択的
に堆積させるこずができる。
Further, according to the method of the present invention, there is no need for long-term heat treatment after ion implantation, and it becomes possible to minimize deterioration in device characteristics due to redistribution of the field inversion prevention layer. Furthermore, by selecting a material that does not form a plasma polymerized film even when exposed to a plasma atmosphere as the second material film, it is possible to selectively deposit the plasma polymerized film on the first material film on the field region. . By doing so, the reliability of patterning and etching using the plasma polymerized film is increased, and isolation between elements can be reliably performed, thereby improving the yield of products. For example, when performing reactive plasma etching of silicon using fluorocarbon gas (CF 4 ) and H 2 gas, if the amount of H 2 gas exceeds about 50%, the silicon will no longer be etched and the surface will be etched.
A plasma polymerized film of CF X is deposited. On the other hand, when a silicon oxide film is etched under the same conditions, the etching progresses and a plasma polymerized film of CF X is not deposited on the surface. This is thought to be because the oxygen in the silicon oxide film reacts with carbon to form volatile CO 2 , so that no plasma polymerized film is deposited. Therefore, for example, a polycrystalline silicon film is used as the first material film, a silicon oxide film is used as the second material film, and after patterning the second material film, a reaction using CF 4 and H 2 gas is performed. By performing plasma etching, a plasma polymerized film of CFx can be selectively deposited on the first material film in the field region.

以䞋この発明をMOS型半導䜓装眮に適甚した
実斜䟋に぀き図面を参照しお説明する。
Embodiments in which the present invention is applied to a MOS type semiconductor device will be described below with reference to the drawings.

実斜䟋 第図に瀺すように面方䜍100、比抵抗−
20Ωcmの型シリコン基板を甚意し、その衚面
党面に熱酞化によ぀お厚さ7000〓皋床の酞化シリ
コン膜を圢成する。その埌、䟋えばCVD法に
より1500〓皋床の倚結晶シリコン膜を堆積す
る。次に通垞の写真蝕刻工皋により玠子圢成予定
領域䞊にレゞスト膜を圢成する。その埌、同図
に瀺すようにレゞスト膜をマスクにしおフむ
ヌルド領域のシリコン基板䞭にボロンをむオン泚
入し泚入局を圢成する。この時ボロンの加
速電圧を350kV皋床に遞ぶず良い。
Example As shown in Figure 1a, plane orientation is 100, specific resistance is 5-
A P-type silicon substrate 1 of 20 Ωcm is prepared, and a silicon oxide film 2 with a thickness of about 7000 mm is formed on the entire surface thereof by thermal oxidation. Thereafter, a polycrystalline silicon film 3 having a thickness of about 1500 mm is deposited by, for example, the CVD method. Next, a resist film 4 is formed on the area where elements are to be formed by a normal photolithography process. Thereafter, as shown in FIG. 1B, boron ions are implanted into the silicon substrate in the field region using the resist film 4 as a mask to form implanted layers 5 and 6. At this time, it is best to select the accelerating voltage of boron to be around 350kV.

次に、同図に瀺すようにCF4ずH2のプロズマ
ガスを甚いた反応性スパツタ゚ツチング条件にさ
らし、H2のガス量を50以䞊に遞ぶず、倚結晶
シリコン膜の䞊にCFXのプロズマ重合膜が堆
積する。この時レゞスト膜の䞊にもプラズマ重
合膜′が堆積するがレゞスト膜の陀去により
䞀緒に陀去するこずができる。同図は硫酞ず過
酞化氎玠氎の混液を沞ずうさせた液でレゞスト
ず䞀緒にレゞストの䞊のプラズマ重合膜′を
陀去した埌の図である。この゚ツチングによ぀お
倚結晶シリコン膜䞊に圢成されたプロズマ重合
膜も䞀郚゚ツチングされるが倚結晶シリコンの
゚ツチングのマスクずしお十分に働くこずが確か
められた。同図は、このプラズマ重合膜をマ
スクずしお玠子圢成領域䞊の倚結晶シリコン膜を
゚ツチング陀去した図である。次に、プラズマ重
合膜を䟋えば酞玠プラズマ雰囲気䞭で陀去し、
同図に瀺すように倚結晶シリコン膜を゚ツチ
ングのマスクずしお䟋えば反応性スパツタ゚ツチ
ングにより玠子圢成領域䞊のシリコン酞化膜を
゚ツチングする。
Next , as shown in FIG . A plasma polymerized film 7 of CF X is deposited. At this time, a plasma polymerized film 7' is also deposited on the resist film 4, but it can be removed together with the removal of the resist film 4. Figure d shows resist 4 using a boiling mixture of sulfuric acid and hydrogen peroxide.
This is a diagram after the plasma polymerized film 7' on the resist 4 is removed together with the resist 4. As a result of this etching, the plasma polymerized film 7 formed on the polycrystalline silicon film 3 is also partially etched, but it has been confirmed that it functions sufficiently as a mask for etching the polycrystalline silicon. Figure d shows the polycrystalline silicon film on the element formation region being etched away using the plasma polymerized film 7 as a mask. Next, the plasma polymerized film 7 is removed, for example, in an oxygen plasma atmosphere,
As shown in FIG. 5E, the silicon oxide film 2 on the element formation region is etched by, for example, reactive sputter etching using the polycrystalline silicon film 3 as an etching mask.

次に同図に瀺すように良く知られた方法に埓
いゲヌト酞化膜を圢成し、このゲヌト酞化膜
を介しお倚結晶シリコン膜からなるゲヌト電
極を圢成し、さらに型䞍玔物ずしおたずえ
ばヒ玠をドヌプしお型の゜ヌス領域、ドレ
むン領域を圢成し、続いお党面にCVD法に
より酞化シリコン膜を堆積し、コンタクトホ
ヌルを開けお取出し電極を配蚭しお完
成する。
Next, as shown in FIG. Arsenic is doped to form an n-type source region 12 and drain region 13, and then a silicon oxide film 14 is deposited on the entire surface by CVD method, contact holes are opened and lead-out electrodes 15 and 16 are arranged, and the process is completed. do.

なお同図においお、マスクずしお甚いたフむ
ヌルド酞化膜䞊の倚結晶シリコンを酞化させる
ず、フむヌルド酞化膜が厚くなり、か぀フむヌル
ド酞化膜゚ツヂのコヌナヌが䞞くなるため埌々の
工皋での金属配線のコヌナヌでの段切れの問題を
軜枛するのに効果がある。たた、本実斜䟋におい
おは、倚結晶シリコン膜の䞊にプラズマ重合膜
を堆積させたがプラズマ重合膜が堆積するよう
な膜、䟋えばアルミ酞、アルミナ膜、シリコン窒
化膜などをこれに代えるこずができる。たた実斜
䟋では、CF4H2を甚いおプラズマ重合膜堆積を
行぀たが、の䞀郚が他のハロゲンず眮換されお
いおもよい。
In Figure e, when the polycrystalline silicon on the field oxide film used as a mask is oxidized, the field oxide film becomes thicker and the corners of the field oxide film edges become rounded, which makes the corners of the metal wiring in the later process difficult. It is effective in reducing the problem of step breakage. In addition, in this embodiment, the plasma polymerized film 7 is deposited on the polycrystalline silicon film 3, but a film on which a plasma polymerized film is deposited, such as an alumina film, an alumina film, a silicon nitride film, etc., may be used instead. be able to. Furthermore, in the examples, plasma polymerized film deposition was performed using CF 4 +H 2 , but a portion of F may be replaced with other halogens.

この実斜䟋によれば遞択酞化法ず同様に回の
写真蝕刻工皋により、フむヌルド領域に厚い絶瞁
膜ず反転防止局ずセルフアラむンで圢成するこず
ができる。しかも、遞択酞化法による堎合の前述
した問題点も解決される。
According to this embodiment, similarly to the selective oxidation method, a thick insulating film and an anti-inversion layer can be formed in a self-aligned manner in a field region by a single photolithography process. Moreover, the above-mentioned problems in the case of selective oxidation are also solved.

すなわち、本発明の方法によれば耐酞化性の膜
であるシリコン窒化膜を䜿甚する必芁がなくな
り、䞊蚘シリコン窒化膜の䜿甚に原因するずころ
のゲヌト酞化膜の耐圧䞍良の問題を回避するこず
ができる。
That is, according to the method of the present invention, there is no need to use a silicon nitride film, which is an oxidation-resistant film, and the problem of poor breakdown voltage of the gate oxide film, which is caused by the use of the silicon nitride film, can be avoided. can.

さらに、反応性スパツタ゚ツチングでフむヌル
ド絶瞁膜を゚ツチングするため、パタヌン倉換差
をほずんど零にするこずができ、埓来の遞択酞化
法に比べお玠子圢成領域の面積を広くずれるよう
になり、集積床を䞊げるこずができる。䟋えば
3ΌルヌルでdRAMのメモリヌを぀く぀た堎合、
本発明の方法を甚いれば集積床を50以䞊に䞊げ
るこずができる。さらに、本発明の方法によれば
むオン泚入埌の長時間の熱凊理も䞍芁になり、フ
むヌルド反転防止局の再分垃による玠子特性の䜎
䞋を倧幅に軜枛できるようにな぀た。䞀方、反転
マスクの技術を利甚しお倚結晶シリコン膜や金属
膜等をパタヌニングする埓来の方法ずしお、䟋え
ば゚ツチング陀去すべき郚分にマスクを圢成し熱
酞化や陜極酞化等によ぀お遞択的に酞化膜を圢成
しお、この酞化膜を耐゚ツチングマスクずしお甚
いる方法が知られおいる䟋えば、特開昭52−
120782号公報。しかしこの方法では、酞化が等
方的に進むためにパタヌン倉換差が倧きくなる。
別の方法ずしお、フむヌルド酞化膜ずなるシリコ
ン酞化膜のパタヌニングを行うために、そのフむ
ヌルド領域の郚分に窒玠をむオン泚入しおこの郚
分の衚面を窒化酞化膜に倉換し、これを耐゚ツチ
ングマスクずする方法も提案されおいる特開昭
53−114685号公報。しかしこの方法では、窒玠
のむオン泚入に長時間を必芁ずするのみならず、
その埌窒化のための熱凊理工皋も䞍可欠である。
これらの埓来技術に察しおプラズマ重合膜を利甚
する本発明のパタヌン圢成方法では、工皋が極め
お簡単であり、しかもパタヌン倉換差が小さく、
埮现パタヌンを高粟床に圢成するこずができる。
Furthermore, since the field insulating film is etched using reactive sputter etching, the difference in pattern conversion can be reduced to almost zero, making it possible to increase the area of the device formation region compared to the conventional selective oxidation method, thereby increasing the degree of integration. can be raised. for example
When creating dRAM memory using the 3Ό rule,
Using the method of the present invention, the degree of integration can be increased to more than 50%. Furthermore, the method of the present invention eliminates the need for long-term heat treatment after ion implantation, making it possible to significantly reduce deterioration in device characteristics due to redistribution of the field inversion prevention layer. On the other hand, as a conventional method of patterning polycrystalline silicon films, metal films, etc. using inversion mask technology, for example, a mask is formed on the part to be etched and selectively oxidized by thermal oxidation, anodic oxidation, etc. A method is known in which a film is formed and this oxide film is used as an etching-resistant mask (for example, Japanese Patent Laid-Open No. 1986-1999)
Publication No. 120782). However, in this method, oxidation proceeds isotropically, resulting in a large difference in pattern conversion.
Another method is to pattern the silicon oxide film that will become the field oxide film by implanting nitrogen ions into the field region to convert the surface of this region into a nitrided oxide film, which can be used as an etching-resistant mask. A method has also been proposed to
53-114685). However, this method not only requires a long time for nitrogen ion implantation, but also
After that, a heat treatment process for nitriding is also essential.
In contrast to these conventional techniques, the pattern forming method of the present invention that uses a plasma polymerized film has extremely simple steps, and the difference in pattern conversion is small.
Fine patterns can be formed with high precision.

実斜䟋 実斜䟋においおは第図に瀺すようにレゞ
スト膜をマスクにしお倚結晶シリコン膜の䞊
にプラズマ重合膜を圢成したが、この時レゞス
ト膜の䞊にもプラズマ重合膜′が圢成され、
レゞスト陀去䞭にプロズマ重合膜も䞀郚゚ツチ
ングされお薄くなるこずを免れ埗なか぀た。たた
レゞスト膜をマスクにしおボロンをむオン泚入
するため、レゞスト膜の膜厚を厚くする必芁も
あ぀た。そこでこのような点を改善したのが本実
斜䟋である。
Example In the example, a plasma polymerized film 7 was formed on the polycrystalline silicon film 3 using the resist film 4 as a mask, as shown in FIG. 7' is formed,
During the resist removal, the plasma polymer film 7 was also partially etched and inevitably became thinner. Furthermore, since boron ions were implanted using the resist film 4 as a mask, it was necessary to increase the thickness of the resist film 4. Therefore, this embodiment is an improvement on this point.

すなわち第図に瀺すように実斜䟋ず同様
にシリコン基板の䞊にシリコン酞化膜を
圢成し、その䞊に倚結晶シリコン膜を堆積さ
せた埌、CVD法により、䟋えば厚さ7000〓皋床
のシリコン酞化膜を堆積する。
That is, as shown in FIG. 2a, a silicon oxide film 22 is formed on a silicon substrate 21 in the same manner as in the embodiment, and a polycrystalline silicon film 23 is deposited thereon. A silicon oxide film 24 having a thickness of about

その埌、通垞の写真蝕刻工皋によりフむヌルド
圢成予定領域䞊にレゞスト膜を圢成し、次に
同図に瀺すように、反応性スパツタ゚ツチング
によりシリコン酞化膜をパタヌニングする。
次にレゞストずシリコン酞化膜をマスク
にしおボロンをむンプラし、フむヌルド反転防止
局を圢成する。
Thereafter, a resist film 25 is formed on the area where the field is to be formed by a normal photolithography process, and then, as shown in FIG. 2B, the silicon oxide film 24 is patterned by reactive sputter etching.
Next, using the resist 25 and the silicon oxide film 24 as a mask, boron is implanted to form field inversion prevention layers 26 and 27.

次に同図に瀺すようにレゞスト膜を陀去
埌、CF4ずH2ガスを甚いた反応性スパツタ゚ツチ
ングを行うず、シリコン酞化膜は䞀郚が゚ツ
チングされ、倚結晶シリコン膜䞊ではCFXの
プラズマ重合膜が堆積する。このよう
にシリコン酞化膜を䞀郚残しおおく。次に、
シリコン酞化膜を゚ツチング陀去し、同図
に瀺すようにプラズマ重合膜をマスク
ずしお、倚結晶シリコン膜を゚ツチングす
る。その埌、同図に瀺すように実斜䟋ず同様
に、酞玠プロズマ凊理によりプラズマ重合膜
を陀去し、次に倚結晶シリコン膜を
マスクずしお玠子圢成予定領域䞊のシリコン酞化
膜を゚ツチングしお玠子分離領域の圢成を行
なう。その埌は実斜䟋ず同じようにしお露出し
たシリコン面に所望の玠子を圢成する。
Next , after removing the resist film 25 as shown in FIG . Plasma polymerized films 28 and 29 of CF X are deposited on top. In this way, a portion of the silicon oxide film 24 is left. next,
The silicon oxide film 24 is removed by etching, as shown in FIG.
As shown in FIG. 2, polycrystalline silicon film 23 is etched using plasma polymerized films 28 and 29 as masks. Thereafter, as shown in FIG.
8 and 29 are removed, and then, using the polycrystalline silicon film 23 as a mask, the silicon oxide film 22 on the area where an element is to be formed is etched to form an element isolation area. Thereafter, desired elements are formed on the exposed silicon surface in the same manner as in the embodiment.

この発明の方法によればフむヌルド反転防止の
ためのむオン泚入を、シリコン酞化膜ずレゞ
スト膜ずをマスクずしお行うために、玠子圢
成予定領域のシリコン基板䞭に䞍玔物が打ち蟌た
れる心配はた぀たくなくなる。
According to the method of the present invention, since ion implantation for preventing field inversion is performed using the silicon oxide film 24 and the resist film 25 as a mask, there is no fear that impurities will be implanted into the silicon substrate in the area where elements are to be formed. It disappears.

たた、プラズマ雰囲気䞭にさらした時、シリコ
ン酞化膜ぱツチングが進行し倚結晶シリコ
ン膜䞊にのみプラズマ重合膜が堆
積する。その埌、䟋えばフツ化アンモンの液でシ
リコン酞化膜を゚ツチングすればプラズマ重
合膜はほずんど゚ツチングされないた
め、プラズマ重合膜による倚結晶シリ
コン膜のパタヌニングを高い信頌性で行なう
こずができる。
Further, when exposed to a plasma atmosphere, etching progresses in the silicon oxide film 24, and plasma polymerized films 28 and 29 are deposited only on the polycrystalline silicon film 23. After that, if the silicon oxide film 24 is etched with, for example, an ammonium fluoride solution, the plasma polymerized films 28 and 29 will hardly be etched, so that the polycrystalline silicon film 23 can be patterned with high reliability using the plasma polymerized films 28 and 29. Can be done.

以䞊詳述したように本発明のパタヌン圢成方法
によれば、非垞に簡単な工皋で小さいパタヌン倉
換差をも぀おパタヌン圢成を行うこずができる。
たたこのパタヌン圢成方法を利甚した本発明の半
導䜓装眮の補造方法によれば簡単な補造工皋でフ
むヌルド領域の絶瞁膜ず反転防止局をセルフアラ
むンで圢成し、しかも玠子特性を䜎䞋させるこず
なく埮现玠子の高密床集積化を図るこずができ
る。なお、この発明はMOS型半導䜓装眮に限ら
ずバむポヌラ型半導䜓装眮での玠子間分離にも適
甚できるこずは勿論である。
As described in detail above, according to the pattern forming method of the present invention, a pattern can be formed with a small pattern conversion difference through a very simple process.
Furthermore, according to the method of manufacturing a semiconductor device of the present invention using this pattern forming method, the insulating film and the anti-inversion layer in the field region can be formed in self-alignment through a simple manufacturing process, and the fine element can be formed without deteriorating the device characteristics. High-density integration can be achieved. It goes without saying that the present invention is applicable not only to MOS type semiconductor devices but also to element isolation in bipolar type semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第図および第図は本発明補造方法のそれぞ
れ異なる実斜態様を工皋順に瀺す断面図である。   型シリコン基板、
  シリコン酞化膜、  倚結晶シリ
コン膜、  レゞスト膜、
  P+局反転防止局、′
  プラズマ重合膜、  ゲヌト酞
化膜、  ゲヌト電極、  ゜ヌス領
域、  ドレむン領域、  シリコン酞
化膜、  取出し電極。
FIGS. 1 and 2 are cross-sectional views showing different embodiments of the manufacturing method of the present invention in the order of steps. 1, 21...P-type silicon substrate, 2, 22, 2
4... Silicon oxide film, 3, 23... Polycrystalline silicon film, 4, 25... Resist film, 5, 6, 2
6, 27...P + layer (inversion prevention layer), 7, 7', 2
8, 29... plasma polymerized film, 10... gate oxide film, 11... gate electrode, 12... source region, 13... drain region, 14... silicon oxide film, 15, 16... extraction electrode.

Claims (1)

【特蚱請求の範囲】  所定基板䞊にパタヌニングすべき第の物質
膜を圢成する工皋ず、 前蚘第の物質膜䞊に所定パタヌンをも぀お第
の物質膜を圢成する工皋ず、 ハロゲンおよび炭玠を含むガスを甚いお圢成し
たプラズマ雰囲気に晒しお露出しおいる前蚘第
の物質膜衚面にプラズマ重合膜を堆積する工皋
ず、 前蚘第の物質膜を陀去した埌、前蚘プラズマ
重合膜を耐゚ツチングマスクずしお前蚘第の物
質膜を遞択゚ツチングする工皋ず、 を備えたこずを特城ずするパタヌン圢成方法。  半導䜓基板䞊を玠子分離絶瞁膜ずなる絶瞁膜
で芆い、この絶瞁膜䞊にこれずは異皮材料からな
る第の物質膜を圢成する工皋ず、 写真蝕刻工皋により玠子圢成領域を芆うパタヌ
ンをも぀お前蚘第の物質膜䞊にこれずは異皮材
料からなる第の物質膜を圢成する工皋ず、 前蚘第の物質膜をマスクずしお玠子分離領域
の基板面に反転防止甚の䞍玔物をむオン泚入する
工皋ず、 ハロゲンおよび炭玠を含むガスを甚いお圢成し
たプラズマ雰囲気に晒しお露出しおいる前蚘第
の物質膜衚面にプラズマ重合膜を圢成する工皋
ず、 前蚘第の物質膜を陀去した埌、前蚘プラズマ
重合膜を耐゚ツチングマスクずしお前蚘第の物
質膜を遞択゚ツチングし、続いお残された第の
物質膜を耐゚ツチングマスクずしお前蚘絶瞁膜を
遞択゚ツチングしお玠子圢成領域の基板面を露出
させる工皋ず、 露出した基板に所望の玠子を圢成する工皋ず、
を備えたこずを特城ずする半導䜓装眮の補造方
法。  前蚘第の物質膜がシリコン膜であり、前蚘
第の物質膜がレゞスト膜たたはシリコン酞化膜
であり、前蚘プラズマ雰囲気がCF4ガスずH2ガス
を甚いお圢成されたものである特蚱請求の範囲第
項蚘茉の半導䜓装眮の補造方法。
[Claims] 1. A step of forming a first material film to be patterned on a predetermined substrate; a step of forming a second material film with a predetermined pattern on the first material film; and the first part exposed to a plasma atmosphere formed using a gas containing carbon.
depositing a plasma polymerized film on the surface of the material film; and after removing the second material film, selectively etching the first material film using the plasma polymerized film as an etching-resistant mask. A pattern forming method characterized by: 2. Covering the semiconductor substrate with an insulating film to serve as an element isolation insulating film, forming a first substance film made of a different material on this insulating film, and forming a pattern covering the element forming area by a photolithography process. a step of forming a second material film made of a material different from the first material film on the first material film; and using the second material film as a mask, impurities for preventing inversion are applied to the substrate surface of the element isolation region. a step of implanting ions, and exposing the exposed first part to a plasma atmosphere formed using a gas containing halogen and carbon.
forming a plasma polymerized film on the surface of the material film; after removing the second material film, selectively etching the first material film using the plasma polymerized film as an etching-resistant mask; selectively etching the insulating film using the first material film as an etching-resistant mask to expose the substrate surface in the element formation region; forming a desired element on the exposed substrate;
A method for manufacturing a semiconductor device, comprising: 3. A patent in which the first material film is a silicon film, the second material film is a resist film or a silicon oxide film, and the plasma atmosphere is formed using CF 4 gas and H 2 gas. A method for manufacturing a semiconductor device according to claim 2.
JP55150992A 1980-10-28 1980-10-28 Manufacture of semiconductor device Granted JPS5775440A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55150992A JPS5775440A (en) 1980-10-28 1980-10-28 Manufacture of semiconductor device
DE8181305010T DE3173581D1 (en) 1980-10-28 1981-10-23 Masking process for semiconductor devices using a polymer film
EP81305010A EP0050973B1 (en) 1980-10-28 1981-10-23 Masking process for semiconductor devices using a polymer film
US06/315,909 US4371407A (en) 1980-10-28 1981-10-28 Method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55150992A JPS5775440A (en) 1980-10-28 1980-10-28 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5775440A JPS5775440A (en) 1982-05-12
JPH0311090B2 true JPH0311090B2 (en) 1991-02-15

Family

ID=15508910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55150992A Granted JPS5775440A (en) 1980-10-28 1980-10-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5775440A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022340A (en) * 1983-07-18 1985-02-04 Toshiba Corp Semiconductor device and manufacture of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527315A (en) * 1975-05-28 1977-01-20 Pechiney Aluminium Making of wire consist of aluminium magnesiummsilicon alloy
JPS53114685A (en) * 1977-03-17 1978-10-06 Toshiba Corp Manufacture for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527315A (en) * 1975-05-28 1977-01-20 Pechiney Aluminium Making of wire consist of aluminium magnesiummsilicon alloy
JPS53114685A (en) * 1977-03-17 1978-10-06 Toshiba Corp Manufacture for semiconductor device

Also Published As

Publication number Publication date
JPS5775440A (en) 1982-05-12

Similar Documents

Publication Publication Date Title
EP0036573A2 (en) Method for making a polysilicon conductor structure
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JPS607389B2 (en) Manufacturing method of semiconductor device
US3899373A (en) Method for forming a field effect device
US4497108A (en) Method for manufacturing semiconductor device by controlling thickness of insulating film at peripheral portion of element formation region
US4371407A (en) Method for producing semiconductor device
JPS6133253B2 (en)
JPS59165434A (en) Manufacture of semiconductor device
JPH0311090B2 (en)
JPH0763072B2 (en) Method for separating semiconductor devices
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPS5856436A (en) Manufacture of semiconductor device
JPH06232155A (en) Manufacture of semiconductor device
JPS6213047A (en) Manufacture of semiconductor device
JPH027558A (en) Semiconductor device and manufacture thereof
JPH05160256A (en) Production of semiconductor device
JPS628028B2 (en)
JP2685448B2 (en) Method for manufacturing semiconductor device
JPH0152900B2 (en)
JPS62131538A (en) Manufacture of semiconductor device
JPH0298173A (en) Manufacture of semiconductor memory
JPS61267341A (en) Manufacture of semiconductor device
JPS58175843A (en) Manufacture of semiconductor integrated circuit
JPH0629541A (en) Manufacture of semiconductor device
JPS60217667A (en) Manufacture of semiconductor device