JPH03109793A - Manufacture of wiring circuit board with resistor - Google Patents

Manufacture of wiring circuit board with resistor

Info

Publication number
JPH03109793A
JPH03109793A JP24868589A JP24868589A JPH03109793A JP H03109793 A JPH03109793 A JP H03109793A JP 24868589 A JP24868589 A JP 24868589A JP 24868589 A JP24868589 A JP 24868589A JP H03109793 A JPH03109793 A JP H03109793A
Authority
JP
Japan
Prior art keywords
layer
resistor
resistor layer
conductor circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24868589A
Other languages
Japanese (ja)
Inventor
Satoru Ogawa
悟 小川
Noboru Yamaguchi
昇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP24868589A priority Critical patent/JPH03109793A/en
Publication of JPH03109793A publication Critical patent/JPH03109793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE:To prevent a resistor layer from undergoing a bad influence in a formation process of a conductor circuit by covering the upper part of the resistor layer formed on a ceramic insulated board. CONSTITUTION:A resistor layer 20 is formed on a ceramic insulated board 10 and a glass protective layer 40 is formed covering the resistor layer 20 followed by forming a conductor circuit layer 50 for being given heat treatment. That is, the upper part of the resistor layer 20 is in advance covered with the glass protective layer. Thereby, by dipping in an electroless plating bath, or the like in a formation process of the conductor circuit layer 50, erosion of the resistor layer 20 and bad influence thereon can be surely prevented thus to well maintain reliability of the resistor layer 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、抵抗体付配線回路基板の製造方法に関し、
詳しくは、銅等の導体全屈からなる導体回路層とともに
回路中の抵抗素子となる抵抗体層をも備えている抵抗体
付配線回路基板を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a wired circuit board with a resistor,
More specifically, the present invention relates to a method for manufacturing a wired circuit board with a resistor, which includes a conductor circuit layer made of a fully bent conductor such as copper, and a resistor layer serving as a resistor element in the circuit.

〔従来の技術〕[Conventional technology]

従来、配線回路基板の配線回路に抵抗素子を組み込むに
は、予め、メツキ等の回路形成手段で導体回路が形成さ
れた配線回路基板に、別に製造された抵抗素子の端子を
ハンダ接続等で接続搭載していた。これに対し、近年、
絶縁基板に、電気抵抗の大きな材料からなる抵抗体ペー
ストを印刷等の手段で塗布した後、この抵抗体ペースト
を焼成することによって、基板上に直接抵抗体層を形成
する方法が考えだされ、配線回路基板に、通常の導体回
路層と同時に抵抗体層をも形成してなる抵抗体付配線回
路基板が提案されている。
Conventionally, in order to incorporate a resistance element into the wiring circuit of a printed circuit board, the terminals of the separately manufactured resistance element are connected by soldering or the like to the printed circuit board on which a conductor circuit has been formed using circuit forming means such as plating. It was equipped. On the other hand, in recent years,
A method was devised to form a resistor layer directly on the substrate by applying a resistor paste made of a material with high electrical resistance to an insulating substrate by printing or other means, and then firing the resistor paste. A wired circuit board with a resistor has been proposed in which a resistor layer is formed on the wired circuit board at the same time as a normal conductive circuit layer.

このような抵抗体付配線回路基板の製造方法の一例を説
明する。
An example of a method for manufacturing such a wired circuit board with a resistor will be explained.

まず、セラミック基板の表面を化学的に粗化処理した後
、Pdの植付を行う。つぎに、基板を無電解銅メツキ液
中に浸漬し、基板表面に銅による導体金属層を形成する
。この導体金属層を、所望の配線パターンにしたがって
エツチングすれば、導体回路層が形成される。さらに、
抵抗体層を形成するには、抵抗体ペーストを所定の位置
に塗布した後、焼成を行うのであるが、この焼成時の加
熱によって導体回路層の銅が酸化するという問題がある
。そこで、銅の酸化を防止するために、N8雰囲気中で
抵抗体ペーストの焼成を行う必要があり、抵抗体ペース
トとしては、N2焼成タイプの抵抗体ペースト、例えば
、T i S i z系、LaB系、ストロンチウム・
ルテネイト系等の抵抗体ペーストが使用されている。
First, after chemically roughening the surface of the ceramic substrate, Pd is planted. Next, the substrate is immersed in an electroless copper plating solution to form a conductive metal layer of copper on the surface of the substrate. A conductive circuit layer is formed by etching this conductive metal layer according to a desired wiring pattern. moreover,
To form a resistor layer, a resistor paste is applied to a predetermined position and then fired, but there is a problem in that the copper in the conductor circuit layer is oxidized by the heating during firing. Therefore, in order to prevent oxidation of copper, it is necessary to sinter the resistor paste in an N8 atmosphere. As the resistor paste, N2 sintered type resistor paste, for example, T i S i z series, LaB series, strontium
A ruthenate-based resistor paste is used.

抵抗体ペーストには、大気中で焼成を行う酸化ルテニウ
ム系の抵抗体ペーストもあり、前記N2焼成タイプのも
のに比べて、信頼性等の性能に優れていることが知られ
ている。しかし、前記したように、銅の酸化を防ぐため
には、大気中で焼成することができないので、この酸化
ルテニウム系の抵抗体ペーストを、前記したような抵抗
体付配線回路基板に利用することが出来なかった。
Among the resistor pastes, there is also a ruthenium oxide-based resistor paste that is fired in the atmosphere, and is known to have superior performance such as reliability compared to the N2 fired type. However, as mentioned above, in order to prevent copper from oxidizing, it is not possible to bake it in the atmosphere, so this ruthenium oxide-based resistor paste cannot be used for printed circuit boards with resistors as described above. I could not do it.

そのため、現状では、N2焼成タイプの抵抗体ペースト
を使用するはかないので、信頼性が低い抵抗体しか形成
できず、また、大気中でないため、特別な雰囲気コント
ロールや雰囲気炉が必要になり、作業が難しく製造コス
トも高くついていた。さらに、抵抗体ペースト中の有機
バインダーが炭化し易いという問題もあった。
Therefore, at present, N2 firing type resistor paste is used, which is temporary, so only resistors with low reliability can be formed.Also, since it is not in the atmosphere, special atmosphere control and an atmosphere furnace are required, making the work difficult. It was difficult and expensive to manufacture. Furthermore, there was also the problem that the organic binder in the resistor paste was easily carbonized.

そこで、絶縁基板上に抵抗体層を先に形成した後、銅に
よる導体金属層を形成する方法が考え出され、特開昭6
3−28094号公報、特開昭63−202987号公
報等に開示されている。
Therefore, a method was devised in which a resistor layer was first formed on an insulating substrate, and then a conductive metal layer made of copper was formed.
It is disclosed in JP-A No. 3-28094, JP-A-63-202987, and the like.

これらの方法は、セラミック基板上に、まず、酸化ルテ
ニウム系抵抗体ペーストを塗布し、大気中で焼成して抵
抗体層を形成した後、抵抗体部分を含む基板全面に銅導
体層を形成し、この導体層をパターン形成して導体回路
層を構成している。
In these methods, a ruthenium oxide resistor paste is first applied to a ceramic substrate and fired in the atmosphere to form a resistor layer, and then a copper conductor layer is formed over the entire surface of the board, including the resistor part. This conductive layer is patterned to form a conductive circuit layer.

このような方法であれば、銅が酸化する心配がないので
、信頼性等の性能に優れた酸化ルテニウム性抵抗体ペー
ストを使用することができる。
With this method, there is no fear that copper will oxidize, so a ruthenium oxide resistor paste with excellent performance such as reliability can be used.

また、上記方法において、抵抗体層と導体回路層の接続
部分に、銀パラジウム等の接続層を介在させることによ
って、抵抗体層と導体回路層の接続性を向上させること
も提案されている。
In the above method, it has also been proposed to improve the connectivity between the resistor layer and the conductor circuit layer by interposing a connection layer such as silver palladium at the connection portion between the resistor layer and the conductor circuit layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記した先行技術の方法では、セラミック基
板上に形成された抵抗体層が裸の状態で、セラミック基
板を高温、高アルカリの無電解銅メツキ浴に浸漬するこ
とになるので、抵抗体層がメツキ液に侵食される等の悪
影響があり、抵抗体層の信頼性が低下するという問題が
あった。
However, in the prior art method described above, the ceramic substrate is immersed in a high-temperature, highly alkaline electroless copper plating bath while the resistor layer formed on the ceramic substrate is bare. There was a problem that the reliability of the resistor layer was lowered due to adverse effects such as being eroded by the plating liquid.

また、抵抗体層と導体回路層との接合力が充分でないた
め、両者間の接続信頼性に劣るという問題もあった。前
記したように、抵抗体層と導体回路層の間に、接合性向
上の為の接続層を設けることも考えられているが、この
場合も、抵抗体層と導体回路層が接続層を介して機械的
に接続されているだけなので、それほど接合性は改善さ
れず、やはり接続信頼性に劣るものとなっていた。
Furthermore, since the bonding force between the resistor layer and the conductive circuit layer is not sufficient, there is also the problem that the connection reliability between the two is poor. As mentioned above, it has been considered to provide a connection layer between the resistor layer and the conductor circuit layer to improve bonding properties, but in this case as well, the resistor layer and the conductor circuit layer are connected via the connection layer. Since the connection was made only mechanically, the bonding performance was not significantly improved, and the connection reliability was still inferior.

そこで、この発明の課題は、上記した従来技術の問題点
を解消し、導体回路層の形成工程において抵抗体層が悪
影響を受けないようにするとともに、抵抗体層と導体回
路層の接続性能を高め、信頼性の高い抵抗体付配線回路
基板を製造する方法を提供することにある。
Therefore, an object of the present invention is to solve the problems of the prior art described above, to prevent the resistor layer from being adversely affected in the process of forming the conductor circuit layer, and to improve the connection performance between the resistor layer and the conductor circuit layer. It is an object of the present invention to provide a method for manufacturing a printed circuit board with a resistor having high reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する、この発明にかかる抵抗体付配線回
路基板の製造方法は、絶縁基板に導体回路層とともに抵
抗体層を備えた抵抗体付配線回路基板の製造方法であっ
て、セラミック絶縁基板に抵抗体層を形成し、抵抗体層
を覆ってガラス保護層を形成した後、導体回路層を形成
し、ついで熱処理を施すようにしている。
A method for manufacturing a wired circuit board with a resistor according to the present invention that solves the above problems is a method for manufacturing a wired circuit board with a resistor in which an insulating substrate is provided with a conductor circuit layer and a resistor layer, the ceramic insulating substrate After forming a resistor layer and forming a glass protective layer covering the resistor layer, a conductor circuit layer is formed and then heat treatment is performed.

この発明の実施例を示す添付図面を参照しながら、この
発明の方法を詳しく説明する。
The method of the invention will now be described in detail with reference to the accompanying drawings, which illustrate embodiments of the invention.

工程(2)に示すように、セラミック絶縁基板1゜を用
意する。セラミック絶縁基板10は、96%アルミナ基
板等、通常の配線基板と同様の各種セラミック材料から
なる絶縁基板が使用される。基板10の表面を、化学的
もしくは物理的に粗化処理しておくと、その上に導体回
路層を形成したときに、絶縁基板と導体回路層との密着
力を向上させることができる。この粗化処理により、導
体回路層と絶縁基板の間に一種のアンカー効果が働くの
で、互いの密着力が高まり、フクレやハガレといった不
良が発生するのを良好に防止できる。粗化処理の具体例
としては、250〜330℃に加熱したリン酸中に、基
板10を2〜20分間浸漬する方法が挙げられる。
As shown in step (2), a ceramic insulating substrate 1° is prepared. As the ceramic insulating substrate 10, an insulating substrate made of various ceramic materials similar to ordinary wiring boards, such as a 96% alumina substrate, is used. By chemically or physically roughening the surface of the substrate 10, when a conductive circuit layer is formed thereon, the adhesion between the insulating substrate and the conductive circuit layer can be improved. This roughening treatment creates a kind of anchor effect between the conductive circuit layer and the insulating substrate, thereby increasing their adhesion to each other and effectively preventing defects such as blistering and peeling. A specific example of the roughening treatment includes a method of immersing the substrate 10 in phosphoric acid heated to 250 to 330°C for 2 to 20 minutes.

工程(B)に示すように、抵抗体層20を形成する。抵
抗体層20を形成するには、通常の抵抗体付配線回路基
板と同様の各種抵抗体ペーストを用い、抵抗体ペースト
を絶縁基板10上に所定のパターンで塗布した後、焼成
することによって形成される。焼成温度は、800〜9
50℃程度が好ましい。抵抗体ペーストとしては、酸化
ルテニウム系等、大気中で焼成可能な材料からなるもの
が使用される。
As shown in step (B), a resistor layer 20 is formed. In order to form the resistor layer 20, various resistor pastes similar to those for ordinary printed circuit boards with resistors are used, and the resistor paste is applied in a predetermined pattern onto the insulating substrate 10, and then baked. be done. Firing temperature is 800-9
The temperature is preferably about 50°C. The resistor paste used is made of a material that can be fired in the atmosphere, such as ruthenium oxide.

抵抗体層20と導体回路層との接続性を向上させるため
に、抵抗体層20と導体回路層の接続個所に、Ag/P
d等の導体金属からなる接続層30を形成しておくこと
ができる。例えば、抵抗体ペーストを塗布する前に、接
続個所の基板表面に接続層30となる導体ペーストを塗
布しておき、その上を一部覆うようにして抵抗体ペース
トを塗布した後、焼成することによって、接続層30の
一部を抵抗体層20の端部が覆った状態に形成される。
In order to improve the connectivity between the resistor layer 20 and the conductor circuit layer, Ag/P is applied to the connection point between the resistor layer 20 and the conductor circuit layer.
A connection layer 30 made of a conductive metal such as d can be formed in advance. For example, before applying the resistor paste, a conductor paste that will become the connection layer 30 is applied to the surface of the board at the connection point, and then the resistor paste is applied so as to partially cover it, and then fired. As a result, a portion of the connection layer 30 is formed in a state where the end portion of the resistor layer 20 covers a portion thereof.

なお、上記とは逆に、抵抗体層20が下になって、その
端部を接続層30の一部で覆うようにしておいてもよい
。このような接続層30に導体回路層を接合するように
形成する。
Note that, contrary to the above, the resistor layer 20 may be placed downward and its end portion may be covered with a portion of the connection layer 30. A conductor circuit layer is formed so as to be bonded to such a connection layer 30.

工程(Qに示すように、抵抗体層20の上を覆ってガラ
ス保護層40を形成する。ガラス保護層40は、抵抗体
層20のうち、導体回路層との接続部分を除く全体に、
ホウケイ酸塩系等の誘電体ガラスペーストを塗布した後
、焼成して形成する。
Step (As shown in Q, a glass protective layer 40 is formed to cover the resistor layer 20. The glass protective layer 40 covers the entire resistor layer 20 except for the connection portion with the conductor circuit layer.
It is formed by applying a dielectric glass paste such as borosilicate type and then firing it.

焼成温度は、800〜950℃程度が好ましい。The firing temperature is preferably about 800 to 950°C.

形成されたガラス保護層40の厚みは、20〜50μm
程度が好ましい。なお、前記したような接続層30を形
成しておく場合には、ガラス保護N40が、導体回路層
と接続する接続Jfi30の一部を除いて、抵抗体層2
0の全体および接続層30までを覆うようにしておく。
The thickness of the formed glass protective layer 40 is 20 to 50 μm
degree is preferred. In addition, when forming the connection layer 30 as described above, the glass protection N40 covers the resistor layer 2 except for a part of the connection Jfi 30 that connects to the conductor circuit layer.
0 and up to the connection layer 30.

ガラス保護層40としては、無電解メツキ浴から抵抗体
層20を確実に保護できるとともに、熱処理工程で抵抗
体JWi20全体が還元されるのを良好に防ぐことがで
きるものが好ましく、そのために、耐アルカリ性等の化
学耐久性を有する材料が使用される。
The glass protective layer 40 is preferably one that can reliably protect the resistor layer 20 from the electroless plating bath and can also satisfactorily prevent the entire resistor JWi 20 from being reduced in the heat treatment process. A material having chemical durability such as alkalinity is used.

工程(D)に示すように、導体回路層50を形成する。As shown in step (D), a conductive circuit layer 50 is formed.

導体回路層50の形成は、例えば、公知のセンシーアク
チ法により、基板10の全面にPd核植付処理を行った
後、無電解消メツキ浴に浸漬する無電解メツキ法やスパ
ッタリング法等の通常の膜形成手段で、銅やニッケル等
の導体金属層を形成した後、エツチング加工によって、
所定の回路パターンを形成する。また、絶縁基板10を
配線回路パターンに対応するマスクで覆った後、スパッ
タリングを行えば、エツチング加工は不要である。その
他、導体回路[50の形成方法は、通常の配線回路基板
と同様の方法で実施できる。導体回路層50の厚みは、
必要に応じて任意に設定できるが、例えば前記無電解メ
ツキ法では50ハ程度の厚みに形成できる。導体回路層
50の厚みを分厚くする必要がある場合は、前記無電解
メブキの上に電解メツキ法で導体金属を厚付けしてもよ
い。導体回路層50は、絶縁基板10の表面から、抵抗
体層20もしくは接続層30のうち、ガラス保護層40
で覆われず露出している個所を覆うように形成され、導
体回路層50と、抵抗体層20および接続層30が電気
的に接続されるようになっている。
The conductor circuit layer 50 is formed by, for example, a conventional film method such as an electroless plating method in which Pd nuclei are implanted on the entire surface of the substrate 10 by immersion in an electroless plating bath or a sputtering method using the well-known Scentsy Act method. After forming a conductive metal layer such as copper or nickel using a forming method, by etching,
A predetermined circuit pattern is formed. Further, if sputtering is performed after covering the insulating substrate 10 with a mask corresponding to the wiring circuit pattern, etching is not necessary. In addition, the method for forming the conductive circuit [50] can be carried out in the same manner as for a normal printed circuit board. The thickness of the conductor circuit layer 50 is
Although it can be set arbitrarily as necessary, for example, it can be formed to a thickness of about 50 mm using the electroless plating method. If it is necessary to increase the thickness of the conductive circuit layer 50, a thick conductive metal may be applied on the electroless plating by electrolytic plating. The conductor circuit layer 50 extends from the surface of the insulating substrate 10 to the glass protective layer 40 of the resistor layer 20 or the connection layer 30.
The conductive circuit layer 50, the resistor layer 20, and the connection layer 30 are electrically connected to each other.

このようにして、抵抗体層20および導体回路層50が
形成された絶縁基板10を、500〜950℃で熱処理
する。この熱処理温度は、抵抗体層20およびガラス保
護層40の焼成温度以下で行うが好ましい。熱処理は、
1100pp以下の酸素を含む窒素雰囲気中で行うのが
好ましい。このような雰囲気で熱処理することによって
、導体回路層50の酸化を防止し、セラミック絶縁基板
10や抵抗体層20と導体回路層50との密着力を向上
させることができる。
The insulating substrate 10 on which the resistor layer 20 and conductor circuit layer 50 are formed in this way is heat-treated at 500 to 950°C. The heat treatment temperature is preferably lower than the firing temperature of the resistor layer 20 and the glass protective layer 40. The heat treatment is
It is preferable to carry out in a nitrogen atmosphere containing 1100 pp or less of oxygen. By performing heat treatment in such an atmosphere, oxidation of the conductive circuit layer 50 can be prevented and the adhesion between the ceramic insulating substrate 10 or the resistor layer 20 and the conductive circuit layer 50 can be improved.

熱処理が完了すれば、抵抗体層20をレーザー等でトリ
ミングして、所定の抵抗値に調整した後、基板10の表
面全体をハンダレジスト等でコートする等、通常の配線
回路基板と同様の工程を経て、抵抗体付配線回路基板が
完成される。
When the heat treatment is completed, the resistor layer 20 is trimmed with a laser or the like to adjust the resistance to a predetermined value, and then the entire surface of the board 10 is coated with a solder resist, etc., in the same process as a normal printed circuit board. Through these steps, a printed circuit board with a resistor is completed.

〔作  用〕[For production]

セラミンク絶縁基板に形成された抵抗体層の上をガラス
保護層で覆っておくことによって、導体回路層の形成工
程における無電解メツキ浴への浸漬等で、抵抗体層が侵
食されたり悪影響を受けたりするのを確実に防止するこ
とができ、抵抗体層の信頼性等の性能を良好に維持して
おくことができる。さらに、この発明では、導体回路を
形成した後、熱処理工程を行うが、この熱処理工程によ
って抵抗体層全体が還元されるのを、ガラス保護層で防
ぐこともできる。
By covering the resistor layer formed on the ceramic insulating substrate with a glass protective layer, the resistor layer will not be eroded or adversely affected by immersion in an electroless plating bath during the process of forming the conductive circuit layer. It is possible to reliably prevent this from occurring, and it is possible to maintain good performance such as reliability of the resistor layer. Further, in the present invention, a heat treatment step is performed after forming the conductor circuit, but the glass protective layer can also prevent the entire resistor layer from being reduced by this heat treatment step.

抵抗体層と導体回路層が形成された絶縁基板を熱処理す
ることによって、抵抗体層と導体回路層との接続性を向
上できる。これは、熱処理により、導体回路層を構成す
る金属が、抵抗体層との接続部分あるいは抵抗体層と導
体回路層の間に設けた接続層に拡散することによって、
接合部分の一体性が高まるものと考えられる。また、導
体回路層とセラミック絶縁基板との間にも化学的な結合
が生じて密着性が向上する。
By heat-treating the insulating substrate on which the resistor layer and the conductor circuit layer are formed, the connectivity between the resistor layer and the conductor circuit layer can be improved. This is because the metal constituting the conductor circuit layer diffuses into the connection part with the resistor layer or the connection layer provided between the resistor layer and the conductor circuit layer due to heat treatment.
It is thought that the integrity of the joint portion is improved. Moreover, chemical bonding also occurs between the conductor circuit layer and the ceramic insulating substrate, improving adhesion.

〔実 施 例〕〔Example〕

ついで、この発明の具体的実施例について説明する。 Next, specific embodiments of the invention will be described.

実施例1 図示した工程(〜〜(D)にしたがって実施した。Example 1 It was carried out according to the illustrated steps (--(D)).

市販の96%アルミナ基板10(大きさ100X100
X0.8n)の表面に、接続層となるAg/Pdの導体
ペーストおよび酸化ルテニウム系抵抗体ペーストを、順
次スクリーン印刷によって所定の位置に塗布した。乾燥
後、大気中850℃で焼成して、抵抗体層20および接
続層30を形成した〔工程(4)〜(ト))〕。
Commercially available 96% alumina substrate 10 (size 100x100
An Ag/Pd conductor paste and a ruthenium oxide resistor paste, which will serve as a connection layer, were sequentially applied to predetermined positions on the surface of the X0.8n) by screen printing. After drying, the resistor layer 20 and the connection layer 30 were formed by firing at 850° C. in the air [steps (4) to (g))].

ホウケイ酸塩系の誘電体ガラスペーストを抵抗体層20
の上にスクリーン印刷で塗布した。ガラスペーストは、
抵抗体層20の全体および接続層30の一部までを覆う
ようにした。ガラスペーストを乾燥した後、大気中85
0″Cで焼成して、膜厚30罪のガラス保護層40を形
成した〔工程(0]。
The resistor layer 20 is made of borosilicate dielectric glass paste.
It was applied by screen printing. glass paste is
The entire resistor layer 20 and a part of the connection layer 30 were covered. After drying the glass paste, 85
A glass protective layer 40 having a thickness of 30 mm was formed by firing at 0''C [Step (0)].

所定の配線パターンを有する金属製マスクを基板10の
上に重ね、高速スパッタリングにより、接続層30の露
出部分を含む基板表面に、所定の配線回路パターンを有
する導体回路層50を厚み約Ionに形成した〔工程■
)〕。
A metal mask having a predetermined wiring pattern is placed on the substrate 10, and a conductor circuit layer 50 having a predetermined wiring circuit pattern is formed to a thickness of approximately Ion on the surface of the substrate including the exposed portion of the connection layer 30 by high-speed sputtering. I did [process■
)].

基板10を1100ppの酸素を含む窒素雰囲気中で、
800℃で熱処理を行った。
The substrate 10 is placed in a nitrogen atmosphere containing 1100 pp of oxygen.
Heat treatment was performed at 800°C.

最後に、レーザーを用いて抵抗体層20のトリミングを
行って所定の抵抗値に調整した後、基板10の全面にハ
ンダレジストを塗布し、抵抗体付配線回路基板が完成し
た。
Finally, the resistor layer 20 was trimmed using a laser to adjust the resistance to a predetermined value, and then a solder resist was applied to the entire surface of the substrate 10 to complete a resistor-attached wired circuit board.

得られた配線回路基板は、抵抗体層20の抵抗値等の性
能や信頼性が高く、導体回路層50と絶縁基板10や接
続層30との密着力も高い等、優れた性能を有するもの
であった。
The obtained printed circuit board has excellent performance, such as high performance and reliability such as the resistance value of the resistor layer 20, and high adhesion between the conductive circuit layer 50 and the insulating substrate 10 and the connection layer 30. there were.

実施例2− Ag/Pd接続層30の形成を行わなかったほかは、実
施例1と同様の工程を経て、抵抗体付配線回路基板を製
造した。なお、抵抗体層20の上にガラス保護層40を
形成するときには、抵抗体層20の両端に、導体回路層
50との接続に必要な接続部分を一部残した状態で、抵
抗体520の上をガラス保護層40が覆うようにした。
Example 2 - A wired circuit board with a resistor was manufactured through the same steps as in Example 1 except that the Ag/Pd connection layer 30 was not formed. Note that when forming the glass protective layer 40 on the resistor layer 20, the resistor 520 is formed while leaving a portion of the connection portion necessary for connection with the conductive circuit layer 50 at both ends of the resistor layer 20. The top was covered with a glass protective layer 40.

したがって、導体回路層50は、接続層30を介さず、
直接に抵抗体層20の露出部分に接合した。
Therefore, the conductor circuit layer 50 does not involve the connection layer 30,
It was directly bonded to the exposed portion of the resistor layer 20.

得られた抵抗体付配線回路基板は、実施例1と同様に優
れた性能を有するものであった。なお、抵抗体層20の
導体回路層50との接続部分が、熱処理工程において還
元を受けることによって、接続部分の上に形成された導
体回路50の銅金属と良好な導通性が発揮されるように
なっていた。
The obtained printed circuit board with a resistor had excellent performance similar to that of Example 1. Note that the connection portion of the resistor layer 20 with the conductor circuit layer 50 is reduced in the heat treatment process, so that good electrical conductivity with the copper metal of the conductor circuit 50 formed on the connection portion is achieved. It had become.

実施例3 市販の96%AI□02基板(100x100X0.8
1m)を、300℃に加熱したリン酸液中に4分間浸漬
して、絶縁基板10の表面を粗化した酸化ルテニウム系
抵抗体ペーストおよび接VEFj30となるAg導体ペ
ーストを、この順で、基板10の所定位置にスクリーン
印刷した。すなわち、抵抗体ペーストの両端を接続用ペ
ーストが覆う形で重ねて塗布した。その後、大気中90
0℃で焼成して、抵抗体層20および接続層30を形成
した。
Example 3 Commercially available 96% AI□02 substrate (100x100x0.8
1 m) in a phosphoric acid solution heated to 300° C. for 4 minutes to roughen the surface of the insulating substrate 10, and then add a ruthenium oxide resistor paste and an Ag conductor paste to serve as the contact VEFj 30 to the substrate in this order. Ten predetermined positions were screen printed. That is, the resistor paste was applied in such a way that both ends of the resistor paste were covered with the connection paste. After that, 90 in the atmosphere
The resistor layer 20 and the connection layer 30 were formed by firing at 0°C.

実施例1と同様の工程で、ガラス保護層40を形成した
A glass protective layer 40 was formed in the same process as in Example 1.

つぎに、公知のセンシーアクチ法により、基板10の表
面全体にPdの核材は処理を行った後、高速無電解銅メ
ツキ浴中に浸漬して、約10μmの導体金属層を形成し
た。ついで、通常のエツチング加工により、所定の配線
回路パターンを有する導体回路層50を形成した。さら
に、実施例1と同様の熱処理工程を経て、抵抗体付配線
回路基板を完成した。得られた配線回路基板は、実施例
1と同様に優れた性能を有するものであった。
Next, the entire surface of the substrate 10 was treated with a Pd core material by the known Sensi-Acchi method, and then immersed in a high-speed electroless copper plating bath to form a conductive metal layer of about 10 μm. Next, a conductive circuit layer 50 having a predetermined wiring circuit pattern was formed by ordinary etching. Further, a heat treatment process similar to that in Example 1 was performed to complete a wired circuit board with a resistor. The obtained printed circuit board had excellent performance similar to Example 1.

一実施例4 実施例3において、導体回路ff150の形成工程で、
高速無電解メツキ法を用いず、高速スパッタリングで約
10μ重の厚みを有する導体回路[50を形成した以外
は、実施例3と同様の工程で抵抗体付配線回路基板を製
造したところ、実施例3と同様に優れた性能を有するも
のが得られた。
Example 4 In Example 3, in the process of forming the conductor circuit ff150,
A printed circuit board with a resistor was manufactured in the same process as in Example 3, except that a conductor circuit [50] having a thickness of about 10 μm was formed by high-speed sputtering without using the high-speed electroless plating method. A product having excellent performance similar to No. 3 was obtained.

一実施例5一 実施例3において、絶縁基板10として、基板の所定位
置に0.3 mmφの貫通穴をレーザー加工で明けたも
のを使用した以外は、実施例3と同様の工程で処理した
。なお、酸化ルテニウム系抵抗体ペーストの焼成温度を
900℃で実施し、接続層用の導体ペーストとしてAg
/Pdペーストを用いて850℃で焼成した。また、誘
電体ガラスペーストの焼成は850℃で行った。
Example 5 In Example 3, the process was the same as in Example 3, except that the insulating substrate 10 was a substrate with a through hole of 0.3 mm diameter made by laser processing at a predetermined position. . The ruthenium oxide resistor paste was fired at a temperature of 900°C, and Ag was used as the conductor paste for the connection layer.
/Pd paste was used and fired at 850°C. Further, the dielectric glass paste was fired at 850°C.

その結果、得られた抵抗体付配線回路基板は、実施例3
と同様に優れた性能を有するものであった。また、この
実施例では、前記貫通穴によって絶縁基板10の両面を
導通させるスルーホールが形成でき、この発明を、両面
配線回路基板にも適用できることが確かめられた。
As a result, the wiring circuit board with a resistor obtained in Example 3
It had excellent performance as well. Further, in this example, a through hole that conducts both sides of the insulating substrate 10 can be formed by the through hole, and it has been confirmed that the present invention can be applied to a double-sided wiring circuit board.

一比較例一 実施例3において、抵抗体層20の上にガラス保護層4
0を形成しなかった以外は、同様の工程を経て、抵抗体
付配線回路基板を製造した。
Comparative Example 1 In Example 3, a glass protective layer 4 is provided on the resistor layer 20.
A wired circuit board with a resistor was manufactured through the same process except that 0 was not formed.

その結果、高速無電解銅メツキ後に、抵抗体層20の抵
抗値が、所定値よりもはるかに大きな値となり、抵抗体
層20としての充分な性能が発揮できなくなった。これ
は、高速無電解メツキ液が高温かつ高アルカリ性である
ため、抵抗体層20が侵食されてしまったものと思われ
る。また、熱処理時には、抵抗体層20全体が還元され
てしまって、抵抗体としての機能を果たすことが出来な
くなってしまっていた。
As a result, after high-speed electroless copper plating, the resistance value of the resistor layer 20 became much larger than the predetermined value, and the resistor layer 20 could no longer exhibit sufficient performance. This seems to be because the high-speed electroless plating solution is high temperature and highly alkaline, so the resistor layer 20 was eroded. Furthermore, during the heat treatment, the entire resistor layer 20 is reduced, making it unable to function as a resistor.

〔発明の効果〕〔Effect of the invention〕

以上に述べた、この発明にかかる抵抗体付配線回路基板
の製造方法によれば、セラミック絶縁基板に形成された
抵抗体層の上をガラス保護層で覆っているので、導体回
路層の形成工程で、無電解メツキ浴に浸漬したときに、
抵抗体層が侵食される等の悪影響を受けることをガラス
保護層で確実に保護することができる。また、その後の
熱処理工程で、抵抗体層全体が還元されてしまうのを良
好に防止することもできる。その結果、信頼性等の性能
に優れた抵抗体層を備えた配線回路基板を提供すること
ができる。
According to the above-described method for manufacturing a printed circuit board with a resistor according to the present invention, since the resistor layer formed on the ceramic insulating substrate is covered with the glass protective layer, the formation process of the conductor circuit layer So, when immersed in an electroless plating bath,
The glass protective layer can reliably protect the resistor layer from being affected by adverse effects such as erosion. Further, it is also possible to effectively prevent the entire resistor layer from being reduced in the subsequent heat treatment step. As a result, it is possible to provide a printed circuit board including a resistor layer with excellent performance such as reliability.

また、抵抗体層および導体回路層を形成した後、熱処理
を施すことによって、導体回路層と絶縁基板表面あるい
は導体回路層と抵抗体層との密着性を向上させることが
でき、配線回路の導通性すなわち信頼性に優れた抵抗体
付配線回路基板を提供することができる。
Furthermore, by applying heat treatment after forming the resistor layer and conductor circuit layer, it is possible to improve the adhesion between the conductor circuit layer and the surface of the insulating substrate or between the conductor circuit layer and the resistor layer, thereby ensuring continuity of the wiring circuit. Therefore, it is possible to provide a wired circuit board with a resistor that has excellent performance and reliability.

この発明の方法では、導体回路層を形成する前に抵抗体
層を形成しておくので、抵抗体層の焼成を大気中で行っ
ても、導体回路の導体金属が酸化される問題は生じない
。したがって、抵抗体層として、信頼性等の性能に優れ
た酸化ルテニウム系等の大気中焼成タイプの抵抗体ペー
ストを用いることが可能になり、抵抗体層の性能向上に
大きく貢献することができる。
In the method of this invention, the resistor layer is formed before forming the conductor circuit layer, so even if the resistor layer is fired in the atmosphere, the problem of oxidation of the conductor metal of the conductor circuit does not occur. . Therefore, as the resistor layer, it becomes possible to use an air-fired resistor paste such as a ruthenium oxide based resistor paste which has excellent performance such as reliability, and can greatly contribute to improving the performance of the resistor layer.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例を工程順に示す断面図である。 10・・・セラミック絶縁基板 20・・・抵抗体層3
0・・・接続層 40・・・ガラス保護層 50・・・
導体回路層
The figures are cross-sectional views showing an embodiment of the present invention in the order of steps. 10... Ceramic insulating substrate 20... Resistor layer 3
0... Connection layer 40... Glass protective layer 50...
conductor circuit layer

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板に導体回路層とともに抵抗体層を備えた抵
抗体付配線回路基板の製造方法であって、セラミック絶
縁基板に抵抗体層を形成し、抵抗体層を覆ってガラス保
護層を形成した後、導体回路層を形成し、ついで熱処理
を施すことを特徴とする抵抗体付配線回路基板の製造方
法。
1. A method for manufacturing a wired circuit board with a resistor including a conductive circuit layer and a resistor layer on an insulating substrate, the resistor layer being formed on a ceramic insulating substrate, and a glass protective layer covering the resistor layer. A method for manufacturing a wired circuit board with a resistor, the method comprising: forming a conductor circuit layer and then subjecting it to heat treatment.
JP24868589A 1989-09-25 1989-09-25 Manufacture of wiring circuit board with resistor Pending JPH03109793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24868589A JPH03109793A (en) 1989-09-25 1989-09-25 Manufacture of wiring circuit board with resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24868589A JPH03109793A (en) 1989-09-25 1989-09-25 Manufacture of wiring circuit board with resistor

Publications (1)

Publication Number Publication Date
JPH03109793A true JPH03109793A (en) 1991-05-09

Family

ID=17181812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24868589A Pending JPH03109793A (en) 1989-09-25 1989-09-25 Manufacture of wiring circuit board with resistor

Country Status (1)

Country Link
JP (1) JPH03109793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107743341A (en) * 2017-09-28 2018-02-27 衢州顺络电路板有限公司 Improve the printed wiring board and its manufacture method of embedded resistors reliability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107743341A (en) * 2017-09-28 2018-02-27 衢州顺络电路板有限公司 Improve the printed wiring board and its manufacture method of embedded resistors reliability

Similar Documents

Publication Publication Date Title
JP3497840B2 (en) Manufacturing method of chip varistor having glass coating film
JPH03109793A (en) Manufacture of wiring circuit board with resistor
US4898805A (en) Method for fabricating hybrid integrated circuit
JPS6352796B2 (en)
JPS62193102A (en) Manufacture of ceramic wiring board
JPS6346595B2 (en)
JPH0680880B2 (en) Manufacturing method of ceramic circuit board with resistor
JPS63186492A (en) Manufacture of circuit board
JPH1098244A (en) Thick-film circuit board and its manufacture
JP2931910B2 (en) Circuit board
JPS61121389A (en) Ceramic wiring board
JPS6263488A (en) Manufacturing thick film substrate
JPH0682908B2 (en) Method for manufacturing ceramic circuit board with resistor
JPS62242325A (en) Manufacture of chip capacitor
KR940002305B1 (en) Hybrid circuit and making method thereof
JPH029190A (en) Manufacture of ceramic circuit board with resistor
JPH0380358B2 (en)
JPH01262691A (en) Manufacture of ceramic printed wiring board
JPS63275196A (en) Manufacture of circuit substrate
JPH08153954A (en) Manufacture of ceramic printed wiring board
JPS60187047A (en) Manufacture of thick film circuit board
JPH07297514A (en) Manufacture of ceramic circuit board with resistor
JPH02310902A (en) Manufacture of resistance substrate and chip resistor
JPH04307797A (en) Manufacture of multilayer ceramic circuit board
JPS62230039A (en) Manufacture of electronic circuit board