JPH03108257A - Battery - Google Patents

Battery

Info

Publication number
JPH03108257A
JPH03108257A JP1246812A JP24681289A JPH03108257A JP H03108257 A JPH03108257 A JP H03108257A JP 1246812 A JP1246812 A JP 1246812A JP 24681289 A JP24681289 A JP 24681289A JP H03108257 A JPH03108257 A JP H03108257A
Authority
JP
Japan
Prior art keywords
battery
aramid paper
oxygen
gas diffusion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246812A
Other languages
Japanese (ja)
Inventor
Akira Hanabusa
花房 彰
Shigeto Noya
重人 野矢
Masaaki Yoshino
芳野 公明
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1246812A priority Critical patent/JPH03108257A/en
Publication of JPH03108257A publication Critical patent/JPH03108257A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To increase the storage performance and discharge performance of a battery by placing a piece of aramid paper between the air intake side of a gas diffusion electrode and the inner surface of a battery container. CONSTITUTION:A piece of aramid paper 11 is placed between a gas diffusion electrode 1 using oxygen as the active material and a battery container 8 having an air intake hole 3. The aramid paper 11 consists of aromatic polyamide and glass fibers or carbon fibers. A microporous film such as polytetrafluoroethylene may be placed between the aramid paper 11 and the gas diffusion electrode 1. An air diffusion porous member such as a nonwoven fabric may be placed between the aramid paper 11 and the battery container 8. Oxygen in the air is selectively permeated into a battery at a good permeable rate, and the penetration of water vapor and carbon dioxide is blocked.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液からなる電解液と、亜鉛、マグネシウム、ア
ルミニウム等の金属、もしくはア1、発明の名称 電池 2、特許請求の範囲 (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取入れ側と前記電池容器内面との間に、芳香
族ポリアミドよりなるアラミド紙を介在させた電池。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolytic solution consisting of an alkaline aqueous solution, and a metal such as zinc, magnesium, aluminum, etc. Name Battery 2, Claims (1) A gas diffusion electrode containing oxygen as an active material, and a battery container having an air intake hole communicating with outside air, wherein the air intake side of the gas diffusion electrode and the inner surface of the battery container are connected to each other. A battery with aramid paper made of aromatic polyamide interposed in between.

(2)  前記アラミド紙が、芳香族ポリアミドとガラ
ス繊維よりなる特許請求の範囲第1項記載の電池。
(2) The battery according to claim 1, wherein the aramid paper is made of aromatic polyamide and glass fiber.

(3)前記アラミド紙が、芳香族ポリアミドとカーボン
繊維よりなる特許請求の範囲第1項記載の電池。
(3) The battery according to claim 1, wherein the aramid paper is made of aromatic polyamide and carbon fiber.

(4)@記アラミド紙が、空気取入れ孔を有する前 3
、記電池容器の内面と前記ガス拡散電極に直接接してい
る特許請求の範囲第1項、第2項または第3項のいずれ
かに記載の電池。
(4) @ Before the aramid paper has air intake holes 3
The battery according to any one of claims 1, 2, and 3, wherein the inner surface of the battery container is in direct contact with the gas diffusion electrode.

(@ 前記アラミド紙と前記電池容器との間に不織ルコ
ール、ヒドラジン、水素等の負極活物質とを備えた電池
に関するものである。
(@ This relates to a battery that includes a negative electrode active material such as nonwoven alcohol, hydrazine, or hydrogen between the aramid paper and the battery container.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性塩水溶液を電解質として使用する電池においては、
ガス拡散電極(酸素極)より内部の蒸気圧に応じて水蒸
気の出入りがあシ、電池内電解液の濃度変化9体積変化
が起こり、これが電池の諸特性に影響を与えていた。ボ
タン型空気電池を例にとり、第2図を用いてその状況を
説明する。図中、1は酸素極(空気極)、2はガス拡散
性はあるが液体は阻止するポリテトラフルオロエチレン
(PTFK)よシなシ酸素極1を支持する多孔性澄水膜
である。3は外部からの空気取入れ孔、4は空気の拡散
を行う多孔体、6.6はセパレータ、7は負極亜鉛で、
これらに含浸保持されるアルカリ電解液には水酸化カリ
ウム水溶液を使用し、その濃度は30〜36重量%とし
ている。このため相対湿度が47〜59%よシ高いと外
部の湿気を取り込み、電解液濃度の低下と体積膨張とが
起こり、放電性能の低下、電解液の漏液を生じていた。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In batteries that use a neutral salt aqueous solution as the electrolyte,
Water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in the concentration and volume of the electrolyte in the battery, which affects various characteristics of the battery. Taking a button-type air battery as an example, the situation will be explained using FIG. 2. In the figure, 1 is an oxygen electrode (air electrode), and 2 is a porous clear water membrane that supports the oxygen electrode 1, which is made of polytetrafluoroethylene (PTFK), which has gas diffusivity but blocks liquid. 3 is an air intake hole from the outside, 4 is a porous body that diffuses air, 6 is a separator, 7 is a negative electrode zinc,
Potassium hydroxide aqueous solution is used as the alkaline electrolyte impregnated and held in these, and its concentration is 30 to 36% by weight. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, resulting in a decrease in electrolyte concentration and volumetric expansion, resulting in a decrease in discharge performance and leakage of the electrolyte.

一方、相対湿度が前記以下の場合には電解液の蒸発が起
こり、内部抵抗の増大や放電性能の低下をもたらしてい
た。従って、環境雰囲気による影響を受は易いため、長
期間保存後の電池特性に問題が生じ、これが空気電池や
燃料電池を特定の分野での使用に制約し、その汎用化を
図る上で大きな課題を有していた。なお、図中8は負極
亜鉛7を収容した負極容器、9は絶縁ガスケラ)、10
は正極容器である。
On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, problems arise with battery characteristics after long-term storage.This restricts the use of air cells and fuel cells in specific fields, and poses a major challenge in making them more versatile. It had In addition, in the figure, 8 is a negative electrode container containing the negative electrode zinc 7, 9 is an insulating gas scaler), 10
is the positive electrode container.

発明が解決しようとする課題 これらの課題を改善するため、従来より種々の提案がな
されてきた。例えば、空気孔周辺の一部に電解液と反応
する物質を挿入し、電池外部への電解液漏出を防止する
。あるいは紙または高分子材料よりなる不織布等の電解
液吸収材を設けて、電池外部への電解液漏出を防止する
。さらには空気孔を極端に小さくして酸素の供給量を制
限してまでも、水蒸気や炭酸ガスの電池内部への進入を
防止する等の提案がなされている。しかし、いずれの方
法も漏液防止や放電性能、特に長時間放電での性能に大
きな問題を残していた。これらの主要原因は空気中の水
蒸気の電池内への進入によるアルカリ電解液の希釈と体
積膨張、及び炭酸ガスの進入による炭酸塩の生成に基づ
く放電反1石の阻害と空気流通経路の閉塞によるもので
、外気が低湿度の場合には逆に電解液中の水分の逸散が
性能低下の原因となっていた。この原因を取り除くため
、近年では、水蒸気や炭酸ガスの透過量を制御し、選択
的に酸素を優先して透過させる膜を介して空気を酸素版
に供給する方法、例えばオルガノポリシロキサン系の無
孔性の均一な薄膜や金属酸化物、あるいは金属元素を含
有する有機化合物の薄膜と適宜な多孔性膜とを一体化さ
せた膜を用いる方法が提案されている。
Problems to be Solved by the Invention Various proposals have been made in the past in order to improve these problems. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the inside of the battery, even by making the air holes extremely small to limit the amount of oxygen supplied. However, both methods had major problems in preventing liquid leakage and discharge performance, especially in long-term discharge performance. The main causes of this are dilution and volumetric expansion of the alkaline electrolyte due to the entry of water vapor in the air into the battery, and obstruction of discharge resistance due to the formation of carbonates due to the entry of carbon dioxide gas and blockage of the air circulation path. However, when the outside air has low humidity, the loss of moisture in the electrolyte can cause a decline in performance. In order to eliminate this cause, in recent years, methods have been developed to control the amount of permeation of water vapor and carbon dioxide gas, and to supply air to the oxygen plate through a membrane that selectively allows oxygen to pass through, for example, using organopolysiloxane-based membranes. A method has been proposed that uses a film in which a uniformly porous thin film, a thin film of a metal oxide, or an organic compound containing a metal element is integrated with a suitable porous film.

しかしながら、現在までのところ、充分に有効な酸素選
択透過性が得られないことから、満足な放電性能は得ら
れず、電池として長期の使用や貯蔵に耐えられないので
、その実用化に至っていないという技術課題を持ってい
た。
However, to date, it has not been put to practical use because it has not been possible to obtain sufficiently effective oxygen selective permeability, and therefore it has not been possible to obtain satisfactory discharge performance, and it has not been possible to withstand long-term use or storage as a battery. There was a technical issue.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善すると共に、軽負荷から重負荷に至る広い放
電条件で満足な放電性能を得るために、大気中の酸素を
選択的に充分な速度で電池内に取り入れると共に、水蒸
気の電池への出入りと、大気中の炭酸ガスの電池内への
進入を長期にわたり防止する有効な手段を提供すること
を目的にするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to selectively remove oxygen from the atmosphere in order to obtain satisfactory discharge performance under a wide range of discharge conditions from light loads to heavy loads. The purpose of this invention is to provide an effective means to introduce water vapor into the battery at a high speed and prevent water vapor from entering and exiting the battery, and carbon dioxide from the atmosphere from entering the battery for a long period of time.

課題を解決するだめの手段 上記の目的を達成するため、本発明は酸素を活物質とす
るガス拡散電極と、外気に通じる空気取入れ孔を有する
電池容器を備えた電池のガス拡散電極の空気取入れ側と
電池容器内面との間に、芳香族ポリアミドよシなるアラ
ミド紙を介在させたものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides an air intake system for a gas diffusion electrode of a battery comprising a gas diffusion electrode using oxygen as an active material and a battery container having an air intake hole communicating with outside air. Aramid paper made of aromatic polyamide is interposed between the side and the inner surface of the battery container.

本発明は、アラミド紙の大きい酸素選択性透過能に着目
したものである。
The present invention focuses on the high oxygen selective permeability of aramid paper.

この膜が重負荷での満足な放電性能を得るために必要な
酸素透過速度と、長期保存や低湿度下あるいは、高湿度
雰囲気下での長期放電に耐えるだけの水蒸気及び炭酸ガ
スに対する透過阻止能とを持ち、この膜を適用した電池
の性能がきわめて優れていることを見い出し、完成させ
たものである。
This membrane has the oxygen permeation rate necessary to obtain satisfactory discharge performance under heavy loads, and the permeation blocking ability for water vapor and carbon dioxide to withstand long-term storage and long-term discharge under low humidity or high humidity atmospheres. They discovered that the performance of batteries using this membrane was extremely excellent, and they completed it.

作用 この構成による複合膜は、後述の実施例における電池試
験の結果からも明らかなように、電池用としての良好な
酸素透過速度と、空気中の水蒸気や炭酸ガスの電池内へ
の進入を遮断する効果を共に満足すべき状態に保て、実
用的な電池に要求される重負荷放電性能と、高湿度や低
湿度の雰囲気下で長時間放電した場合の性能も共に満足
することとなる。
Function: As is clear from the results of the battery test in the Examples described later, the composite membrane with this configuration has a good oxygen permeation rate for batteries and blocks water vapor and carbon dioxide from entering the battery. Both the heavy load discharge performance required of a practical battery and the performance when discharged for a long time in an atmosphere of high humidity or low humidity can be maintained in a satisfactory state.

実施例 (実施例1) 酸素選択性透過膜として、厚さ60μmの芳香族ポリア
ミドよりなるアラミド紙を用いたもの。
Examples (Example 1) Aramid paper made of aromatic polyamide and having a thickness of 60 μm was used as an oxygen-selective permeable membrane.

(実施例2) 酸素選択性透過膜として、厚さ180μmの芳香族ポリ
アミドとガラス繊維よりなるアラミド紙を用いたもの。
(Example 2) Aramid paper made of aromatic polyamide and glass fiber with a thickness of 180 μm was used as an oxygen-selective permeable membrane.

(実施例3) 酸素選択性透過膜として、厚さ150μmの芳香族ポリ
アミドとカーボン繊維よりなるアラミド紙を用いたもの
(Example 3) Aramid paper made of aromatic polyamide and carbon fiber with a thickness of 150 μm was used as an oxygen-selective permeable membrane.

(比較例1) 酸素選択性透過膜として、補強用のポリグロビレン製不
織市上に、厚さ60μmでポリジメチルシロキサン膜を
製膜した酸素富化膜を用いたもの。
(Comparative Example 1) As an oxygen-selective permeable membrane, an oxygen-enriching membrane was used in which a polydimethylsiloxane membrane was formed to a thickness of 60 μm on a reinforcing polyglopylene nonwoven fabric.

(比較例2) 多孔性撥水膜は使用するが、酸素選択性透過膜を用いな
いもの。
(Comparative Example 2) A porous water-repellent membrane is used, but an oxygen-selective permeable membrane is not used.

本発明の効果全確認するために、実施例1〜3のアラミ
ド紙、及び比較例1の複合膜を使用した電池と、酸素選
択性透過膜を使用していない電池を試作評価して検討し
た。まず、酸素選択性透過膜を用いない比較例2の場合
は第2図と全く同一の構成とした。次に、酸素選択性透
過膜を使用した電池は、第1図に示すようにPTFEの
多孔膜2と、酸素の流れを分散しかつ均一化させる多孔
体4との間にそれぞれの複合膜が介在した構成である。
In order to fully confirm the effects of the present invention, we prototyped and evaluated batteries using the aramid papers of Examples 1 to 3 and the composite membrane of Comparative Example 1, and batteries that did not use the oxygen-selective permeable membrane. . First, in the case of Comparative Example 2 in which no oxygen selective permeable membrane was used, the configuration was exactly the same as that in FIG. 2. Next, in a battery using an oxygen selective permeable membrane, as shown in Fig. 1, each composite membrane is placed between a porous PTFE membrane 2 and a porous body 4 that disperses and equalizes the flow of oxygen. This is an intervening configuration.

試作した電池のす法はいずれも直径11.6mm、総高
64ffllllであり、比較的重負荷(76Ω)で2
00、常湿(60ΦRH)での連続放電により電池内へ
の空気中の酸素取り込み速度の充足性を評価し、比較的
;重負荷(3にΩ)で20C1高湿r5(so%RH)
、および低湿度(20%RH)での長時間連続放電によ
り、長期の放電期間中における雰囲気からの水蒸気の電
池内への取り込みや電池内の水分の蒸発、及び炭酸ガス
の取シ込みなど電池性能への影響度を評価した。
All of the prototype batteries had a diameter of 11.6 mm and a total height of 64 ffllll, and were able to withstand 2.5 ft under a relatively heavy load (76 Ω).
00, the sufficiency of the oxygen uptake rate in the air into the battery was evaluated by continuous discharge at normal humidity (60ΦRH), and relatively; 20C1 high humidity r5 (so%RH) at heavy load (3Ω).
, and continuous discharge at low humidity (20% RH) for a long period of time will cause problems such as the intake of water vapor from the atmosphere into the battery, the evaporation of moisture within the battery, and the intake of carbon dioxide gas during the long-term discharge period. The impact on performance was evaluated.

試作した電池の内訳は第1表に示す通りである。The details of the prototype battery are shown in Table 1.

ここで、比較例1は、酸素と望素のガス透過速度比は1
以上であるが、酸素と水蒸気のガス透過速度比は1以下
であり、電池用の膜としては、酸素選択性透過1漠とは
いえない。しかし、実施例では、3以上であり、本発明
のアラミド紙は優れた酸素選択性透過能を有しているこ
とがわかる。
Here, in Comparative Example 1, the gas permeation rate ratio of oxygen and oxygen was 1
As described above, the gas permeation rate ratio between oxygen and water vapor is less than 1, and it cannot be said that the membrane has a selective oxygen permeability rate as a membrane for batteries. However, in the examples, it is 3 or more, which shows that the aramid paper of the present invention has excellent oxygen selective permeability.

また第2表に試作電池の性能試I険結果を示す。Table 2 also shows the performance test results of the prototype battery.

第2表において、放電終止電圧はいずれも0.9Vであ
り、重量変化は放電試験前後の増減を示しており、主と
して放電中の水分の取り込み、あるいは蒸発の多少を示
唆する数値である。
In Table 2, the end-of-discharge voltage is 0.9 V in all cases, and the change in weight indicates the increase/decrease before and after the discharge test, and is a numerical value that mainly suggests the amount of moisture taken in or evaporated during discharge.

これらの電池の特性を、複合膜を使用していない比較例
2と対比すると最も端的に本発明の詳細な説明できる。
The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 2, which does not use a composite membrane.

まず20C1常湿での重負荷試験では放電時間が短く、
水分の取シ込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば、水
分や炭酸ガスの透過阻止はあまり考慮する必要が無い。
First, in the heavy load test at 20C1 normal humidity, the discharge time was short;
Since the effects of moisture uptake, evaporation, and carbon dioxide gas are small, there is no need to consider blocking the permeation of moisture and carbon dioxide gas as long as the oxygen supply rate is sufficient for battery performance.

従って、このような条件下では比較例2でも優れた特性
が得られる。
Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 2.

これに対し、前述の実施例1〜3は比較例2と同等の放
電特性が得られておシ、複合膜を酸素が透過する速度が
放電反応で酸素が消費される速度に充分追随しているこ
とを示している。しかしながら、比較例1は、酸素透過
速度が全く不足していることがわかる。
On the other hand, in Examples 1 to 3 described above, the same discharge characteristics as Comparative Example 2 were obtained, and the rate at which oxygen permeated through the composite membrane sufficiently followed the rate at which oxygen was consumed in the discharge reaction. It shows that there is. However, it can be seen that Comparative Example 1 is completely insufficient in oxygen permeation rate.

一方、軽負荷放電の場合は放電時間が長く、しかも外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や炭酸ガス、特に水分の透過阻止が優れた電池特
性を得るために重要となシ、水分や炭酸ガスの透過阻止
機構を持たない比較例2の電池は水分の枯渇、あるいは
逆に水分の過剰取入れによる漏液に起因した空気孔の閉
塞などによシ、放電の途中で電圧が低下し、重負荷試験
で得られた放電容量の一部分に相当する容量が得られる
に過ぎない。また放電途中での漏液は実用面で致命的な
問題であることはいうまでもない。これに対して実施例
1〜3は極めて優れた性能を示し、これらは重負荷試験
の放電容量とほぼ等しい容量が得られている。これらの
傾向は試験雰囲気が高湿度、低湿度、いずれの場合とも
同様である。
On the other hand, in the case of light load discharge, the discharge time is long, and in addition, when the outside air is high or low humidity, it is necessary to obtain battery characteristics that are superior in preventing the permeation of moisture and carbon dioxide gas, especially moisture, rather than the oxygen supply rate. It is important to note that the battery of Comparative Example 2, which does not have a mechanism to prevent the permeation of moisture and carbon dioxide gas, suffers from depletion and discharge due to depletion of moisture or, conversely, blockage of the air holes due to leakage due to excessive intake of moisture. The voltage drops halfway through, and a capacity equivalent to only a portion of the discharge capacity obtained in the heavy load test is obtained. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem in practical terms. On the other hand, Examples 1 to 3 showed extremely excellent performance, and in these cases, a capacity almost equal to the discharge capacity in the heavy load test was obtained. These trends are the same whether the test atmosphere is high humidity or low humidity.

このことは、実施例1〜3の場合、アラミド紙の水分透
過阻止効果が充分に発揮されていることを示している。
This indicates that in Examples 1 to 3, the moisture permeation blocking effect of the aramid paper was sufficiently exhibited.

以上を総合して、アラミド紙を用いた電池は、重負荷特
性、軽負荷特性とも優れ、外部雰囲気の変化にも安定し
た優れた電池を提供できることが結論できる。
Taking all the above into account, it can be concluded that a battery using aramid paper has excellent heavy load characteristics and light load characteristics, and can provide an excellent battery that is stable even under changes in the external atmosphere.

また1本発明のアラミド紙を上記実施例では電池容器と
の間に空気拡散用の多孔体を介して設置したが、本発明
のアラミド紙の機械的強度が充分な場合は、前記空気拡
散用の多孔体を除いても電池特性に差異はない。さらに
、上記実施例では、本発明のアラミド紙を酸素極との間
に酸素極を支持する多孔膜を介して設置したが、酸素極
の強度が充分であれば前記多孔膜は不要にでき、その場
合にも電池特性は変わらない。また、塩化アンモニウム
、塩化亜鉛などの中性塩の水溶液を電解液に用いた空気
電池に対しても、実施例で示したアルカリ性の電解液を
用いた電池と同様の効果があることも確認している。
In addition, in the above example, the aramid paper of the present invention was installed between the battery container and the porous body for air diffusion, but if the aramid paper of the present invention has sufficient mechanical strength, There is no difference in battery characteristics even if the porous material is removed. Furthermore, in the above examples, the aramid paper of the present invention was placed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane could be omitted. Even in that case, the battery characteristics remain unchanged. We also confirmed that an air battery using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as the electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. ing.

発明の効果 以上の説明で明らかなように、本発明によるアラミド紙
によれば、中性もしくはアルカリ性の水溶液を電解液と
する電池の重負荷から軽負荷にわたる広い範囲で優れた
実用性能と、優れた耐漏液性、長期貯蔵性を得ることが
できるという効果がある。
Effects of the Invention As is clear from the above explanation, the aramid paper of the present invention has excellent practical performance and excellent performance in a wide range from heavy loads to light loads of batteries that use a neutral or alkaline aqueous solution as the electrolyte. It has the advantage of being able to provide leakage resistance and long-term storage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1〜3及び比較例1の検討に用
いたボタン型空気亜鉛電池の断面図、第2図は酸素選択
性透過膜を使用していない従来のボタン型空気亜鉛電池
の断面図である。 1・・・・・・酸素極(空気極)、2・・・・・撥水膜
、3・・・・・・空気取入れ孔、4・・・・・多孔体、
5.6・・・・・・セパレータ、7・・・・・・魚篭亜
鉛、8・・・・・・魚篭容器、9・・・・・絶縁ガスケ
ット、1o・・・・・・正極容器、11・・・・・酸素
選択性透過膜。
Figure 1 is a cross-sectional view of a button-type zinc-air battery used in the study of Examples 1 to 3 of the present invention and Comparative Example 1, and Figure 2 is a conventional button-type zinc-air battery that does not use an oxygen-selective permeable membrane. It is a sectional view of a battery. 1... Oxygen electrode (air electrode), 2... Water repellent film, 3... Air intake hole, 4... Porous body,
5.6... Separator, 7... Fish cage zinc, 8... Fish cage container, 9... Insulating gasket, 1o... Positive electrode container, 11...Oxygen selective permeable membrane.

Claims (1)

【特許請求の範囲】 (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取入れ側と前記電池容器内面との間に、芳香
族ポリアミドよりなるアラミド紙を介在させた電池。 (2)前記アラミド紙が、芳香族ポリアミドとガラス繊
維よりなる特許請求の範囲第1項記載の電池。 (3)前記アラミド紙が、芳香族ポリアミドとカーボン
繊維よりなる特許請求の範囲第1項記載の電池。 (4)前記アラミド紙が、空気取入れ孔を有する前記電
池容器の内面と前記ガス拡散電極に直接接している特許
請求の範囲第1項、第2項または第3項のいずれかに記
載の電池。(5)前記アラミド紙と前記電池容器との間
に不織布等の空気拡散多孔体を介在させた特許請求の範
囲第1項、第2項または第3項のいずれかに記載の電池
。 (6)前記アラミド紙と前記ガス拡散電極との間にポリ
テトラフルオロエチレン(PTFE)等のフィルムより
なり酸素極を支持する微多孔膜を介在させた特許請求の
範囲第1項、第2項または第3項のいずれかに記載の電
池。 (7)前記アラミド紙と前記電池容器との間に不織布等
の空気拡散多孔体を介在させ、かつ前記酸素選択透過性
複合膜と前記ガス拡散電極との間にはポリテトラフルオ
ロエチレン等のフィルムよりなり、前記ガス拡散電極を
支持する微多孔膜を介在させた特許請求の範囲第1項、
第2項または第3項のいずれかに記載の電池。
[Scope of Claims] (1) A battery container having a gas diffusion electrode containing oxygen as an active material and an air intake hole communicating with the outside air, and between the air intake side of the gas diffusion electrode and the inner surface of the battery container. , a battery interposed with aramid paper made of aromatic polyamide. (2) The battery according to claim 1, wherein the aramid paper is made of aromatic polyamide and glass fiber. (3) The battery according to claim 1, wherein the aramid paper is made of aromatic polyamide and carbon fiber. (4) The battery according to any one of claims 1, 2, or 3, wherein the aramid paper is in direct contact with the inner surface of the battery container having an air intake hole and the gas diffusion electrode. . (5) The battery according to any one of claims 1, 2, and 3, wherein an air diffusion porous material such as a nonwoven fabric is interposed between the aramid paper and the battery container. (6) Claims 1 and 2 include a microporous membrane made of polytetrafluoroethylene (PTFE) film and supporting an oxygen electrode interposed between the aramid paper and the gas diffusion electrode. or the battery according to any of paragraph 3. (7) An air diffusion porous material such as a nonwoven fabric is interposed between the aramid paper and the battery container, and a film such as polytetrafluoroethylene is interposed between the oxygen selectively permeable composite membrane and the gas diffusion electrode. Claim 1, comprising: a microporous membrane supporting the gas diffusion electrode;
The battery according to any one of paragraphs 2 and 3.
JP1246812A 1989-09-22 1989-09-22 Battery Pending JPH03108257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246812A JPH03108257A (en) 1989-09-22 1989-09-22 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246812A JPH03108257A (en) 1989-09-22 1989-09-22 Battery

Publications (1)

Publication Number Publication Date
JPH03108257A true JPH03108257A (en) 1991-05-08

Family

ID=17154055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246812A Pending JPH03108257A (en) 1989-09-22 1989-09-22 Battery

Country Status (1)

Country Link
JP (1) JPH03108257A (en)

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JPH03108257A (en) Battery
JP2782837B2 (en) Battery
JPH04312771A (en) Air battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH03108258A (en) Battery
JPH03108254A (en) Battery
JP2817343B2 (en) Battery
JP2822485B2 (en) Battery
JPH09894A (en) Oxygen permselective membrane and cell using the same
JP2757383B2 (en) Battery
JPH04162374A (en) Battery
JP2743574B2 (en) Battery
JPH0374047A (en) Battery
JPH05326036A (en) Battery
JPH042067A (en) Battery
JP2778078B2 (en) Battery
JPH01267971A (en) Battery
JPH0422545Y2 (en)
JP2782911B2 (en) Battery
JPH0475253A (en) Manufacture of battery
JPH01267974A (en) Battery
JP2817341B2 (en) Battery
JPH01267972A (en) Battery
JPH01195678A (en) Cell