JPH03101260A - Thin film capacitor - Google Patents

Thin film capacitor

Info

Publication number
JPH03101260A
JPH03101260A JP23848489A JP23848489A JPH03101260A JP H03101260 A JPH03101260 A JP H03101260A JP 23848489 A JP23848489 A JP 23848489A JP 23848489 A JP23848489 A JP 23848489A JP H03101260 A JPH03101260 A JP H03101260A
Authority
JP
Japan
Prior art keywords
film
silicon
layer
melting point
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23848489A
Other languages
Japanese (ja)
Other versions
JPH0687491B2 (en
Inventor
Shogo Matsubara
正吾 松原
Yoichi Miyasaka
洋一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23848489A priority Critical patent/JPH0687491B2/en
Priority to US07/574,778 priority patent/US5053917A/en
Priority to EP90309478A priority patent/EP0415751B1/en
Priority to DE69017802T priority patent/DE69017802T2/en
Publication of JPH03101260A publication Critical patent/JPH03101260A/en
Publication of JPH0687491B2 publication Critical patent/JPH0687491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent oxidation of silicon and to improve a dielectric constant by forming a conductive layer which consists of a high melting point metallic film or a silicide film thereof, and a high melting point noble metal film between a silicon electrode and a dielectric film in a thin film capacitor formed on a silicon electrode. CONSTITUTION:A low resistance layer 2 is formed by doping a part of a surface of single crystalline silicon 1 with phosphorus to a high concentration and a silicon oxide film 3 is formed thereon as a layer insulating film. Two contact holes are formed in a part of the silicon oxide film at two positions; on contact hole is filled up with a conductive layer 4 and the other contact hole is filled up with an Al film 5. A first layer of the conductive layer 4 which is formed on silicon consists of at least one ore more kinds of material which is selected from high melting point metals of titanium, tantalum molybdenum, tungsten or silicide compound thereof, and a second layer consists of at least one or more kinds of material which is selected from high melting point noble metals of platinum, paradium and rhodium. A BaTiO3 film 6 is formed on the conductive layer 4 and Al 7 is formed thereon as an upper electrode.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、小型電子回路に用いる薄膜コンデンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to thin film capacitors used in small electronic circuits.

(従来の技術) 集積回路技術の発達によって電子回路がますます小型化
しており、各種電子回路に必須の回路素子であるコンデ
ンサの小型化も一段と重要になっている。誘電体薄膜を
用いた薄膜コンデンサが、トランジスタ等の能動素子と
同一の基板上に形成されて利用されているが、能動素子
の小型化が惣速に進む中で薄膜コンデンサの小型化は遅
れており、より一層の高集積化を阻む大きな要因となっ
てきている。これは、従来用いられている誘電体薄膜材
料が5i02、Si3N4等のような誘電率がたかだか
10以下の材料に限られているためであり、薄膜コンデ
ンサを小型化する手段として誘電率の大きな誘電体薄膜
を開発することが必要となっている。化学式ABO3で
表されるペロブスカイト型酸化物であるBaTiO3,
5rTi03、PbZrO3およびイルメナイト型酸化
物LiNbO3あるいはBi4Ti3O12等の強誘電
体に属する酸化物は、上記の単一組成並びに相互の固溶
体組成で、単結晶あるいはセラミックにおいて100以
上10000にも及ぶ誘電率を有することが知られてお
り、セラミック・コンデンサに広く用いられている。こ
れら材料の薄膜化は上述の薄膜コンデンサの小型化に極
めて有効であり、かなり以前から研究が行われている。
(Prior Art) With the development of integrated circuit technology, electronic circuits are becoming increasingly smaller, and the miniaturization of capacitors, which are essential circuit elements for various electronic circuits, is also becoming more important. Thin film capacitors using dielectric thin films are used by being formed on the same substrate as active elements such as transistors, but while the miniaturization of active elements is progressing rapidly, the miniaturization of thin film capacitors has lagged behind. This has become a major factor preventing even higher integration. This is because conventionally used dielectric thin film materials are limited to materials with a dielectric constant of at most 10 or less, such as 5i02 and Si3N4. There is a need to develop thin body membranes. BaTiO3, which is a perovskite oxide represented by the chemical formula ABO3,
Oxides belonging to ferroelectrics, such as 5rTi03, PbZrO3, and ilmenite-type oxides LiNbO3 or Bi4Ti3O12, have a dielectric constant ranging from 100 to 10,000 in single crystals or ceramics in the above-mentioned single composition and mutual solid solution composition. is known and widely used in ceramic capacitors. Making these materials thinner is extremely effective in reducing the size of the above-mentioned thin film capacitors, and research has been conducted for quite some time.

それらの中で比較的良好な特性が得られている例として
は、プロシーディング・オブ・アイ・イー・イー・イー
(Proceedings ofthe IEEE)第
59巻10号1440−1447頁に所載の論文があり
、スパッタリングによる成膜および熱処理を行ったBa
TiO3薄膜で16(室温で作成)から1900(12
00°Cで熱処理)の誘電率が得られている。
Among them, an example with relatively good characteristics is the paper published in Proceedings of the IEEE, Vol. 59, No. 10, pp. 1440-1447. Yes, Ba film formed by sputtering and heat treated
16 (made at room temperature) to 1900 (12
The dielectric constant was obtained (heat treated at 00°C).

現在の高集積回路に広く用いられている電極材料は多結
晶シリコンあるいはシリコン基板自体の一部に不純物を
高濃度にドーピングした低抵抗シリコン層である。以下
これらを総してシリコン電極と呼ぶ。シリコン電極は微
細加工技術が確立されており、すでに広く用いられてい
るため、シリコン電極上に良好な高誘電率薄膜が作製で
きれば、集積回路用コンデンサへの利用が可能となる。
The electrode material widely used in current highly integrated circuits is polycrystalline silicon or a low-resistance silicon layer in which a portion of the silicon substrate itself is heavily doped with impurities. Hereinafter, these will be collectively referred to as silicon electrodes. Microfabrication technology for silicon electrodes has been established and is already widely used, so if a good high dielectric constant thin film can be produced on silicon electrodes, it will be possible to use them in capacitors for integrated circuits.

しかしながら、従来技術では例えばIBM・ジャーナル
・オブ・リサーチ・アンド・ディベロップメン  ト(
IBM Journal of Re5earch a
nd Development)1969年11月号6
86−695頁に所載の5rTi03膜に関する論文が
、ジャーナル・オブ・バキューム、サイエンス・アンド
・テクノロジー(Journal of Vacuum
 5cienceand Technology)第1
6巻2号315−318頁に所載のBaTiO3に関す
る論文が報告されている。
However, in the prior art, for example, IBM Journal of Research and Development (
IBM Journal of Research a
nd Development) November 1969 Issue 6
The paper on 5rTi03 film published on pages 86-695 was published in the Journal of Vacuum, Science and Technology.
5science and Technology) 1st
A paper on BaTiO3 is reported in Vol. 6, No. 2, pp. 315-318.

(発明が解決しようとする課題) 上記のように高誘電率を得るためには高い成膜温度を必
要とするが、従来シリコン電極上に作成されているBa
TiO3等の誘電体薄膜は約100人の二酸化シリコン
(Si02)に等価な層が界面に形成されてしまうと報
告されている。この界面層は誘電率が低い層であるため
、結果としてシリコン上に形成した高誘電率薄膜の実効
的な誘電率は大きく低下してしまい、高誘電率材料を用
いる利点がほとんど損なわれていた。
(Problems to be Solved by the Invention) As mentioned above, a high film formation temperature is required to obtain a high dielectric constant, but Ba
It has been reported that a layer equivalent to about 100 silicon dioxide (Si02) is formed at the interface of a dielectric thin film such as TiO3. Since this interfacial layer has a low dielectric constant, the effective dielectric constant of the high dielectric constant thin film formed on silicon is greatly reduced, almost eliminating the advantage of using high dielectric constant materials. .

(課題を解決するための手段) 本発明はシリコン電極上に導電層、誘電体、上部電極が
順次形成された構造の薄膜コンデンサにおいて、導電層
がシリコン上に形成される第1層とその上に形成される
第2層とから構成され、第1層がチタン、タンタル、モ
リブデン、タングステンの高融点金属あるいはそれらの
シリサイド化合物から選ばれる少なくとも1種以上の材
料であり、第2層が白金、パラヂウム、ロヂウムの高融
点貴金属から選ばれる少なくとも1種以上の材料である
ことを特徴とする集積回路用薄膜コンデンサである。
(Means for Solving the Problems) The present invention provides a thin film capacitor having a structure in which a conductive layer, a dielectric material, and an upper electrode are sequentially formed on a silicon electrode. The first layer is made of at least one material selected from high melting point metals such as titanium, tantalum, molybdenum, and tungsten or their silicide compounds, and the second layer is made of platinum, This thin film capacitor for integrated circuits is characterized in that it is made of at least one material selected from high melting point noble metals such as palladium and rhodium.

(実施例1) 以下、本発明の実施例について図面を参照して説明する
(Example 1) Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は本実施例の薄膜コンデンサの構造図である。単
結晶シリコン1の表面の一部にリンを高濃度にドーピン
グして低抵抗層2が形成され、その上に層間絶縁膜とし
て酸化シリコン膜3が形成されている。酸化シリコン膜
の一部は、低抵抗層を通じて下部電極を引き出すための
コンタクトホールが2箇所形成されており、一方のコン
タクトホールは多結晶シリコン膜4で埋められ、もう一
方のコンタクトホールはAI膜5で埋められている。従
って、AI膜5は下部電極の端子となる。下部電極膜4
はコンタクトホールを埋めると共にその一部が酸化シリ
コン膜上へ形成されていてもよい。下部電極膜4上には
BaTiO3膜6が形成され、その上には上部電極とし
てA17が形成されている。
FIG. 1 is a structural diagram of the thin film capacitor of this embodiment. A low resistance layer 2 is formed by doping a part of the surface of a single crystal silicon 1 with phosphorus at a high concentration, and a silicon oxide film 3 is formed thereon as an interlayer insulating film. Two contact holes are formed in a part of the silicon oxide film to draw out the lower electrode through the low resistance layer, one contact hole is filled with a polycrystalline silicon film 4, and the other contact hole is filled with an AI film. Filled with 5. Therefore, the AI film 5 becomes a terminal of the lower electrode. Lower electrode film 4
fills the contact hole, and a portion thereof may be formed on the silicon oxide film. A BaTiO3 film 6 is formed on the lower electrode film 4, and A17 is formed thereon as an upper electrode.

導電層は直流マグネトロンスパッタ法で作製した。Ar
ガス雰囲気、4X10−3Torr、基板温度100°
Cで行い、白金、チタンの膜厚は、それぞれ、3000
人、500人とした。BaTiO3膜は化学量論組成の
粉末ターゲットを用い、高周波マグネトロンスパッタ法
で500OAの膜厚のものを作製した。Ar −02混
合ガス中、I X 10  Torr、基板温度600
°Cでスパッタ成膜した。上部電極には5000人のA
Iを直流スパッタ法により成膜した。本コンデンサの有
効面積は250μm2である。つぎに導電層として本方
法の白金、チタンの多層膜を用いた場合、高融点貴金属
である白金膜だけを用いた場合、更に導電層を形成しな
い場合のBaTiO3膜の特性の違いについて述べる。
The conductive layer was fabricated by direct current magnetron sputtering. Ar
Gas atmosphere, 4X10-3 Torr, substrate temperature 100°
The film thickness of platinum and titanium was 3000 mm.
The number of people was 500. A BaTiO3 film having a thickness of 500 OA was fabricated by high frequency magnetron sputtering using a powder target with a stoichiometric composition. In Ar-02 mixed gas, I x 10 Torr, substrate temperature 600
The film was formed by sputtering at °C. 5000 A on the upper electrode
I was formed into a film by direct current sputtering. The effective area of this capacitor is 250 μm2. Next, we will discuss the differences in the characteristics of the BaTiO film when a multilayer film of platinum and titanium according to the present method is used as a conductive layer, when only a platinum film which is a high melting point noble metal is used, and when no conductive layer is further formed.

第2図(a)は本方法の白金とチタンの多層膜を用いた
場合のBaTiO3膜の、(b)は膜厚3000Åの白
金膜を用いた場合の、(c)は膜厚3000人でシート
抵抗100Ω/cm2の多結晶シリコン膜を用いた場合
のBaTiO3膜の膜厚による誘電率の変化を調べたも
のである。本方法の多層膜を用いた場合のBaTiO3
膜の誘電率はその膜厚に依存せず一定であるのに対し、
白金膜あるいは多結晶シリコン膜を用いた場合には誘電
体膜の膜厚が小さくなるにつれて誘電率が著しく減少し
てしまう。
Figure 2 (a) shows a BaTiO3 film using a multilayer film of platinum and titanium using this method, (b) shows a BaTiO3 film using a 3000 Å thick platinum film, and (c) shows a BaTiO3 film using a 3000 Å thick film. The change in dielectric constant depending on the film thickness of a BaTiO3 film was investigated when a polycrystalline silicon film with a sheet resistance of 100 Ω/cm2 was used. BaTiO3 when using the multilayer film of this method
While the dielectric constant of a film is constant and does not depend on its thickness,
When a platinum film or a polycrystalline silicon film is used, the dielectric constant decreases significantly as the thickness of the dielectric film decreases.

多結晶シリコン膜での誘電率の低下は従来報告されてい
る通り、誘電体と電極の界面におけるジノコンの酸化に
よる低誘電率層の形成が原因である。白金膜での誘電率
の低下は白金のシリサイド化合物の形成に起因している
。即ち、600°Cでの誘電体の成膜時にシリコンは白
金と反応し、シリサイド化合物を形成しながら最表面に
達する。最表面に達したシリコンは多結晶シリコン膜の
場合と同様に酸化されて低誘電率層を形成してしまうと
考えられる。X線回折により、白金が誘電体の成膜後に
シリサイド化していることを確認した。これに対して、
同じくX線回折によれば、白金とチタンの多層膜では誘
電体の成膜後も白金がシリサイド化せず元の状態で存在
している。即ち、シリコンはチタン層でその拡散が抑え
られて白金層に達しておらず、前述のようなシリコンの
酸化による低誘電率層の形成が起こらない。
As previously reported, the decrease in dielectric constant in a polycrystalline silicon film is caused by the formation of a low dielectric constant layer due to oxidation of dinocon at the interface between the dielectric and the electrode. The decrease in dielectric constant in platinum films is due to the formation of platinum silicide compounds. That is, during dielectric film formation at 600° C., silicon reacts with platinum and reaches the outermost surface while forming a silicide compound. It is thought that the silicon that has reached the outermost surface is oxidized and forms a low dielectric constant layer as in the case of a polycrystalline silicon film. It was confirmed by X-ray diffraction that platinum was turned into silicide after the dielectric film was formed. On the contrary,
Similarly, according to X-ray diffraction, in a multilayer film of platinum and titanium, platinum does not become silicide even after the dielectric film is formed and remains in its original state. That is, the diffusion of silicon is suppressed by the titanium layer and does not reach the platinum layer, so that the formation of a low dielectric constant layer due to oxidation of silicon as described above does not occur.

本実施例の導電層のチタンの代わりにタンタル、モリブ
デン、タングステンの高融点金属、あるいはそれらのシ
リサイドを用いても同様の効果が得られる。また、白金
の代わりにパラヂウム、あるいはロヂウムの高融点貴金
属を用いてもよい。
Similar effects can be obtained by using high-melting point metals such as tantalum, molybdenum, and tungsten, or silicides thereof, in place of titanium in the conductive layer of this embodiment. Further, a high melting point noble metal such as palladium or rhodium may be used instead of platinum.

(実施例2) 実施例1と同じ構造の薄膜コンデンサにおいて、導電層
の第1層に高融点金属とそれらのシリサイドで構成され
る合金膜、あるいは多層膜を用いた。
(Example 2) In a thin film capacitor having the same structure as in Example 1, an alloy film or a multilayer film composed of high melting point metals and their silicides was used as the first layer of the conductive layer.

表1に本実施例で用いた材料をまとめた。Table 1 summarizes the materials used in this example.

本実施例においても実施例1と同様に、BaTiO3膜
の誘電率はその膜厚に依存せず本来の値が得られ、界面
での低誘電率層の形成を防止できた。また、Xm回折に
よって、第2層の白金がシリサイド化していないことを
確認した。
In this example, as in Example 1, the dielectric constant of the BaTiO3 film did not depend on the film thickness, and the original value was obtained, and formation of a low dielectric constant layer at the interface could be prevented. Furthermore, it was confirmed by Xm diffraction that the platinum in the second layer was not silicided.

(実施例3) 実施例工と同じ構造の薄膜コンデンサにおいて、導電層
の第2層に白金、パラヂウム、ロヂウムの高融点貴金属
からなる合金膜、あるいは多層膜を用いた。表2に本実
施例で用いた材料をまとめた。
(Example 3) In a thin film capacitor having the same structure as the example, an alloy film or a multilayer film made of high-melting point precious metals such as platinum, palladium, and rhodium was used as the second layer of the conductive layer. Table 2 summarizes the materials used in this example.

本実施例におていも実施例1と同様に、BaTiO3膜
の誘電率はその膜厚に依存せず本来の値が得られ、界面
での低誘電率層の形成を防止できた。また、X線回折に
よって、第2層の高融点貴金属の合金あるいは多層腹合
がシリサイド化していないことを確認した。
In this example, as in Example 1, the dielectric constant of the BaTiO3 film did not depend on the film thickness, and the original value was obtained, and formation of a low dielectric constant layer at the interface could be prevented. In addition, it was confirmed by X-ray diffraction that the high-melting point noble metal alloy or multilayer composite of the second layer was not silicided.

以上はBaTiO3膜について説明したが、この他に5
rTi03、PbTiO3、PbZrO3、LiNbO
3、Bj3Ti4012及び固溶体(Ba、 5r)T
i03、(Ba、 Pb)Ti03、Pb(Zr、Ti
)03について同様の作製、評価を行った結果、BaT
iO3の場合と同様の作製方法において膜厚によ第1表 第2表 (発明の効果) 本発明は以上説明したように、シリコン電極上に形成さ
れた薄膜コンデンサにおいてシリコン電極と誘電体膜の
間に高融点金属膜もしくはそれらのシリサイド膜と高融
点貴金属膜からなる導電層を形成することにより、シリ
コンの酸化を防ぎ、高誘電率の薄膜コンデンサを提供す
ることができる。
The above has explained the BaTiO3 film, but there are also 5 other things.
rTi03, PbTiO3, PbZrO3, LiNbO
3. Bj3Ti4012 and solid solution (Ba, 5r)T
i03, (Ba, Pb) Ti03, Pb (Zr, Ti
)03 was similarly produced and evaluated, and as a result, BaT
Table 1 Table 2 (Effects of the Invention) As explained above, the present invention provides a thin film capacitor formed on a silicon electrode in which the thickness of the silicon electrode and the dielectric film are By forming a conductive layer consisting of a high melting point metal film or a silicide film thereof and a high melting point noble metal film between them, oxidation of silicon can be prevented and a thin film capacitor with a high dielectric constant can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における実施例1の薄膜コンデンサの断
側面図、第2図はBaTiO3膜の膜厚と誘電率の関係
を示す図。 1は単結晶シリコン基板、2は単結晶シリコンの低抵抗
層、3は酸化シリコン、4は多結晶シリコン膜、5.7
はA1.6はBaTiO3膜。
FIG. 1 is a cross-sectional side view of a thin film capacitor according to Example 1 of the present invention, and FIG. 2 is a diagram showing the relationship between the film thickness and dielectric constant of a BaTiO3 film. 1 is a single crystal silicon substrate, 2 is a low resistance layer of single crystal silicon, 3 is silicon oxide, 4 is a polycrystalline silicon film, 5.7
A1.6 is BaTiO3 film.

Claims (1)

【特許請求の範囲】[Claims] 1. シリコン電極上に導電層、誘電体、上部電極が順
次形成された構造の薄膜コンデンサにおいて、導電層が
シリコン上に形成される第1層とその上に形成される第
2層とから構成され、第1層がチタン、タンタル、モリ
ブデン、タングステンの高融点金属あるいはそれらのシ
リサイド化合物から選ばれる少なくとも1種以上の材料
であり、第2層が白金、パラヂウム、ロヂウムの高融点
貴金属から選ばれる少なくとも1種以上の材料であるこ
とを特徴とする薄膜コンデンサ。
1. In a thin film capacitor having a structure in which a conductive layer, a dielectric material, and an upper electrode are sequentially formed on a silicon electrode, the conductive layer is composed of a first layer formed on silicon and a second layer formed thereon, The first layer is made of at least one material selected from high melting point metals such as titanium, tantalum, molybdenum, and tungsten or their silicide compounds, and the second layer is made of at least one material selected from high melting point noble metals such as platinum, palladium, and rhodium. A thin film capacitor characterized by being made of more than one type of material.
JP23848489A 1989-08-30 1989-09-14 Thin film capacitors Expired - Lifetime JPH0687491B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23848489A JPH0687491B2 (en) 1989-09-14 1989-09-14 Thin film capacitors
US07/574,778 US5053917A (en) 1989-08-30 1990-08-30 Thin film capacitor and manufacturing method thereof
EP90309478A EP0415751B1 (en) 1989-08-30 1990-08-30 Thin film capacitor and manufacturing method thereof
DE69017802T DE69017802T2 (en) 1989-08-30 1990-08-30 Thin film capacitor and its manufacturing process.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23848489A JPH0687491B2 (en) 1989-09-14 1989-09-14 Thin film capacitors

Publications (2)

Publication Number Publication Date
JPH03101260A true JPH03101260A (en) 1991-04-26
JPH0687491B2 JPH0687491B2 (en) 1994-11-02

Family

ID=17030931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23848489A Expired - Lifetime JPH0687491B2 (en) 1989-08-30 1989-09-14 Thin film capacitors

Country Status (1)

Country Link
JP (1) JPH0687491B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349657A (en) * 1991-05-28 1992-12-04 Sharp Corp Semiconductor device
JPH04360506A (en) * 1991-06-07 1992-12-14 Nec Corp Thin film capacitor
JPH0547587A (en) * 1991-08-09 1993-02-26 Nec Corp Thin film capacitor and manufacture thereof
US5262920A (en) * 1991-05-16 1993-11-16 Nec Corporation Thin film capacitor
US5382817A (en) * 1992-02-20 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a ferroelectric capacitor with a planarized lower electrode
US5883781A (en) * 1995-04-19 1999-03-16 Nec Corporation Highly-integrated thin film capacitor with high dielectric constant layer
US5945769A (en) * 1991-08-26 1999-08-31 Canon Kabushiki Kaisha Wave driven motor
KR100326979B1 (en) * 1996-12-18 2002-05-10 포만 제프리 엘 Metal to metal capacitor and method for producing same
JP2007042989A (en) * 2005-08-05 2007-02-15 Ibiden Co Ltd Thin film embedded capacitance and its manufacturing method, and printed wiring board
CN104916440A (en) * 2015-06-09 2015-09-16 长兴友畅电子有限公司 Improved structure of film capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262920A (en) * 1991-05-16 1993-11-16 Nec Corporation Thin film capacitor
JPH04349657A (en) * 1991-05-28 1992-12-04 Sharp Corp Semiconductor device
JPH04360506A (en) * 1991-06-07 1992-12-14 Nec Corp Thin film capacitor
JPH0547587A (en) * 1991-08-09 1993-02-26 Nec Corp Thin film capacitor and manufacture thereof
US5945769A (en) * 1991-08-26 1999-08-31 Canon Kabushiki Kaisha Wave driven motor
US5382817A (en) * 1992-02-20 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a ferroelectric capacitor with a planarized lower electrode
US5883781A (en) * 1995-04-19 1999-03-16 Nec Corporation Highly-integrated thin film capacitor with high dielectric constant layer
KR100326979B1 (en) * 1996-12-18 2002-05-10 포만 제프리 엘 Metal to metal capacitor and method for producing same
JP2007042989A (en) * 2005-08-05 2007-02-15 Ibiden Co Ltd Thin film embedded capacitance and its manufacturing method, and printed wiring board
JP4708905B2 (en) * 2005-08-05 2011-06-22 イビデン株式会社 Thin film embedded capacitance, manufacturing method thereof, and printed wiring board
CN104916440A (en) * 2015-06-09 2015-09-16 长兴友畅电子有限公司 Improved structure of film capacitor

Also Published As

Publication number Publication date
JPH0687491B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US5122923A (en) Thin-film capacitors and process for manufacturing the same
US5053917A (en) Thin film capacitor and manufacturing method thereof
US6319542B1 (en) Lightly donor doped electrodes for high-dielectric-constant materials
US5191510A (en) Use of palladium as an adhesion layer and as an electrode in ferroelectric memory devices
JP3094382B2 (en) Method for forming preferentially oriented platinum thin film using nitrogen, and apparatus manufactured by the method
JPH08116032A (en) Microelectronic structure body and its production
JPH0864786A (en) Microelectronic structure and manufacture thereof
JPH08191137A (en) Microelectronic structure body and its production
JPH03101260A (en) Thin film capacitor
JP3504058B2 (en) Thin film capacitor and semiconductor storage device
JP2785126B2 (en) Method of forming dielectric thin film and method of manufacturing semiconductor device using the same
JPH0687493B2 (en) Thin film capacitors
JPH03253065A (en) Thin-film capacitor and its manufacture
JP2874512B2 (en) Thin film capacitor and method of manufacturing the same
JPH03257857A (en) Thin film capacitor and manufacture thereof
JPH0387055A (en) Thin film capacitor and manufacture thereof
JPH0644601B2 (en) Thin film capacitor and manufacturing method thereof
JP3120568B2 (en) Thin film capacitors
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JPH04349657A (en) Semiconductor device
JPH0748448B2 (en) Thin film capacitor and manufacturing method thereof
JPH0652775B2 (en) Thin film capacitor and manufacturing method thereof
JPH0587166B2 (en)
JP3248475B2 (en) Method of manufacturing ferroelectric nonvolatile memory cell structure
JP2850903B2 (en) Thin film capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15

EXPY Cancellation because of completion of term