JPH0587166B2 - - Google Patents

Info

Publication number
JPH0587166B2
JPH0587166B2 JP1072122A JP7212289A JPH0587166B2 JP H0587166 B2 JPH0587166 B2 JP H0587166B2 JP 1072122 A JP1072122 A JP 1072122A JP 7212289 A JP7212289 A JP 7212289A JP H0587166 B2 JPH0587166 B2 JP H0587166B2
Authority
JP
Japan
Prior art keywords
thin film
mol
dielectric
leakage current
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1072122A
Other languages
Japanese (ja)
Other versions
JPH02197108A (en
Inventor
Shogo Matsubara
Yoichi Myasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1072122A priority Critical patent/JPH02197108A/en
Publication of JPH02197108A publication Critical patent/JPH02197108A/en
Publication of JPH0587166B2 publication Critical patent/JPH0587166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超小形電子回路に用いる薄膜コンデン
サおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film capacitor used in microelectronic circuits and a method for manufacturing the same.

(従来の技術) 集積回路技術の発達によつて電子回路がますま
す小形化しており、各種電子回路に必須の回路素
子であるコンデンサの小形化も一段と重要になつ
ている。このめた誘電体薄膜を用いて薄膜コンデ
ンサが広く利用されている。薄膜コンデンサに使
用される誘電体薄膜には何よりも第一に高い絶縁
性すなわちリーク電流が小さいことが要求され、
このため従来広く利用されている材料はSiO2
Si3N4,Al2O3等のような誘電率がたかだか10以
下の材料に限られている。ところが、コンデンサ
以外の回路素子特にトランジスタ等の能動素子の
小形化の進歩は目覚ましく、コンデンサに対して
もより一層の小形化が強く望まれている。
(Prior Art) With the development of integrated circuit technology, electronic circuits are becoming increasingly smaller, and the miniaturization of capacitors, which are essential circuit elements for various electronic circuits, is also becoming more important. Thin film capacitors using such dielectric thin films are widely used. Above all, the dielectric thin film used in thin film capacitors is required to have high insulation properties, that is, low leakage current.
For this reason, conventionally widely used materials are SiO 2 ,
It is limited to materials with a dielectric constant of at most 10 or less, such as Si 3 N 4 and Al 2 O 3 . However, progress in miniaturization of circuit elements other than capacitors, particularly active elements such as transistors, has been remarkable, and there is a strong desire for further miniaturization of capacitors.

薄膜コンデンサを小形化するためには誘電率の
大きな誘電体薄膜を開発することが必要である。
化学式ABO3で表されるペロブスカイト型酸化物
であるBaTiO3,SrTiO3,PbTiO3等を主体とし
た材料は単結晶あるいはセラミツクにおいて100
以上10000にも及び誘電率を有することが知られ
ており、セラミツク・コンデツサに広く用いられ
ている。これらの材料の薄膜化は上述の薄膜コン
デンサの小形化の目的に極めて有効であり、かな
り以前から研究が行なわれている。それらの中で
比較的良好な特性が得られている例としては、プ
ロシーデイング・オブ・アイ・イー・イー・イー
(Proceedings of theIEEE)第59巻10号1440−
1447頁に所載の論文があり、スパツタリング法に
よる成膜および熱処理をおこなつたBaTiO3薄膜
で16(室温で作製)から1900(1200℃で熱処理)の
誘電率が得られている。
In order to downsize thin film capacitors, it is necessary to develop dielectric thin films with a high dielectric constant.
Materials mainly composed of perovskite-type oxides represented by the chemical formula ABO 3 , such as BaTiO 3 , SrTiO 3 , PbTiO 3 , etc., are single crystal or ceramic.
It is known to have a dielectric constant of over 10,000, and is widely used in ceramic capacitors. The thinning of these materials is extremely effective for the purpose of downsizing the above-mentioned thin film capacitors, and research has been conducted for quite some time. Among them, an example with relatively good characteristics is Proceedings of the IEEE, Vol. 59, No. 10, 1440-
There is a paper on page 1447, in which dielectric constants ranging from 16 (fabricated at room temperature) to 1900 (heat treated at 1200°C) were obtained for BaTiO 3 thin films formed by sputtering and heat treated.

(発明が解決しようとする課題) この従来作成されているBaTiO3薄膜は絶縁性
が十分でなく、薄膜コンデンサに使用される場合
の実用的電圧レベルにおけるリーク電流が大きい
ため実用化に至つていない。
(Problem to be solved by the invention) This conventionally produced BaTiO 3 thin film does not have sufficient insulation properties and has a large leakage current at a practical voltage level when used in thin film capacitors, so it has not been put into practical use. do not have.

本発明は誘電率が大きくかつ実用的電圧レベル
におけるリーク電流が十分小さい誘電体薄膜の実
現を可能にし、これをもつて小形の薄膜コンデン
サを実現することを目的としている。
An object of the present invention is to make it possible to realize a dielectric thin film that has a large dielectric constant and a sufficiently small leakage current at a practical voltage level, and thereby realizes a small thin film capacitor.

(課題を解決するための手段) 上記問題点を解決するために本発明の第1の発
明の薄膜コンデンサは薄膜コンデンサに用いる誘
電体膜を(Ba1-xSrx)TiO3(0≦x≦1.0)に0.15
モル%以上5モル%以下のMoを添加した組成と
したことを特徴としたものであり、また本発明の
第2の発明の薄膜コンデンサの製造方法は上記し
た組成の誘電体薄膜を0.3モル以上10モル%以下
のMoを添加した(Ba1-xSrx)TiO3(0≦x≦1.0)
の粉末あるいは焼結セラミツクをターゲツトとし
てスパツタリング法によつて作製することを特徴
として構成される。なお上記したスパツタリング
法としてはRFスタツパ法、イオンビームスパツ
タ法のいずれを用いても有効である。
(Means for Solving the Problems) In order to solve the above problems, the thin film capacitor of the first aspect of the present invention uses a dielectric film of (Ba 1-x Sr x ) TiO 3 (0≦x ≦1.0) to 0.15
The method of manufacturing a thin film capacitor according to the second aspect of the present invention is characterized in that it has a composition in which Mo is added in an amount of 0.3 mol to 5 mol %. (Ba 1-x Sr x )TiO 3 (0≦x≦1.0) with addition of Mo of 10 mol% or more
The structure is characterized in that it is produced by a sputtering method using powder or sintered ceramic as a target. Note that as the sputtering method described above, either the RF sputtering method or the ion beam sputtering method is effective.

(実施例 1) 次に、本発明について図面を参照し説明する。
第1図は本発明の一実施例の構造を示す断面図で
ある。第1図に示すようにシリコン、表面に絶縁
層を有するシリコン、あるいはサフアイアなどの
基板1の上に下部電極2として白金、パラジウ
ム、モリブデン等の高融点金属あるいは金属シリ
サイドから選ばれた材料の膜を形成し、その上に
誘電体層3を形成し、さらにその上に上部電極4
としてアルミニウムあるいは金の膜を形成する。
誘電体層3はMoを0.3モル以上10モル%以下添加
したBaTiO3の粉末あるいは焼結ターゲツトを用
いてスパツタリング法により形成する。この場
合、誘電率は作製時の基板温度が高いほど大きく
なるが、基板温度が高すぎると下部電極2の再結
晶が起こつて表面が荒れることにより絶縁性を劣
下させるなどの不都合を生じるため、600℃程度
の温度が最適である。この基板温度で作成した場
合に得られる誘電率は200であり、実用上十分大
きな値である。スパツタリング・ターゲツトの
BaTiO3粉末あるいは焼結セラミツクに添加した
Moの量と、作成されたBaTiO3薄膜中のMoの量
との関係は基板温度に若干依存するが、基板温度
600℃の場合には膜中のMo量(モル%)はターゲ
ツト中のMo量(モル%)の1/2となることが、本
発明者らにより明らかとなつている。したがつ
て、誘電体薄膜中に所望のMo量(モル%)の添
加を実現するためには、ターゲツトにその2倍量
(モル%)のMo添加を施せば良い。
(Example 1) Next, the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. As shown in FIG. 1, a lower electrode 2 is formed of a material selected from high melting point metals such as platinum, palladium, molybdenum, or metal silicide on a substrate 1 made of silicon, silicon with an insulating layer on the surface, or sapphire. , a dielectric layer 3 is formed thereon, and an upper electrode 4 is further formed thereon.
As a result, a film of aluminum or gold is formed.
The dielectric layer 3 is formed by sputtering using BaTiO 3 powder or a sintered target to which 0.3 mol or more and 10 mol % or less of Mo is added. In this case, the dielectric constant increases as the substrate temperature during fabrication increases, but if the substrate temperature is too high, recrystallization of the lower electrode 2 will occur and the surface will become rough, causing problems such as deterioration of insulation properties. , a temperature of around 600℃ is optimal. The dielectric constant obtained when fabricated at this substrate temperature is 200, which is a sufficiently large value for practical use. sputtering target
Added to BaTiO3 powder or sintered ceramic
The relationship between the amount of Mo and the amount of Mo in the BaTiO 3 thin film created slightly depends on the substrate temperature;
The present inventors have revealed that at 600°C, the amount of Mo (mol%) in the film is 1/2 of the amount (mol%) of Mo in the target. Therefore, in order to achieve the desired amount (mol %) of Mo added into the dielectric thin film, it is sufficient to add twice the amount (mol %) of Mo to the target.

上記実施例のように作成した薄膜コンデンサに
おいてBaTiO3誘電体薄膜中のMo添加量(モル
%)を変化させた時、コンデンサの電流−電圧特
性は第2図のように変化する。第2図中のパラメ
ータはMoが添加量(モル%)を示す。BaTiO3
膜厚は5000Åである。Mo添加量が0.5モル%以上
5モル%までの時の特性は第2図中に示した0.5
モル%の場合の特性とほとんど同一であり、ま
た、Mo添加量が5モル%を超えるとBaTiO3膜は
急激に表面の荒れがひどくなり、同時にリーク電
流が極めて大きくなつて短絡状態に近くなる。一
般的にコンデンサの許容リーク電流の目安は10-9
A/mm2であり、25〜50Vの電圧までこの値以下の
リーク電流値であることが要求される。この観点
からすれば第2図におけるMo量0.1モル%の特性
と同0.15モル%の特性の差は極めて大きく、実用
上0.15モル%以上のMo添加が必要である。
When the amount (mol %) of Mo added in the BaTiO 3 dielectric thin film in the thin film capacitor fabricated as in the above embodiment is changed, the current-voltage characteristics of the capacitor change as shown in FIG. As for the parameters in FIG. 2, M o indicates the amount added (mol %). The BaTiO 3 film thickness is 5000 Å. The characteristics when the amount of Mo added is 0.5 mol% or more and up to 5 mol% are 0.5% as shown in Figure 2.
The characteristics are almost the same as those in the case of mol%, and when the amount of Mo added exceeds 5 mol%, the surface of the BaTiO 3 film suddenly becomes rough, and at the same time, the leakage current becomes extremely large, approaching a short-circuit state. Become. Generally, the guideline for allowable leakage current of capacitors is 10 -9
A/mm 2 , and the leakage current value is required to be below this value up to a voltage of 25 to 50V. From this point of view, the difference between the properties with an Mo content of 0.1 mol % and the properties with an Mo content of 0.15 mol % in FIG. 2 is extremely large, and it is practically necessary to add Mo in an amount of 0.15 mol % or more.

したがつて、本発明に従つて0.15モル%以上5
モル%以下のMoを添加したBaTiO3薄膜を使用す
れば、実用的観点から見て十分リーク電流の小さ
い薄膜コンデンサ用が実現できる。また先に述べ
たように、上記の組成の膜を得るには膜中に必要
な量の2倍の量すなわち0.3モル%以上10モル%
以下のMo量を添加したBaTiO3の粉末あるいは焼
結セラミツクをターゲツトに用いたスパツタリン
グ法により作成することができる。
Therefore, according to the present invention, at least 0.15 mol%5
By using a BaTiO 3 thin film to which less than mol % of Mo is added, a thin film capacitor with sufficiently small leakage current can be realized from a practical point of view. Also, as mentioned earlier, in order to obtain a film with the above composition, double the amount required in the film, that is, 0.3 mol% or more and 10 mol%.
It can be produced by a sputtering method using BaTiO 3 powder or sintered ceramic added with the following Mo amount as a target.

(実施例 2) 次に(Ba1-xSrx)TiO3のx=0.3,0.7,1.0の
それぞれの組成においてリーク電流の温度変化に
及ぼすMo添加の効果を調べた。
(Example 2) Next, the effect of Mo addition on the temperature change in leakage current was investigated in each composition of (Ba 1-x Sr x )TiO 3 where x=0.3, 0.7, and 1.0.

(Ba1-xSrx)TiO3のx=0.3,0.7,1.0の組成
の粉末ターゲツトとそれぞれに0.6モル%のMo
添加した粉末ターゲツトを用い、パラジウム膜を
蒸着したサフアイア基板上にスパツタリング法に
よつて成膜した。基板温度は600℃、膜厚は5000
Åとした。さらに上記誘電体膜上に金電極を形成
し、第1図に示す構造の薄膜コンデンサを作製し
た。各組成における50V印加時のリーク電流の温
度変化の0.3モル%Mo添加の有無による違いを第
3図にまとめた。Mo添加が無い場合、各組成に
おいてリーク電流は温度ともに増加し、75℃以上
の温度で許容リーク電流の目安である10-9A/3
mm2を超えている。これらの組成に0.3モル%のMo
を添加するとリーク電流はMo添加なしの試料よ
りも低い値となつている。室温から125℃の温度
範囲で10-9A/mm2を超えることはなく、むしろ
Mo添加によるリーク電流の抑制効果はより高温
域において顕著である。
Sputtering was performed on a sapphire substrate on which a palladium film was deposited using powder targets of (Ba 1-x Sr The film was formed by the method. Substrate temperature is 600℃, film thickness is 5000℃
It was set as Å. Further, a gold electrode was formed on the dielectric film to produce a thin film capacitor having the structure shown in FIG. Figure 3 summarizes the differences in temperature changes in leakage current when 50V is applied for each composition depending on whether 0.3 mol% Mo is added or not. In the absence of Mo addition , the leakage current increases with temperature for each composition, and at temperatures above 75°C, the allowable leakage current reaches 10 -9 A/3.
Exceeds mm2 . 0.3 mol% Mo in these compositions
When Mo is added, the leakage current is lower than that of the sample without Mo. It does not exceed 10 -9 A/mm 2 in the temperature range from room temperature to 125°C, but rather
The effect of suppressing leakage current by adding Mo is remarkable in a higher temperature range.

なお本実施例においても実施例1と同様にリー
ク電流の小さいMoの添加量は0.15モル%以上5
モル%以下であることを確認した。
In this example as well, as in Example 1, the amount of Mo with a small leakage current is 0.15 mol% or more5.
It was confirmed that it was less than mol%.

(発明の効果) 以上説明したように本発明の薄膜コンデンサの
誘電体膜として、0.15モル%以上5モル%以下の
Moを添加した(Ba1-xSrx)TiO3(0≦x≦1)
薄膜を使用しているので、従来技術の課題であつ
たリーク電流を極めて小さくすることができ、か
つ高い誘電率の薄膜が得られるので、より小型の
薄膜コンデンサが得られる。さらにMo添加によ
つてリーク電流の温度特性を改善でき、薄膜コン
デンサの信頼性を向上させる効果もある。
(Effects of the Invention) As explained above, the dielectric film of the thin film capacitor of the present invention contains 0.15 mol% or more and 5 mol% or less.
(Ba 1-x Sr x )TiO 3 with added Mo (0≦x≦1)
Since a thin film is used, leakage current, which was a problem in the prior art, can be made extremely small, and since a thin film with a high dielectric constant can be obtained, a smaller thin film capacitor can be obtained. Furthermore, the addition of Mo can improve the temperature characteristics of leakage current, which also has the effect of improving the reliability of thin film capacitors.

また本発明の製造方法によれば上記した誘電体
薄膜を容易に得ることができる効果がある。
Further, according to the manufacturing method of the present invention, the above dielectric thin film can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための実施例の構造
を示す断面図である。図において、 1……基板、2……下部電極、3……誘電体薄
膜、4……上部電極。 第2図は、Mo添加量によるBaTiO3薄膜の電流
−電圧特性の変化を示す図である。 第3図はモル%Mo添加による(Ba1-xSrx
TiO3,x=0.3,0.7,1.0組成の誘電体薄膜の50V
印加時のリーク電流−温度特性の変化を示す図で
ある。
FIG. 1 is a sectional view showing the structure of an embodiment for explaining the present invention. In the figure, 1...substrate, 2...lower electrode, 3...dielectric thin film, 4...upper electrode. FIG. 2 is a diagram showing changes in current-voltage characteristics of a BaTiO 3 thin film depending on the amount of Mo added. Figure 3 shows the addition of mol% Mo (Ba 1-x Sr x )
TiO 3 , x=0.3, 0.7, 1.0 composition dielectric thin film 50V
FIG. 3 is a diagram showing changes in leakage current-temperature characteristics during application.

Claims (1)

【特許請求の範囲】 1 基板上に下部電極、誘電体薄膜、上部電極を
形成してなる薄膜コンデンサにおいて、前記誘電
体薄膜が(Ba1-xSrx)TiO3(0≦x≦1.0)に0.15
モル%以上5モル%以下のMoを添加した組成を
有することを特徴とする薄膜コンデンサ用。 2 基板上に下部電極、誘電体薄膜、上部電極を
順次形成する工程を有する薄膜コンデンサの製造
方法において、0.3モル以上10モル%以下のMo
添加した(Ba1-xSrx)TiO3(0≦x≦1.0)の粉
末あるいはセラミツクをターゲツトとして用いた
スパツタリング法によつて誘電体薄膜を形成する
ことを特徴とする薄膜コンデンサの製造方法。
[Claims] 1. A thin film capacitor in which a lower electrode, a dielectric thin film, and an upper electrode are formed on a substrate, wherein the dielectric thin film is (Ba 1-x Sr x )TiO 3 (0≦x≦1.0). 0.15 to
A thin film capacitor characterized by having a composition containing Mo in an amount of mol % or more and 5 mol % or less. 2. A method for manufacturing a thin film capacitor that includes a step of sequentially forming a lower electrode, a dielectric thin film, and an upper electrode on a substrate, in which 0.3 mol or more and 10 mol% or less of Mo is added (Ba 1-x Sr x )TiO 3 1. A method for manufacturing a thin film capacitor, comprising forming a dielectric thin film by a sputtering method using powder or ceramic (0≦x≦1.0) as a target.
JP1072122A 1988-10-25 1989-03-23 Thin film capacitor and manufacture thereof Granted JPH02197108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072122A JPH02197108A (en) 1988-10-25 1989-03-23 Thin film capacitor and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26976188 1988-10-25
JP63-269761 1988-10-25
JP1072122A JPH02197108A (en) 1988-10-25 1989-03-23 Thin film capacitor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH02197108A JPH02197108A (en) 1990-08-03
JPH0587166B2 true JPH0587166B2 (en) 1993-12-15

Family

ID=17476783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072122A Granted JPH02197108A (en) 1988-10-25 1989-03-23 Thin film capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02197108A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500611B2 (en) * 1993-06-17 1996-05-29 日本電気株式会社 High dielectric constant thin film
EP2426684A1 (en) 2010-09-02 2012-03-07 Mitsubishi Materials Corporation Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
EP2608219B1 (en) 2011-12-20 2015-03-04 Mitsubishi Materials Corporation Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method

Also Published As

Publication number Publication date
JPH02197108A (en) 1990-08-03

Similar Documents

Publication Publication Date Title
US5122923A (en) Thin-film capacitors and process for manufacturing the same
EP0415751B1 (en) Thin film capacitor and manufacturing method thereof
US7382013B2 (en) Dielectric thin film, dielectric thin film device, and method of production thereof
US7545625B2 (en) Electrode for thin film capacitor devices
JP3129175B2 (en) Method for manufacturing (Ba, Sr) TiO3 thin film capacitor
JP2676304B2 (en) Ferroelectric thin film manufacturing method
JPH03101260A (en) Thin film capacitor
JPH0687493B2 (en) Thin film capacitors
JPH0587166B2 (en)
JP2874512B2 (en) Thin film capacitor and method of manufacturing the same
JP2500611B2 (en) High dielectric constant thin film
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JP2000504882A (en) High dielectric constant barium strontium niobium oxide applied to integrated circuits
JPH0644601B2 (en) Thin film capacitor and manufacturing method thereof
JPH10214947A (en) Thin film dielectric element
JPH03253065A (en) Thin-film capacitor and its manufacture
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JP2001189422A (en) Method of manufacturing thin-film capacitor
JP3120568B2 (en) Thin film capacitors
JP2003063860A (en) Sintered compact target, dielectric thin film using the same and method for manufacturing the same, and electronic component using the same
JPH0687492B2 (en) Thin film capacitor and manufacturing method thereof
JPH0265111A (en) Thin-film capacitor and manufacture thereof
US20040245602A1 (en) Method of fabricating metal-insulator-metal capacitor (MIM) using lanthanide-doped HfO2
JPH0788219B2 (en) Method for manufacturing high dielectric constant thin film
JP3172665B2 (en) Dielectric thin film capacitor element and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19940705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 16