JPH0788219B2 - Method for manufacturing high dielectric constant thin film - Google Patents

Method for manufacturing high dielectric constant thin film

Info

Publication number
JPH0788219B2
JPH0788219B2 JP2055444A JP5544490A JPH0788219B2 JP H0788219 B2 JPH0788219 B2 JP H0788219B2 JP 2055444 A JP2055444 A JP 2055444A JP 5544490 A JP5544490 A JP 5544490A JP H0788219 B2 JPH0788219 B2 JP H0788219B2
Authority
JP
Japan
Prior art keywords
film
dielectric constant
thin film
temperature
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2055444A
Other languages
Japanese (ja)
Other versions
JPH03257020A (en
Inventor
正吾 松原
洋一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2055444A priority Critical patent/JPH0788219B2/en
Publication of JPH03257020A publication Critical patent/JPH03257020A/en
Publication of JPH0788219B2 publication Critical patent/JPH0788219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜コンデンサに用いる高誘電率薄膜の製造方
法に関する。
The present invention relates to a method for producing a high dielectric constant thin film used in a thin film capacitor.

(従来の技術) 集積回路技術の発達によって電子回路がますます小形化
しており、各種電子回路に必須の回路素子であるコンデ
ンサの小形化も一段と重要になっている。このため誘電
体薄膜を用いて薄膜コンデンサが広く利用されている。
薄膜コンデンサに使用される誘電体薄膜には何よりも第
一に高い絶縁性すなわちリーク電流が小さいことが要求
され、このため従来広く利用されている材料はSiO2、Si
3N4、Al2O3等のような誘電率がたかだか10以下の材料に
限られている。ところが、コンデンサ以外の回路素子特
にトランジスタ等の能動素子の小形化の進歩は目覚まし
く、コンデンサに対してもより一層の小形化が強く望ま
れている。
(Prior Art) With the development of integrated circuit technology, electronic circuits are becoming smaller and smaller, and it is becoming more important to make capacitors, which are indispensable circuit elements for various electronic circuits, smaller. Therefore, thin film capacitors using dielectric thin films are widely used.
First and foremost, the dielectric thin film used for thin film capacitors is required to have high insulation properties, that is, a small leak current. Therefore, materials widely used in the past are SiO 2 and Si.
It is limited to materials with a dielectric constant of at most 10 such as 3 N 4 and Al 2 O 3 . However, the progress in miniaturization of circuit elements other than capacitors, in particular, active elements such as transistors is remarkable, and further miniaturization of capacitors is strongly desired.

薄膜コンデンサを小形化するためには誘電率の大きな誘
電体薄膜を開発することが必要である。化学式ABO3で表
わされるペロブスカイト型酸化物であるBaTiO3、SrTi
O3、PbTiO3等を主体とした材料は単結晶あるいはセラミ
ックにおいて100以上10000にも及び誘電率を有すること
が知られており、セラミック・コンデンサに広く用いら
れている。これらの材料の薄膜化は上述の薄膜コンデン
サの小形化の目的に極めて有効であり、かなり以前から
研究が行なわれている。それらの中で比較的良好な特性
が得られている例としては、プロシーディング・オブ・
アイ・イー・イー・イー(Proceedings of the IEEE)
第59巻10号1440−1447頁に所載の論文があり、スパッタ
リング法による成膜および熱処理を行ったBaTiO3薄膜で
16(室温で作製)から1900(1200℃で熱処理)の誘電率
が得られている。またProc.35th.Electronic Component
s Conferens219−225頁では(Ba0.28Sr0.72)TiO3薄膜
(700℃で成膜)で1100の誘電率が得られている。
In order to miniaturize thin film capacitors, it is necessary to develop a dielectric thin film with a large dielectric constant. BaTiO 3 , SrTi, which is a perovskite type oxide represented by the chemical formula ABO 3.
It is known that a material mainly containing O 3 , PbTiO 3 or the like has a dielectric constant of 100 or more and 10,000 or more in a single crystal or a ceramic, and is widely used for a ceramic capacitor. The thinning of these materials is extremely effective for the purpose of miniaturizing the above-mentioned thin film capacitor, and research has been conducted for a long time. Among these, as an example where relatively good characteristics are obtained, the proceeding of
Proceedings of the IEEE
Volume 59, No. 10, pp. 1440-1447, has a paper published on a BaTiO 3 thin film formed by sputtering and heat treatment.
Dielectric constants of 16 (prepared at room temperature) to 1900 (heat treated at 1200 ° C) have been obtained. Also Proc. 35th Electronic Component
s Conferens pp. 219-225 , a (Ba 0.28 Sr 0.72 ) TiO 3 thin film (deposited at 700 ° C.) has a dielectric constant of 1100.

(発明が解決しようとする課題) このように(Ba,Sr)TiO3系の薄膜で高い誘電率を得る
ためには700℃以上の成膜温度あるいは熱処理温度が必
要であるが、膜を成膜温度以上高温で処理すると絶縁性
が劣化し、薄膜コンデンサに使用される場合の実用的電
圧におけるリーク電流が大きいため実用化に至っていな
い。上記の絶縁性の劣化は高温熱処理中の膜の結晶化に
伴う体積変化、あるいは膜と基板との熱膨張係数差によ
って冷却過程で発生する微小なクラックやボイドに起因
する。このような問題を解決するためには少なくとも60
0℃以下の低温で成膜する必要がある。しかし、例えば
従来のBaTiO3膜では600℃成膜された場合、誘電率はた
かだか200程度である。
(Problems to be Solved by the Invention) As described above, in order to obtain a high dielectric constant with a (Ba, Sr) TiO 3 -based thin film, a film formation temperature or a heat treatment temperature of 700 ° C. or higher is required. If it is processed at a temperature higher than the film temperature, the insulating property deteriorates, and the leakage current at a practical voltage when used in a thin film capacitor is large, so it has not been put to practical use. The above-mentioned deterioration of the insulating property is caused by a volume change accompanying the crystallization of the film during the high temperature heat treatment, or a minute crack or a void generated in the cooling process due to the difference in the thermal expansion coefficient between the film and the substrate. At least 60 to solve such problems
It is necessary to form a film at a low temperature of 0 ° C. or less. However, for example, when the conventional BaTiO 3 film is formed at 600 ° C., the dielectric constant is about 200 at most.

本発明は薄膜コンデンサとして実用的な400以上の誘電
率を有する膜を600℃以下の低温で作製し、小型の薄膜
コンデンサを実現することを目的としている。
An object of the present invention is to realize a small-sized thin film capacitor by producing a film having a dielectric constant of 400 or more, which is practical as a thin film capacitor, at a low temperature of 600 ° C. or lower.

(課題を解決するための手段) 上記問題点を解決するために本発明の高誘電率膜の製造
方法は所定の組成に秤量したBaCO3、SrCO3、TiO2からな
る混合粉末を800℃以上1000℃以下で仮焼してターゲッ
トとして用い、400℃以上600℃以下の基板温度でスパッ
タリング法によって作製することを特徴として構成され
る。なお、上記したスパッタリング法としてはRFスパッ
タ法、イオンビームスパッタ法のいずれを用いても有効
である。
(Means for Solving the Problems) In order to solve the above problems, the method for producing a high dielectric constant film of the present invention is a mixed powder consisting of BaCO 3 , SrCO 3 , and TiO 2 weighed to a predetermined composition and having a temperature of 800 ° C. or higher. It is characterized in that it is prepared by a sputtering method at a substrate temperature of 400 ° C. or more and 600 ° C. or less after being calcined at 1000 ° C. or less and used as a target. Note that any of the RF sputtering method and the ion beam sputtering method is effective as the above-described sputtering method.

(実施例1) 次に、本発明について図面を参照して説明する。第1図
は本発明の一実施例の構造を示す断面図である。第1図
に示すようにシリコン、表面に絶縁層を有するシリコ
ン、あるいはサファイアなどの基板1の上に下部電極2
として白金、パラジウム、モリブデン等の高融点金属あ
るいは金属シリサイドから選ばれた材料の膜を形成し、
その上に誘電体層3を形成し、さらにその上に上部電極
4としてアルミニウムあるいは金の膜を形成する。誘電
体層3は出発原料のBaCO3、SrCO3、TiO2を(Ba1-xSrx
TiO3のx=0,0.1,0.2,0.3,0.4,0.5,0.6,0.7.0.8,0.9,1.
0の組成に秤量し900℃で仮焼した粉末ターゲットを用い
てスパッタリング法により膜厚2000Å形成した。基板温
度は600℃とし、スパッタガスにはAr/O2=90/10の混合
ガスを用いた。
Example 1 Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. As shown in FIG. 1, a lower electrode 2 is formed on a substrate 1 such as silicon, silicon having an insulating layer on the surface, or sapphire.
As a film of a material selected from refractory metals such as platinum, palladium, molybdenum or metal silicide,
A dielectric layer 3 is formed thereon, and an aluminum or gold film is further formed thereon as an upper electrode 4. The dielectric layer 3 is composed of starting materials BaCO 3 , SrCO 3 , and TiO 2 (Ba 1-x Sr x ).
TiO 3 x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7.0.8, 0.9, 1.
A film thickness of 2000 Å was formed by a sputtering method using a powder target which was weighed to a composition of 0 and calcined at 900 ° C. The substrate temperature was 600 ° C., and a mixed gas of Ar / O 2 = 90/10 was used as the sputtering gas.

上記実施例のように作製した誘電体膜の誘電率は膜の組
成に対して第2図のように変化する。なお、膜の組成を
ラザフォード・バック・スキャタリング(RBS)で分析
したところ、ターゲット組成と一致することを確認して
いる。
The dielectric constant of the dielectric film manufactured as in the above example changes with the composition of the film as shown in FIG. When the composition of the film was analyzed by Rutherford back scattering (RBS), it was confirmed that it was in agreement with the target composition.

(Ba1-xSrx)TiO3膜の誘電率は組成に依存し、x=0.5
で最大値980を示した。
The dielectric constant of the (Ba 1-x Sr x ) TiO 3 film depends on the composition, and x = 0.5.
The maximum value was 980.

薄膜コンデンサを作製する場合には、誘電体膜の誘電率
をε、破壊強度をEbとするとε・Ebは性能指数として表
わされる。現在薄膜コンデンサの誘電体膜にはシリコン
窒化膜が用いられているが、将来的にはシリコン窒化膜
の10倍以上のキャパシタ容量が望まれている。シリコン
窒化膜の誘電率は約8、破壊強度は約6MV/cmである。一
方(Ba,Sr)TiO3膜は破壊強度が約1MV/cmであるからシ
リコン窒化膜の10倍以上の材料指数ε・Ebを得るために
は約500以上の誘電率を有する必要がある。
When manufacturing a thin film capacitor, ε · Eb is expressed as a figure of merit, where ε is the dielectric constant of the dielectric film and Eb is the breaking strength. Currently, a silicon nitride film is used as a dielectric film of a thin film capacitor, but in the future, a capacitor capacity 10 times or more that of a silicon nitride film is desired. The silicon nitride film has a dielectric constant of about 8 and a breaking strength of about 6 MV / cm. On the other hand, since the (Ba, Sr) TiO 3 film has a breaking strength of about 1 MV / cm, it is necessary to have a dielectric constant of about 500 or more in order to obtain a material index ε · Eb 10 times or more that of a silicon nitride film.

第2図に示すように本実施例における(Ba1-xSrx)TiO3
膜は0.4≦x≦0.7の組成範囲で誘電率は500以上を示
し、上記の薄膜コンデンサ用誘電体膜としての材料指数
を満足するものである。
As shown in FIG. 2, (Ba 1-x Sr x ) TiO 3 in this example.
The film has a dielectric constant of 500 or more in the composition range of 0.4 ≦ x ≦ 0.7, and satisfies the above material index as a dielectric film for a thin film capacitor.

(実施例2) 次に(Ba1-xSrx)TiO3のx=0.4,0.5,0.7の組成におい
て誘電率、リーク電流に及ぼす成膜温度の効果を調べ
た。
(Example 2) Next, the effect of the film forming temperature on the dielectric constant and the leakage current was investigated in the composition of (Ba 1-x Sr x ) TiO 3 at x = 0.4, 0.5, 0.7.

(Ba1-xSrx)TiO3のx=0.5の組成に秤量したBaCO3、Sr
CO3、TiO2からなる混合粉末を900℃で仮焼してターゲッ
トとして用い、基板温度300〜900℃でパラジウム膜を蒸
着したサファイア基板上にスパッタリング法によって成
膜した。膜厚は2000Åとした。さらに上記誘電体膜上に
金電極を形成し、第1図に示す構造の薄膜コンデンサを
作製した。各基板温度で成膜した場合の誘電体膜の誘電
率とリーク電流をそれぞれ第3図、第4図にまとめた。
誘電率は基板温度とともに増加し、基板温度400℃以上
で500以上の誘電率となる。ただし、リーク電流は600℃
を越えると急激に増大し、薄膜コンデンサとして使用は
不可能である。従って(Ba,Sr)TiO3をスパッタ成膜す
る基板温度としては400℃以上600℃以下の範囲であるこ
とが望ましい。
(Ba 1-x Sr x ) TiO 3 Weighed in a composition of x = 0.5 BaCO 3 , Sr
A mixed powder of CO 3 and TiO 2 was calcined at 900 ° C. and used as a target, and was formed by sputtering on a sapphire substrate on which a palladium film was deposited at a substrate temperature of 300 to 900 ° C. The film thickness was 2000Å. Further, a gold electrode was formed on the dielectric film to manufacture a thin film capacitor having the structure shown in FIG. The dielectric constant and the leak current of the dielectric film formed at each substrate temperature are summarized in FIGS. 3 and 4, respectively.
The dielectric constant increases with the substrate temperature, and becomes 500 or more at a substrate temperature of 400 ° C or higher. However, the leak current is 600 ℃
When it exceeds, it increases rapidly and cannot be used as a thin film capacitor. Therefore, it is desirable that the temperature of the substrate on which (Ba, Sr) TiO 3 is formed by sputtering is in the range of 400 ° C to 600 ° C.

(実施例3) 次にスパッタリング法に用いる粉末ターゲットの仮焼温
度が誘電体膜の誘電率に及ぼす効果を調べた。
Example 3 Next, the effect of the calcination temperature of the powder target used in the sputtering method on the dielectric constant of the dielectric film was examined.

(Ba1-xSrx)TiO3のx=0.5の組成に秤量したBaCO3、Sr
CO3、TiO2からなる混合粉末を500〜1400℃で仮焼してタ
ーゲットとして用い、基板温度600℃でパラジウム膜を
蒸着したサファイア基板上にスパッタリング法によって
成膜した。膜厚は2000Åとした。さらに上記誘電体膜上
に金電極を形成し、第1図に示す構造の薄膜コンデンサ
を作製した。各温度で混合粉末を仮焼してターゲットと
して用いた場合の誘電率を第5図にまとめた。誘電率は
ターゲット粉の仮焼温度に依存し、700〜1000℃で500以
上となる。但し、リーク電流はターゲット粉の仮焼温度
に依らず10-8A/cm2のレベルである。従ってターゲット
粉の仮焼温度は700℃以上1000℃以下が良い。
(Ba 1-x Sr x ) TiO 3 Weighed in a composition of x = 0.5 BaCO 3 , Sr
A mixed powder of CO 3 and TiO 2 was calcined at 500 to 1400 ° C. and used as a target, and a palladium film was deposited at a substrate temperature of 600 ° C. to form a film on a sapphire substrate by a sputtering method. The film thickness was 2000Å. Further, a gold electrode was formed on the dielectric film to manufacture a thin film capacitor having the structure shown in FIG. The dielectric constants when the mixed powder was calcined at each temperature and used as a target are summarized in FIG. The dielectric constant depends on the calcination temperature of the target powder, and is 500 or more at 700 to 1000 ° C. However, the leak current is at a level of 10 -8 A / cm 2 regardless of the calcination temperature of the target powder. Therefore, the calcination temperature of the target powder is preferably 700 ° C or higher and 1000 ° C or lower.

(発明の効果) 以上説明したように本発明によれば600℃以下の成膜温
度で誘電率500以上、かつ高絶縁性の誘電体膜を作製で
き、従来の薄膜コンデンサに比べて小型化、高容量化を
実現できる。
(Effects of the Invention) As described above, according to the present invention, a dielectric film having a dielectric constant of 500 or more and a high insulating property can be produced at a film forming temperature of 600 ° C. or less, and can be made smaller than a conventional thin film capacitor, Higher capacity can be realized.

【図面の簡単な説明】 第1図は薄膜コンデンサの構造を示す断面図、第2図は
(Ba1-xSrx)TiO3膜の組成xと誘電率の関係を示す図、
第3図は成膜時の基板温度と誘電率の関係を示す図、第
4図は成膜時基板温度とリーク電流の関係を示す図、第
5図はターゲット粉末の仮焼温度と(Ba0.5Sr0.5)TiO3
膜の誘電率との関係を示す図。 1……基板、2……下部電極、3……誘電体膜、4……
上部電極。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing the structure of a thin film capacitor, and FIG. 2 is a view showing the relationship between the composition x of a (Ba 1-x Sr x ) TiO 3 film and the dielectric constant,
FIG. 3 shows the relationship between the substrate temperature and the dielectric constant during film formation, FIG. 4 shows the relationship between the substrate temperature during film formation and the leakage current, and FIG. 5 shows the calcination temperature of the target powder (Ba 0.5 Sr 0.5 ) TiO 3
The figure which shows the relationship with the dielectric constant of a film. 1 ... Substrate, 2 ... Lower electrode, 3 ... Dielectric film, 4 ...
Upper electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の組成に秤量したBaCO3、SrCO3、TiO2
からなる混合粉末を800℃以上1000℃以下の温度で仮焼
してターゲットとして用い、基板温度400℃以上600℃以
下でスパッタリング法により作製することを特徴とする
高誘電率薄膜の製造方法。
1. BaCO 3 , SrCO 3 , and TiO 2 weighed to a predetermined composition.
A method for producing a high dielectric constant thin film, which comprises: calcination of a mixed powder consisting of (4) at a temperature of 800 ° C. or higher and 1000 ° C. or lower to be used as a target, and by sputtering at a substrate temperature of 400 ° C. or higher and 600 ° C. or lower.
JP2055444A 1990-03-06 1990-03-06 Method for manufacturing high dielectric constant thin film Expired - Fee Related JPH0788219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055444A JPH0788219B2 (en) 1990-03-06 1990-03-06 Method for manufacturing high dielectric constant thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055444A JPH0788219B2 (en) 1990-03-06 1990-03-06 Method for manufacturing high dielectric constant thin film

Publications (2)

Publication Number Publication Date
JPH03257020A JPH03257020A (en) 1991-11-15
JPH0788219B2 true JPH0788219B2 (en) 1995-09-27

Family

ID=12998765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055444A Expired - Fee Related JPH0788219B2 (en) 1990-03-06 1990-03-06 Method for manufacturing high dielectric constant thin film

Country Status (1)

Country Link
JP (1) JPH0788219B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063860A (en) * 2001-08-23 2003-03-05 Taiyo Yuden Co Ltd Sintered compact target, dielectric thin film using the same and method for manufacturing the same, and electronic component using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130678A (en) * 1984-07-19 1986-02-12 Sony Corp Composite body consisting of ti metallic layer and ba1-xsrxtio3 film and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130678A (en) * 1984-07-19 1986-02-12 Sony Corp Composite body consisting of ti metallic layer and ba1-xsrxtio3 film and its production

Also Published As

Publication number Publication date
JPH03257020A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
KR100297210B1 (en) High Temperature Electrode-Barriers for Ferroelectric Capacitors and Other Capacitor Structures
US5122923A (en) Thin-film capacitors and process for manufacturing the same
KR100417743B1 (en) Ferroelectric memory with ferroelectric thin film having thickness of 90 nanometers or less, and method of making same
KR100373079B1 (en) Lead germanate ferroelectric structure with multi-layered electrode and deposition method for same
US4631633A (en) Thin film capacitors and method of making the same
US20080106846A1 (en) Electrode for thin film capacitor devices
JPH0745475A (en) Thin film capacitor and fabrication thereof
JPH08186182A (en) Ferroelectric thin-film element
JPH0644601B2 (en) Thin film capacitor and manufacturing method thereof
JPH0788219B2 (en) Method for manufacturing high dielectric constant thin film
JPH10214947A (en) Thin film dielectric element
JP2500611B2 (en) High dielectric constant thin film
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JPH10144867A (en) Thin film capacitor
US6312567B1 (en) Method of forming a (200)-oriented platinum layer
JPH03257857A (en) Thin film capacitor and manufacture thereof
JPH06140570A (en) Electronic component having dielectric thin film of high dielectric constant and manufacture thereof
JPH0587166B2 (en)
GB2314348A (en) Thin film formation of a dielectric
JP2001189422A (en) Method of manufacturing thin-film capacitor
JP3267278B2 (en) Method for manufacturing semiconductor device
JPH05326314A (en) Thin film capacitor
JPH0652775B2 (en) Thin film capacitor and manufacturing method thereof
JP3267277B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees