JPH0297629A - Production of metal-based composite material member - Google Patents

Production of metal-based composite material member

Info

Publication number
JPH0297629A
JPH0297629A JP24852888A JP24852888A JPH0297629A JP H0297629 A JPH0297629 A JP H0297629A JP 24852888 A JP24852888 A JP 24852888A JP 24852888 A JP24852888 A JP 24852888A JP H0297629 A JPH0297629 A JP H0297629A
Authority
JP
Japan
Prior art keywords
compact
molded body
composite material
reinforcing material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24852888A
Other languages
Japanese (ja)
Other versions
JP2679160B2 (en
Inventor
Takashi Morikawa
隆 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63248528A priority Critical patent/JP2679160B2/en
Publication of JPH0297629A publication Critical patent/JPH0297629A/en
Application granted granted Critical
Publication of JP2679160B2 publication Critical patent/JP2679160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce the title composite material member with only the specified surface part reinforced by integrally forming a reinforcing material compact by suction on the specified surface of a porous compact consisting of fine metal pieces, and infiltrating a molten matrix metal into the composite compact. CONSTITUTION:Al alloy powder 10 (having about 50mu average particle diameter) is cold-compacted into a discoid porous compact 12 having about 50% volume rate, which is placed in a suction compacter 14. A dispersion 18 of alumina-silica short fibers 16 and colloidal silica is sucked by the compact 12 to integrally form a reinforcing material compact 20 (having about 0.7mm thickness and about 10% fiber volume rate) consisting of the fibers 16 on one surface of the porous compact 12. The composite compact 22 is placed in the cavity 28 of the casting mold 26 of a high-pressure casting device 24, molten Al alloy 30 is injected, and the compact is compressed at about 1000kg/cm<2> by a plunger 32 and kept at that pressure until the molten Al is solidified. The solidified body in the mold is taken out and machined, and a composite material member 38 is easily produced at a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属基複合材料部材の製造方法に係り、更に
詳細には所定の表面部のみが強化材にて複合強化された
金属基複合材料部材の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a metal matrix composite material member, and more specifically to a metal matrix composite material member in which only a predetermined surface portion is compositely reinforced with a reinforcing material. It pertains to the manufacturing method.

従来の技術及び発明が解決しようとする課題セラミック
繊維などを強化材とし、アルミニウム合金などをマトリ
ックス金属とする金属基複合材料の製造方法の一つとし
て、鋳型内に強化材の成形体を配置し、該鋳型内にマト
リックス金属の溶湯を導入し、マトリックス金属の溶湯
を鋳型内にて加圧しつつ凝固させる加圧鋳造法が従来よ
り知られている。この加圧鋳造法によれば、大型の真空
創成装置等を必要とする拡散接合法などの場合に比して
マトリックス金属と強化材との密着性に優れた任意の形
状の複合材料部材を低廉に製造することができる。
Problems to be Solved by Prior Art and Inventions One of the methods for producing metal matrix composite materials in which ceramic fibers are used as reinforcement materials and aluminum alloys are used as matrix metals is to place a molded object of the reinforcement material in a mold. A pressure casting method is conventionally known in which a molten matrix metal is introduced into the mold, and the molten matrix metal is solidified while being pressurized within the mold. According to this pressure casting method, composite material members of arbitrary shapes with excellent adhesion between the matrix metal and the reinforcing material can be produced at low cost compared to diffusion bonding methods that require large vacuum generation equipment, etc. can be manufactured.

かかる加圧鋳造法により特に表面部のみが強化材にて複
合強化された複合材料部材を製造するためには、複合強
化されるべき表面部の形状に対応する厚さの小さい所定
の形状の強化材成形体を形成し、鋳造中もその成形体を
鋳型内の所定の位置に保持しなければならない。
In order to manufacture a composite material member in which only the surface portion is compositely reinforced with a reinforcing material using such pressure casting method, it is necessary to strengthen a predetermined shape with a small thickness corresponding to the shape of the surface portion to be compositely reinforced. A compact of material must be formed and the compact must be held in place within the mold during casting.

しかし厚さの小さい強化材成形体は脆弱であるため、そ
の取扱い時に損傷したり、鋳造時の溶湯の圧力等に起因
して変形したり割れたりし易く、更には鋳型内にて変位
し易く、従って所定の表面部のみが強化材にて適正に複
合強化された複合材料部材を従来の加圧鋳造法により製
造することは非常に困難である。またかかる問題を回避
すべく、複合強化されるべき表面部よりも遥かに厚さの
大きい強化材成形体を用いて加圧鋳造を行うことが考え
られるが、その場合には裏面部以外の強化されることを
要しない領域も強化材にて複合強化されてしまうため、
複合材料部材を低置に製造することが困難であるのみな
らず、かかる裏面部以外の領域に対し容易に且能率よく
加工を行うことが困難になる。
However, because the reinforcing material molded body is small in thickness and is fragile, it is easily damaged during handling, deformed or cracked due to the pressure of the molten metal during casting, and is also easily displaced within the mold. Therefore, it is very difficult to manufacture a composite material member in which only a predetermined surface portion is properly reinforced with a reinforcing material by the conventional pressure casting method. In addition, in order to avoid such problems, it is possible to perform pressure casting using a molded reinforcing material that is much thicker than the surface part that is to be compositely reinforced, but in that case, reinforcement of parts other than the back part Areas that do not need to be strengthened are compositely reinforced with reinforcing materials,
Not only is it difficult to manufacture the composite material member in a low position, but it is also difficult to easily and efficiently process regions other than the back surface portion.

また本願出願人と同一の出願人の出願にかかる特開昭5
9−23832号公報に記載されている如く、強化材と
溶媒との混合物を鋳型のモールドキャビティに着装し、
混合物を乾燥させ、モールドキャビティ内に金属溶湯を
注渇し、金属溶湯をモールドキャビティ内にて加圧しつ
つ凝固させる複合材料部材の製造方法が既に知られてお
り、この方法によれば従来の一般的な加圧鋳造法に於け
る上述の如き種々の問題を解消し緩和することができる
In addition, Japanese Patent Application Laid-open No. 5
As described in Publication No. 9-23832, a mixture of reinforcing material and a solvent is installed in the mold cavity of the mold,
A method for producing composite material parts is already known, in which a mixture is dried, a molten metal is poured into a mold cavity, and the molten metal is solidified while being pressurized in the mold cavity. The various problems mentioned above in the pressure casting method can be solved and alleviated.

しかしこの方法に於ては、鋳型のモールドキャビティに
強化材を均一に付着させることが困難であるので、部材
の表面部を強化材にて均一に複合強化することが困難で
あり、またモールドキャビティに多量の強化材を付着さ
せることができないため、強化材にて複合強化される範
囲の大きさが比較的小さい範囲に制限されるという問題
がある。
However, in this method, it is difficult to uniformly apply the reinforcing material to the mold cavity of the mold, so it is difficult to uniformly and compositely strengthen the surface part of the component with the reinforcing material. Since it is not possible to attach a large amount of reinforcing material to the steel, there is a problem in that the area that can be compositely strengthened by the reinforcing material is limited to a relatively small area.

またこの方法に於ては、モールドキャビティに比較的多
量の強化材を付着させるためには溶媒にバインダを添加
せざるを得ず、そのため製造される部材の複合材料の領
域中にバインダが残存し晶く、そのことに起因して強度
の低下などをきたし、易く、またモールドキャビティに
強化材と溶媒との混合物を多量に着装しこれを乾燥させ
る工程に面倒な手作業及び長時間を要し、従って所定の
表面部のみが強化材にて良好に複合強化された複合材料
部材を容易に且能率よく製造することが困難である。
This method also requires the addition of a binder to the solvent in order to deposit a relatively large amount of reinforcing material in the mold cavity, so that the binder remains in the composite region of the manufactured part. The process of applying a large amount of the reinforcing material and solvent mixture to the mold cavity and drying it requires tedious manual work and a long time. Therefore, it is difficult to easily and efficiently manufacture a composite material member in which only a predetermined surface portion is well reinforced with a reinforcing material.

本発明は、従来の加圧鋳造法により表面部のみが強化材
にて複合強化された複合材料部材を製造する場合や上述
の先の提案にかかる複合材料部材の製造方法に於ける上
述の如き問題に鑑み、所定の表面部のみが強化材にて良
好に複合強化された複合材料部材を容品に且装置に製造
することのできる方法を提供することを目的としている
The present invention is applicable to the case of manufacturing a composite material member in which only the surface portion is compositely reinforced with a reinforcing material by the conventional pressure casting method, and the above-mentioned method of manufacturing a composite material member according to the above-mentioned previous proposal. In view of this problem, it is an object of the present invention to provide a method capable of producing a container and an apparatus with a composite material member in which only a predetermined surface portion is well reinforced with a reinforcing material.

課題を解決するだめの手段 上述の如き目的は、本発明によれば、金属の微細片にて
所定形状の多孔質成形体を形成し、離散的な強化材が分
散された分散流体に対し前記多孔質成形体を濾過要素と
して吸引成形を行うことにより前記多孔質成形体の所定
の表面にこれと一体的に前記強化材よりなる強化材成形
体を形成し、かくして形成された複合成形体にマトリッ
クス金属の溶湯を浸透させることを含む金属基複合材料
部材の製造方法によって達成される。
Means for Solving the Problems According to the present invention, the above-mentioned object is to form a porous molded body of a predetermined shape from fine pieces of metal, and to apply the above to a dispersion fluid in which discrete reinforcing materials are dispersed. By performing suction molding using the porous molded body as a filter element, a reinforcing material molded body made of the reinforcing material is integrally formed on a predetermined surface of the porous molded body, and the thus formed composite molded body is This is accomplished by a method of manufacturing a metal matrix composite component that includes infiltrating a molten matrix metal.

発明の作用及び効果 本発明の方法によれば、金属の微細片よりなる所定形状
の多孔質成形体が濾過要素として使用される吸引成形が
行われることにより、多孔質成形体の所定の表面にこれ
と一体的に強化材成形体が形成され、その複合成形体中
にマトリックス金属の成形体が浸透せしめられ複合化が
行われる。
Effects and Effects of the Invention According to the method of the present invention, suction molding is performed in which a porous molded body of a predetermined shape made of minute metal pieces is used as a filter element, so that a predetermined surface of the porous molded body is A reinforcing material molded body is formed integrally with this, and a matrix metal molded body is infiltrated into the composite molded body to perform compositing.

従って多孔質成形体は吸引成形段階に於ては濾過要素と
して作用し、複合強化されるべき表面部の形状に対応す
る所定形状の強化材成形体を容易に形成することができ
、また多孔質成形体は強化材成形体が形成された後には
強化材成形体を保持する担体として作用し、強化材成形
体が損傷したり変形したりすることを回避し、また鋳造
時にも強化材成形体を所定の位置に維持するので、所定
の表面部のみが強化材にて複合強化された複合材料部材
を容易に且装置に製造することができる。
Therefore, the porous molded body acts as a filtration element during the suction molding step, and it is possible to easily form a reinforcing material molded body with a predetermined shape corresponding to the shape of the surface area to be compositely reinforced. The compact acts as a carrier to hold the reinforcement compact after it has been formed, avoiding damage or deformation of the reinforcement compact, and also prevents the reinforcement compact from being damaged or deformed during casting. is maintained at a predetermined position, it is possible to easily manufacture a composite material member in which only a predetermined surface portion is compositely reinforced with a reinforcing material.

また本発明の方法に於ては、多孔質成形体を構成する金
属はマトリックス金属と同−若しくは実質的に同一の組
成の金属、又はこれと組成の点で異なる金属の何れであ
ってもよい。前者の場合には、複合材料以外の領域の金
属組成が複合材料のマトリックス金属の組成と大きく相
違することを回避することができる。また上述の後者の
場合には、多孔質成形体を構成する金属を適宜に選定す
ることにより、複合化と同時に部材の構成金属の組成を
マトリックス金属の組成とは異なる組成に積極的に変化
させ、これにより耐熱性、熱伝導性の如き種々の特性を
変化させることができる。
Further, in the method of the present invention, the metal constituting the porous molded body may be a metal having the same or substantially the same composition as the matrix metal, or a metal different from this in terms of composition. . In the former case, it can be avoided that the metal composition of the region other than the composite material differs greatly from the composition of the matrix metal of the composite material. In the latter case, by appropriately selecting the metals constituting the porous molded body, the composition of the constituent metals of the member can be actively changed to a composition different from that of the matrix metal at the same time as composite formation. This allows various properties such as heat resistance and thermal conductivity to be changed.

尚本発明の方法に於ては、多孔質成形体は任意の要領に
て形成されてよく、例えば特開昭63−4032号公報
に記載された方法により形成されてよい。
In the method of the present invention, the porous molded body may be formed in any desired manner, for example, by the method described in JP-A No. 63-4032.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 平均粒径50μのアルミニウム合金(JIS規格A20
24)粉末を冷間圧縮成形することにより、第1図に示
されている如く、直径30m5、厚さ10μmの寸法を
有し、アルミニウム合金粉末10の体積率が50%であ
る円板状の多孔質成形体12を形成した。
Example 1 Aluminum alloy with an average grain size of 50μ (JIS standard A20
24) By cold-compression molding the powder, a disc-shaped material having dimensions of 30 m5 in diameter and 10 μm in thickness, with a volume fraction of aluminum alloy powder 10 of 50%, as shown in FIG. A porous molded body 12 was formed.

次いで第2図に示されている如く、多孔質成形体12を
吸引成形装置14に装着し、アルミナ−シリカ短繊維1
6(イソライト工業株式会社製「カオウール」)及び繊
維の重量に対し10vt%のコロイダルシリカが分散さ
れた分散液18を用意し、該分散液に対し多孔質成形体
12を濾過要素として吸引成形を行い、これにより多孔
質成形体12の一方の円形の表面上にアルミナ−シリカ
短繊維よりなる強化材成形体20を一体的に形成した。
Next, as shown in FIG.
A dispersion liquid 18 in which colloidal silica of 10vt% based on the weight of the fibers is prepared is prepared, and the dispersion liquid is subjected to suction molding using the porous molded body 12 as a filtering element. As a result, a reinforcing material molded body 20 made of alumina-silica short fibers was integrally formed on one circular surface of the porous molded body 12.

この場合強化材成形体の厚さは0.71であり、その繊
維体積率は約10%であった。
In this case, the thickness of the reinforcing material molded body was 0.71, and its fiber volume fraction was about 10%.

次いでかくして形成された多孔質成形体12とこれと一
体をなす強化材成形体20とよりなる複合成形体22を
第3図に示されている如く、高圧鋳造装置24の鋳型2
6のモールドキャビティ28内に強化材成形体20がモ
ールドキャビティの壁面に当接し、強化材成形体が多孔
質成形体により所定の位置に維持されるよう配置した。
Next, the composite molded body 22 consisting of the porous molded body 12 thus formed and the reinforcing material molded body 20 integral therewith is placed in the mold 2 of a high-pressure casting device 24, as shown in FIG.
The reinforcing material molded body 20 was placed in the mold cavity 28 of No. 6 so as to be in contact with the wall surface of the mold cavity, and the reinforcing material molded body was maintained in a predetermined position by the porous molded body.

次いでモールドキャビティ内に750℃のアルミニウム
合金(JIS規格A2024)の溶湯30を注湯し、該
溶湯をプランジャ32により約1000kg/Q−にて
加圧し、その加圧状態を溶湯が完全に凝固するまで保持
した。溶湯が完全に凝固した後、鋳型内の凝固体をノッ
クアウトピン34により取出し、該凝固体に対し機械加
工を行うことにより、第4図に示されている如く、一方
の円形の表面部のみがアルミナ−シリカ短繊維にて複合
強化されたアルミニウム合金の複合材料36よりなり、
他の領域がアルミニウム合金のみよりなる円柱形の複合
材料部材38を形成した。
Next, a molten metal 30 of aluminum alloy (JIS standard A2024) at 750°C is poured into the mold cavity, and the molten metal is pressurized at about 1000 kg/Q- by a plunger 32, and the pressurized state is maintained until the molten metal completely solidifies. held until. After the molten metal has completely solidified, the solidified body in the mold is taken out using the knockout pin 34, and by machining the solidified body, only one circular surface portion is removed, as shown in FIG. Consisting of an aluminum alloy composite material 36 reinforced with alumina-silica short fibers,
A cylindrical composite material member 38 was formed in which the other region was made only of aluminum alloy.

次いで複合材料部材38を切断してその断面を観察した
ところ、複合材料36以外の領域には実質的にアルミナ
−シリカ短繊維は存在せず、複合材料36に於けるアル
ミナ−シリカ短繊維とアルミニウム合金との密着も良好
であることが認められた。
Next, when the composite material member 38 was cut and its cross section was observed, it was found that substantially no alumina-silica short fibers were present in the area other than the composite material 36, and that the alumina-silica short fibers and aluminum in the composite material 36 were not present. Good adhesion with the alloy was also observed.

また複合材料部材38より複合材料36の部分を試験面
とする摩擦摩耗試験用のブロック試験片を切出し、該ブ
ロック試験片を相手部材である球状黒鉛鋳鉄(JIS規
格FCD60)の円筒試験片の外周面と接触させ、それ
らの試験片の接触部に常温の潤滑油(キャッスルモータ
オイル5W−30)を供給しつつ、接触面圧20 kg
/ as” 、滑り速度0.3m/sにて円筒試験片を
1時間回転させる摩耗試験を行った。また比較の目的で
、試験片全体がこの実施例に於て使用されたアルミナ−
シリカ短繊維と同一のアルミナ−シリカ短繊維にて複合
強化されたブロック試験片を従来のプリフォームを使用
する高圧鋳造法及び機械加工により形成し、そのブロッ
ク試験片についても同一の条件にて摩耗試験を行った。
In addition, a block test piece for friction and wear testing using the composite material 36 as the test surface is cut out from the composite material member 38, and the block test piece is attached to the outer periphery of a cylindrical test piece of spheroidal graphite cast iron (JIS standard FCD60) that is a mating member. While supplying room temperature lubricating oil (castle motor oil 5W-30) to the contact area of these test pieces, the contact surface pressure was 20 kg.
A wear test was conducted in which the cylindrical specimen was rotated for 1 hour at a sliding speed of 0.3 m/s.
A block specimen composite reinforced with the same alumina-silica short fibers as the silica short fibers was formed by high-pressure casting and machining using a conventional preform, and the block specimens were also abraded under the same conditions. We conducted a test.

その結果この実施例のブロック試験片の摩耗痕深さは1
2μであり、比較例のブロック試験片の摩耗痕深さは1
3μであり、従ってこの実施例に於て製造された複合材
料部材の表面部の耐摩耗性は従来の方法により製造され
た複合材料部材と同等の耐摩耗性を有することが認めら
れた。
As a result, the wear scar depth of the block test piece of this example was 1
2μ, and the wear scar depth of the block test piece of the comparative example was 1
3μ, and therefore, it was confirmed that the wear resistance of the surface portion of the composite material member manufactured in this example was equivalent to that of the composite material member manufactured by the conventional method.

実施例2 平均繊維径30μ、平均繊維長lll1lのNi繊維を
冷間圧縮成形することにより、繊維の体積率が15%で
あり実施例1の多孔質成形体と同一の寸法を有する多孔
質成形体を形成した。
Example 2 By cold compression molding Ni fibers with an average fiber diameter of 30μ and an average fiber length of llll, a porous molded product with a fiber volume ratio of 15% and the same dimensions as the porous molded product of Example 1 was obtained. formed a body.

次いでこの多孔質成形体を用いて実施例1の場合と同様
の要領にて、多孔質成形体の一方の円形の表面にアルミ
ナ短繊維(IC1社「サフィール」)よりなる強化材成
形体を一体に形成した。尚強化材成形体の厚さは0.4
■であり、アルミナ短繊維の体積率は約2%であった。
Next, using this porous molded body, in the same manner as in Example 1, a reinforcing material molded body made of alumina short fibers ("Saphir", manufactured by IC1) was integrated on one circular surface of the porous molded body. was formed. The thickness of the reinforcing material molded body is 0.4
(2), and the volume percentage of short alumina fibers was about 2%.

次いでかくして形成された複合成形体を300℃に予熱
した後、その複合成形体をアルミニウム合金(JIS規
格AC8A)の溶湯中に30秒間浸漬保持した後溶湯よ
り引上げ、そのまま溶湯を凝固させた。
Next, the composite molded body thus formed was preheated to 300°C, and then immersed and held in a molten aluminum alloy (JIS standard AC8A) for 30 seconds, then pulled out of the molten metal, and the molten metal was allowed to solidify.

かくして得られた複合材料部材を切断しその断面を観察
したところ、円柱状の複合材料部材の一方の円形の表面
部がアルミナ短繊維にて複合強化されたアルミニウム合
金の複合材料よりなっており、それ以外の領域が実質的
にアルミナ短繊維を含まず、Niが部分的に分散状態に
て存在するアルミニウム合金よりなっており、該アルミ
ニウム合金のN1含有量は元のアルミニウム合金のNi
含(fQよりも高い値であることが認められた。
When the thus obtained composite material member was cut and its cross section was observed, one circular surface portion of the cylindrical composite material member was made of an aluminum alloy composite material composite reinforced with alumina short fibers. The other regions are made of an aluminum alloy that does not substantially contain alumina short fibers and in which Ni exists partially in a dispersed state, and the N1 content of the aluminum alloy is equal to the Ni content of the original aluminum alloy.
It was observed that the value was higher than fQ.

また実施例1の場合と同様高圧鋳造装置の鋳型内にこの
実施例に於て形成された複合成形体と同一の複合成形体
を強化材成形体の部分にて鋳型の内壁面に当接するよう
配置し、該鋳型内に730℃アルミニウム合金(JIS
規格AC8A)の溶湯を注渇し、実施例1の場合と同様
の高圧鋳造により複合材料部材を形成した、その結果こ
の複合材料部材もアルミナ短繊維にて複合強化されたア
ルミニウム合金の複合材料よりなる表面部と実質的にア
ルミニウム合金のみよりなる部分とよりなっており、該
アルミニウム合金の部分にはアルミナ短繊維は実質的に
存在せず、また該アルミニウム合金の部分のNi含有量
は元のNi含有量よりも高い値であることが認められた
In addition, as in the case of Example 1, a composite molded body identical to the composite molded body formed in this example was placed in a mold of a high-pressure casting apparatus in such a way that the reinforcing material molded body was brought into contact with the inner wall surface of the mold. 730°C aluminum alloy (JIS
A composite material member was formed by pouring molten metal of standard AC8A) and high-pressure casting in the same manner as in Example 1. As a result, this composite material member was also made of an aluminum alloy composite material reinforced with alumina short fibers. The aluminum alloy part has substantially no alumina short fibers, and the Ni content in the aluminum alloy part is lower than the original Ni. It was recognized that the value was higher than the content.

尚何れの複合材料部材に於ても、個々のアルミナ短繊維
の間にアルミニウム合金が良好に充填されており、また
それらの間の密着性も良好であることが認められた。
It was also found that in each composite material member, the aluminum alloy was well filled between the individual short alumina fibers, and the adhesion between them was also good.

以上に於ては本発明を二つの実施例について詳細に説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の範囲内にて他の種々の実施例が可能であ
ることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to two embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. This will be obvious to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明による金属基複合材!、′1
部材の製造方法の一連の工程を示す工程図である。 10・・・アルミニウム合金粉末、12・・・多孔質成
形体、14・・・吸引成形装置、16・・・アルミナ−
シリカ短繊維、18・・・分散液、20・・・強化材成
形体。 22・・・複合成形体、24・・・高圧鋳造装置、26
・・・鋳型、28・・・モールドキャビティ、30・・
・アルミニウム合金の溶湯、32・・・プランジャ、3
4・・・ノックアウトビン、36・・・複合材料、38
・・・複合材料部材 第1図
Figures 1 to 4 show metal matrix composites according to the present invention! ,'1
It is a process diagram showing a series of steps of a method for manufacturing a member. DESCRIPTION OF SYMBOLS 10... Aluminum alloy powder, 12... Porous compact, 14... Suction molding device, 16... Alumina
Silica short fibers, 18... Dispersion liquid, 20... Reinforcement molded body. 22... Composite molded body, 24... High pressure casting device, 26
...Mold, 28...Mold cavity, 30...
・Molten aluminum alloy, 32...Plunger, 3
4...Knockout bottle, 36...Composite material, 38
... Composite material member Figure 1

Claims (1)

【特許請求の範囲】[Claims] 金属の微細片にて所定形状の多孔質成形体を形成し、離
散的な強化材が分散された分散流体に対し前記多孔質成
形体を濾過要素として吸引成形を行うことにより前記多
孔質成形体の所定の表面にこれと一体的に前記強化材よ
りなる強化材成形体を形成し、かくして形成された複合
成形体にマトリックス金属の溶湯を浸透させることを含
む金属基複合材料部材の製造方法。
A porous molded body having a predetermined shape is formed from fine pieces of metal, and suction molding is performed on a dispersion fluid in which discrete reinforcing materials are dispersed, using the porous molded body as a filter element to obtain the porous molded body. A method for manufacturing a metal matrix composite material member, comprising: forming a reinforcing material molded body made of the reinforcing material integrally with the predetermined surface of the reinforcing material, and infiltrating a molten metal of a matrix metal into the thus formed composite molded body.
JP63248528A 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member Expired - Fee Related JP2679160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248528A JP2679160B2 (en) 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248528A JP2679160B2 (en) 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member

Publications (2)

Publication Number Publication Date
JPH0297629A true JPH0297629A (en) 1990-04-10
JP2679160B2 JP2679160B2 (en) 1997-11-19

Family

ID=17179528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248528A Expired - Fee Related JP2679160B2 (en) 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member

Country Status (1)

Country Link
JP (1) JP2679160B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187835A (en) * 1984-10-08 1986-05-06 Honda Motor Co Ltd Production of fiber reinforced metallic material
JPS634032A (en) * 1986-06-23 1988-01-09 Mitsubishi Electric Corp Preform for producing fiber-reinforced metal and its production
JPS63145852U (en) * 1987-03-16 1988-09-27

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187835A (en) * 1984-10-08 1986-05-06 Honda Motor Co Ltd Production of fiber reinforced metallic material
JPS634032A (en) * 1986-06-23 1988-01-09 Mitsubishi Electric Corp Preform for producing fiber-reinforced metal and its production
JPS63145852U (en) * 1987-03-16 1988-09-27

Also Published As

Publication number Publication date
JP2679160B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US2893102A (en) Article fabrication from powders
US5529620A (en) Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
JPS60168959A (en) Reinforced piston, its production and reinforcement material for piston
JPS6341966B2 (en)
US5141683A (en) Method of producing reinforced materials
JP2849710B2 (en) Powder forming method of titanium alloy
JPH0297629A (en) Production of metal-based composite material member
JPH0344432A (en) Manufacture of fiber reinforced metallic composite material
JPS62207832A (en) Copper-carbon composite material for semiconductor and its production
WO2023136101A1 (en) Method for manufacturing metal matrix composite material
JP2864390B2 (en) Preform manufacturing method of metal matrix composite material
JPS6221456A (en) Production of hollow casting
JPH0196353A (en) Material for electric discharge machining and its manufacture
JPH03138304A (en) Manufacture of porous sintered hard alloy
JPH01195249A (en) Modification of aluminum-silicon alloy of metal matrix composite
JPH03268855A (en) Manufacture of metal base composite material member
JPH035063A (en) Manufacture of mixed material
JPS606265A (en) Production of composite fiber member
JPS62127159A (en) Production of fiber reinforced metallic member
JPS63278661A (en) Production of aluminum product having reinforced composite part
JPH01165706A (en) Sintered compact having double phase structure and manufacture thereof
JPS62183956A (en) Production of metallic composite material
JPH02259031A (en) Manufacture of reinforced metallic composite material
JPS6267133A (en) Production of fiber reinforced metallic member
JPS6070139A (en) Manufacture of alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees