JP2679160B2 - Method for manufacturing metal-based composite material member - Google Patents

Method for manufacturing metal-based composite material member

Info

Publication number
JP2679160B2
JP2679160B2 JP63248528A JP24852888A JP2679160B2 JP 2679160 B2 JP2679160 B2 JP 2679160B2 JP 63248528 A JP63248528 A JP 63248528A JP 24852888 A JP24852888 A JP 24852888A JP 2679160 B2 JP2679160 B2 JP 2679160B2
Authority
JP
Japan
Prior art keywords
molded body
composite
reinforcing material
metal
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63248528A
Other languages
Japanese (ja)
Other versions
JPH0297629A (en
Inventor
隆 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63248528A priority Critical patent/JP2679160B2/en
Publication of JPH0297629A publication Critical patent/JPH0297629A/en
Application granted granted Critical
Publication of JP2679160B2 publication Critical patent/JP2679160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属基複合材料部材の製造方法に係り、更
に詳細には所定の表面部のみが強化材にて複合強化され
た金属基複合材料部材の製造方法に係る。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a metal-based composite material member, and more specifically, to a metal-based composite material member in which only a predetermined surface portion is composite-reinforced with a reinforcing material. Related to the manufacturing method of.

従来の技術及び発明が解決しようとする課題 セラミック繊維などを強化材とし、アルミニウム合金
などをマトリックス金属とする金属基複合材料の製造方
法の一つとして、鋳型内に強化材の成形体を配置し、該
鋳型内にマトリックス金属の溶湯を導入し、マトリック
ス金属の溶湯を鋳型内にて加圧しつつ凝固させる加圧鋳
造法が従来より知られている。この加圧鋳造法によれ
ば、大型の真空創成装置等を必要とする拡散接合法など
を場合に比してマトリックス金属と強化材との密着性に
優れた任意の形状の複合材料部材を低廉に製造すること
ができる。
As a method for producing a metal-based composite material in which a ceramic fiber or the like is used as a reinforcing material and an aluminum alloy or the like is used as a matrix metal, a molded body of the reinforcing material is placed in a mold. A conventionally known method is a pressure casting method in which a molten matrix metal is introduced into the mold and the molten matrix metal is solidified while being pressurized in the mold. According to this pressure casting method, it is possible to produce a composite material member of any shape with excellent adhesion between the matrix metal and the reinforcing material at a lower cost than the diffusion bonding method which requires a large vacuum generation device, etc. Can be manufactured.

かかる加圧鋳造法により特に表面部のみが強化材にて
複合強化された複合材料部材を製造するためには、複合
強化されるべき表面部の形状に対応する厚さの小さい所
定の形状の強化材成形体を形成し、鋳造中もその成形体
を鋳型内の所定の位置に保持しなければならない。
In order to manufacture a composite material member in which only the surface part is composite-reinforced with a reinforcing material by such a pressure casting method, it is necessary to strengthen a predetermined shape having a small thickness corresponding to the shape of the surface part to be composite-reinforced. A green compact must be formed and held in place in the mold during casting.

しかし厚さの小さい強化材成形体は脆弱であるため、
その取扱い時に損傷したり、鋳造時の溶湯の圧力等に起
因して変形したり割れたりし易く、更には鋳型内にて変
位し易く、従って所定の表面部のみが強化材にて適正に
複合強化された複合材料部材を従来の加圧鋳造法により
製造することは非常に困難である。またかかる問題を回
避すべく、複合強化されるべき表面部よりも遥かに厚さ
の大きい強化材成形体を用いて加圧鋳造を行うことが考
えられるが、その場合には表面部以外の強化されること
を要しない領域も強化材にて複合強化されてしまうた
め、複合材料部材を低廉に製造することが困難であるの
みならず、かかる表面部以外の領域に対し容易に且能率
よく加工を行うことが困難になる。
However, since the reinforcement material with a small thickness is fragile,
It is easily damaged during handling, is easily deformed or cracked due to the pressure of the molten metal during casting, and is easily displaced in the mold. It is very difficult to manufacture reinforced composite components by conventional pressure casting methods. In order to avoid such a problem, it is possible to perform pressure casting using a reinforcing material molded body having a thickness much larger than the surface portion to be composite strengthened. Not only is it difficult to manufacture a composite material member at low cost because the area that does not need to be processed is also composite-reinforced with the reinforcing material, and it is possible to easily and efficiently process the area other than the surface part. Will be difficult to do.

また本願出願人と同一の出願人の出願にかかる特開昭
59−23832号公報に記載されている如く、強化材と溶媒
との混合物を鋳型のモールドキャビティに着装し、混合
物を乾燥させ、モールドキャビティ内に金属溶湯を注湯
し、金属溶湯をモールドキャビティ内にて加圧しつつ凝
固させる複合材料部材の製造方法が既に知られており、
この方法によれば従来の一般的な加圧鋳造法に於ける上
述の如き種々の問題を解消し緩和することができる。
In addition, Japanese Patent Application Laid-Open No.
As described in 59-23832, a mixture of a reinforcing material and a solvent is attached to a mold cavity of a mold, the mixture is dried, molten metal is poured into the mold cavity, and the molten metal is poured into the mold cavity. A method for manufacturing a composite material member that is solidified while being pressurized is already known,
According to this method, the above-mentioned various problems in the conventional general pressure casting method can be solved and alleviated.

しかしこの方法に於ては、鋳型のモールドキャビティ
に強化材を均一に付着させることが困難であるので、部
材の表面部を強化材にて均一に複合強化することが困難
であり、またモールドキャビティに多量の強化材を付着
させることができないため、強化材にて複合強化される
範囲の大きさが比較的小さい範囲に制限されるという問
題がある。またこの方法に於ては、モールドキャビティ
に比較的多量の強化材を付着させるためには溶媒にバイ
ンダを添加せざるを得ず、そのため製造される部材の複
合材料の領域中にバインダが残存し易く、そのことを起
因して強度の低下などをきたし易く、またモールドキャ
ビティに強化材と溶媒との混合物を多量に着装しこれを
乾燥させる工程に面倒な手作業及び長時間を要し、従っ
て所定の表面部のみが強化材にて良好に複合強化された
複合材料部材を容易に且能率よく製造することが困難で
ある。
However, in this method, since it is difficult to uniformly attach the reinforcing material to the mold cavity of the mold, it is difficult to uniformly and compositely strengthen the surface portion of the member with the reinforcing material. Since a large amount of reinforcing material cannot be attached to the above, there is a problem that the size of the range of composite strengthening by the reinforcing material is limited to a relatively small range. Further, in this method, in order to deposit a relatively large amount of the reinforcing material on the mold cavity, the binder must be added to the solvent, so that the binder remains in the composite material region of the manufactured member. It is easy to cause a decrease in strength due to that, and the process of attaching a large amount of the mixture of the reinforcing material and the solvent to the mold cavity and drying the mixture requires a troublesome manual work and a long time. It is difficult to easily and efficiently manufacture a composite material member in which only a predetermined surface portion is composite-reinforced with a reinforcing material.

本発明は、従来の加圧鋳造法により表面部のみが強化
材にて複合強化された複合材料部材を製造する場合や上
述の先の提案にかかる複合材料部材の製造方法に於ける
上述の如き問題に鑑み、所定の表面部のみが強化材にて
良好に複合強化された複合材料部材を容易に且低廉に製
造することのできる方法を提供することを目的としてい
る。
The present invention relates to the case of manufacturing a composite material member in which only the surface portion is composite-reinforced with a reinforcing material by a conventional pressure casting method, and the above-described method in the method of manufacturing a composite material member according to the above-mentioned proposal. In view of the problem, it is an object of the present invention to provide a method capable of easily and inexpensively manufacturing a composite material member in which only a predetermined surface portion is reinforced by a reinforcing material.

課題を解決するための手段 上述の如き目的は、本発明によれば、金属の微細片に
て所定形状の多孔質成形体を形成し、強化材が分散され
た分散流体に対し前記多孔質成形体を濾過要素として吸
引成形を行い前記多孔質成形体の所定の表面にこれと一
体的に強化材成形体を形成することにより前記多孔質成
形体及び前記強化材成形体よりなる複合成形体を形成
し、前記強化材成形体が鋳型の内面に当接すると共に前
記多孔質成形体により前記鋳型内の所定の位置に維持さ
れるよう前記複合成形体を前記鋳型内に配置し、前記鋳
型内にマトリックス金属の溶湯を導入し、前記複合成形
体に前記マトリックス金属の溶湯を浸透させ、前記多孔
質成形体を前記マトリックス金属の溶湯により溶融させ
ることを含む金属基複合材料部材の製造方法によって達
成される。
Means for Solving the Problems According to the present invention, the above-mentioned object is to form a porous molded body having a predetermined shape with fine metal pieces, and to form the porous molded body with respect to a dispersion fluid in which a reinforcing material is dispersed. A composite molded body composed of the porous molded body and the reinforcing material molded body is formed by suction-molding the body as a filtering element and integrally forming a reinforcing material molded body on a predetermined surface of the porous molded body. Formed, the reinforcement molded body abuts the inner surface of the mold and the composite molded body is placed in the mold so as to be maintained at a predetermined position in the mold by the porous molded body, and in the mold. According to a method for producing a metal-based composite material member, which comprises introducing a molten matrix metal, infiltrating the molten matrix metal into the composite molded body, and melting the porous molded body with the molten matrix metal. Achieved.

発明の作用及び効果 本発明の方法によれば、金属の微細片よりなる所定形
状の多孔質成形体が濾過要素として使用される吸引成形
が行われることにより、多孔質成形体の所定の表面にこ
れと一体的に強化材成形体が形成され、その複合成形体
中にマトリックス金属の成形体が浸透せしめられること
により複合化が行われ、多孔質成形体はマトリックス金
属の溶湯によって溶解されることにより消滅する。
Effects and Effects of the Invention According to the method of the present invention, a porous molded body having a predetermined shape made of fine metal pieces is used as a filtering element, and suction molding is performed, whereby a predetermined surface of the porous molded body is formed. A reinforcing material compact is formed integrally with this, and a composite is formed by infiltrating a matrix metal compact into the composite compact, and the porous compact is melted by the molten matrix metal. Disappear by.

従って多孔質成形体は吸引成形段階に於ては濾過要素
として作用するので、複合強化されるべき表面部の形状
に対応する所定形状の強化材成形体を容易に形成するこ
とができ、また多孔質成形体は強化材成形体が形成され
た後には強化材成形体を保持する担体として作用するの
で、強化材成形体が損傷したり変形したりすることを回
避することができ、また多孔質成形体は複合化の工程に
於いては強化材成形体をそれが鋳型の内面に当接した状
態にて所定の位置に維持するので、所定の表面部のみが
強化材にて複合強化された複合材料部材を容易に且低廉
に製造することができ、更に多孔質成形体はマトリック
ス金属の溶湯によって溶解されることにより消滅するの
で、所定の表面部以外の領域が金属の微細片にて複合強
化されることを回避し、これにより所定の表面部以外の
領域の加工性等が悪化することを防止することができ
る。
Therefore, since the porous molded body acts as a filtering element in the suction molding step, it is possible to easily form a reinforcing material molded body having a predetermined shape corresponding to the shape of the surface portion to be composite-reinforced. Since the quality molded body acts as a carrier for holding the reinforcement molded body after the reinforcement molded body is formed, the reinforcement molded body can be prevented from being damaged or deformed, and the porous body is porous. In the process of compounding the molded body, the reinforcing material molded body is maintained at a predetermined position in a state where it is in contact with the inner surface of the mold, so that only the predetermined surface portion is composite-reinforced with the reinforcing material. A composite material member can be manufactured easily and inexpensively, and since the porous molded body disappears by being melted by the molten metal of the matrix metal, the region other than the predetermined surface portion is composed of fine metal pieces. Avoid being strengthened , It is possible to prevent this by workability in the region other than the predetermined surface portion is deteriorated.

また本発明の方法に於ては、多孔質成形体を構成する
金属はマトリックス金属と同一若しくは実質的に同一の
組成の金属、又はこれと組成の点で異なる金属の何れで
あってもよい。前者の場合には、複合材料以外の領域の
金属組成が複合材料のマトリックス金属の組成と大きく
相違することを回避することができる。また上述の後者
の場合には、多孔質成形体を構成する金属の適宜に選定
することにより、複合化と同時に部材の構成金属の組成
をマトリックス金属の組成とは異なる組成に積極的に変
化させ、これにより耐熱性、熱伝導性の如き種々の特性
を変化させることができる。
Further, in the method of the present invention, the metal forming the porous molded body may be either a metal having the same or substantially the same composition as the matrix metal, or a metal different in composition from this. In the former case, it is possible to avoid that the metal composition of the region other than the composite material greatly differs from the composition of the matrix metal of the composite material. In the latter case described above, the composition of the constituent metal of the member is positively changed to a composition different from the composition of the matrix metal at the same time as the composite is formed by appropriately selecting the metal forming the porous molded body. Thus, various characteristics such as heat resistance and thermal conductivity can be changed.

尚本発明の方法に於ては、多孔質成形体は任意の要領
にて形成されてよく、例えば特開昭63−4032号公報に記
載された方法により形成されてよい。
In the method of the present invention, the porous molded body may be formed by any method, for example, the method described in JP-A-63-4032.

以下に添付の図を参照しつつ、本発明を実施例につい
て詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings with reference to the accompanying drawings.

実施例1 平均粒径50μのアルミニウム合金(JIS規格A2024)粉
末を冷間圧縮成形することにより、第1図に示されてい
る如く、直径30mm、厚さ10mmの寸法を有し、アルミニウ
ム合金粉末10の体積率が50%である円板状の多孔質成形
体12を形成した。
Example 1 An aluminum alloy powder (JIS standard A2024) having an average particle size of 50 μ was cold compression molded to have a diameter of 30 mm and a thickness of 10 mm as shown in FIG. 1. A disk-shaped porous molded body 12 having a volume ratio of 10 of 50% was formed.

次いで第2図に示されている如く、多孔質成形体12を
吸引成形装置14に装着し、アルミナ−シリカ短繊維16
(イソライト工業株式会社製「カオウール」)及び繊維
の重量に対し10wt%のコロイダルシリカが分散された分
散液18を用意し、該分散液に対し多孔質成形体12を濾過
要素として吸引成形を行い、これにより多孔質成形体12
の一方の円形の表面上にアルミナ−シリカ短繊維よりな
る強化材成形体20の一体的に形成した。この場合強化材
成形体の厚さは0.7mmであり、その繊維体積率は約10%
であった。
Next, as shown in FIG. 2, the porous molded body 12 is mounted on the suction molding device 14, and the alumina-silica short fibers 16 are attached.
(Isolite Kogyo Co., Ltd. "Kao Wool") and a dispersion liquid 18 in which 10 wt% of colloidal silica is dispersed with respect to the weight of the fiber are prepared, and suction molding is performed on the dispersion liquid using the porous molded body 12 as a filtering element. , Thereby forming the porous molded body 12
On one of the circular surfaces, a reinforcing material molded body 20 made of alumina-silica short fibers was integrally formed. In this case, the reinforcement molding has a thickness of 0.7 mm and a fiber volume ratio of about 10%.
Met.

次いでかくして形成された多孔質成形体12とこれと一
体をすな強化材成形体20とよりなる複合成形体22を第3
図に示されている如く、高圧鋳造装置24の鋳型26のモー
ルドキャビティ28内に強化材成形体20がモールドキャビ
ティの壁面に当接し、強化材成形体が多孔質成形体によ
り所定の位置に維持されるよう配置した。
Next, a third composite molded body 22 including the porous molded body 12 thus formed and the reinforcing material molded body 20 which is not integrated with the porous molded body 12 is formed.
As shown in the figure, in the mold cavity 28 of the high-pressure casting apparatus 24, the reinforcing material molded body 20 abuts the wall surface of the mold cavity, and the reinforcing material molded body is maintained in a predetermined position by the porous molded body. It was arranged to be done.

次いでモールドキャビティ内に750℃のアルミニウム
合金(JIS規格A2024)の溶湯30を注湯し、該溶湯をプラ
ンジャ32により約1000kg/cm2にて加圧し、その加圧状態
を溶湯が完全に凝固するまで保持した。溶湯が完全に凝
固した後、鋳型内の凝固体をノックアウトピン34により
取出し、該凝固体に対し機械加工を行うことにより、第
4図に示されている如く、一方の円形の表面部のみがア
ルミナ−シリカ短繊維にて複合強化されたアルミニウム
合金の複合材料36よりなる、他の領域がアルミニウム合
金のみよりなる円柱形の複合材料部材38を形成した。
Next, a molten metal 30 of 750 ° C aluminum alloy (JIS standard A2024) is poured into the mold cavity, and the molten metal is pressurized by the plunger 32 at about 1000 kg / cm 2, and the molten state is completely solidified. Held up. After the molten metal is completely solidified, the solidified body in the mold is taken out by the knockout pin 34, and the solidified body is machined so that only one circular surface portion is formed, as shown in FIG. A column-shaped composite material member 38 made of an aluminum alloy composite material 36 reinforced by alumina-silica short fibers and having the other regions made of an aluminum alloy only was formed.

次いで複合材料部材38を切断してその断面を観察した
ところ、複合材料36以外の領域には実質的にアルミナ−
シリカ短繊維は存在せず、複合材料36に於けるアルミナ
−シリカ短繊維とアルミニウム合金との密着も良好であ
ることが認められた。また元の多孔質成形体はマトリッ
クス金属としてのアルミニウム合金の溶湯によって溶解
されることにより完全に消滅していることが確認され
た。
Next, when the composite material member 38 was cut and its cross section was observed, substantially no alumina-
It was confirmed that the short silica fibers did not exist and the adhesion between the alumina-silica short fibers and the aluminum alloy in the composite material 36 was good. It was also confirmed that the original porous compact was completely extinguished by being melted by the molten aluminum alloy as the matrix metal.

また複合材料部材38より複合材料36の部分を試験面と
する摩擦摩耗試験用のブロック試験片を切出し、該ブロ
ック試験片を相手部材である球状黒鉛鋳鉄(JIS規格FCD
60)の円筒試験片の外周面と接触させ、それらの試験片
の接触部に常温の潤滑油(キャッスルモータオイル5W−
30)を供給しつつ、接触面圧20kg/mm2、滑り速度0.3m/s
にて円筒試験片を1時間回転させる摩耗試験を行った。
また比較の目的で、試験片全体がこの実施例に於て使用
されたアルミナ−シリカ短繊維と同一のアルミナ−シリ
カ短繊維にて複合強化されたブロック試験片を従来のプ
リフォームを使用する高圧鋳造法及び機械加工により形
成し、そのブロック試験片についても同一の条件にて摩
耗試験を行った。
Further, a block test piece for a friction and wear test in which the portion of the composite material 36 is used as a test surface is cut out from the composite material member 38, and the block test piece is a spheroidal graphite cast iron (JIS standard FCD
60) contact the outer peripheral surface of the cylindrical test piece, and contact the contact part of these test pieces with lubricating oil (castle motor oil 5W-
30), contact surface pressure 20kg / mm 2 , sliding speed 0.3m / s
A wear test was performed by rotating the cylindrical test piece for 1 hour.
Also, for comparison purposes, a block test piece in which the entire test piece was composite reinforced with the same alumina-silica short fibers as the alumina-silica short fibers used in this example was tested at high pressure using a conventional preform. A block test piece formed by the casting method and machining was also subjected to a wear test under the same conditions.

その結果この実施例のブロック試験片の摩耗痕深さは
12μであり、比較例のブロック試験片の摩耗痕深さは13
μであり、従ってこの実施例に於て製造された複合材料
部材の表面部の耐摩耗性は従来の方法により製造された
複合材料部材と同等の耐摩耗性を有することが認められ
た。
As a result, the wear scar depth of the block test piece of this example was
12 μ, the wear scar depth of the block test piece of the comparative example is 13
Therefore, it was confirmed that the wear resistance of the surface portion of the composite material member manufactured in this example was equivalent to that of the composite material member manufactured by the conventional method.

実施例2 平均繊維径30μ、平均繊維長1mmのNi繊維を冷間圧縮
成形することにより、繊維の体積率が15%であり実施例
1の多孔質成形体と同一の寸法を有する多孔質成形体を
形成した。
Example 2 Porous molding having a volume ratio of fibers of 15% and the same dimensions as the porous molded article of Example 1 by cold compression molding Ni fibers having an average fiber diameter of 30 μ and an average fiber length of 1 mm Formed body.

次いでこの多孔質成形体を用いて実施例1の場合と同
様の要領にて、多孔質成形体の一方の円形の表面にアル
ミナ短繊維(ICI社「サフィール」)よりなる強化材成
形体を一体に形成した。尚強化材成形体の厚さは0.4mm
であり、アルミナ短繊維の体積率は約2%であった。
Then, using this porous molded body, in the same manner as in Example 1, a reinforcing material molded body made of alumina short fibers (ICI "Safir") is integrally formed on one circular surface of the porous molded body. Formed. The thickness of the reinforcing material molded body is 0.4 mm.
The volume ratio of the alumina short fibers was about 2%.

次いで実施例1の場合と同様高圧鋳造装置の鋳型内に
この実施例に於て形成された複合成形体と同一の複合成
形体を強化材成形体の部分にて鋳型の内壁面に当接する
ように配置し、該鋳型内に730℃アルミニウム合金(JIS
規格AC8A)の溶湯を注湯し、実施例1の場合と同様の高
圧鋳造により複合材料部材を形成した、その結果この複
合材料部材もアルミナ短繊維にて複合強化されたアルミ
ニウム合金の複合材料よりなる表面部と実質的にアルミ
ニウム合金のみよりなる部分とよりなっており、該アル
ミニウム合金の部分にはアルミナ短繊維は実質的に存在
せず、また該アルミニウム合金の部分のNi含有量は元の
Ni含有量よりも高い血であることが認められた。
Then, as in the case of Example 1, the same composite molded body as the composite molded body formed in this Example was brought into contact with the inner wall surface of the mold in the reinforcing material molded body in the mold of the high pressure casting apparatus. 730 ℃ aluminum alloy (JIS
A molten metal of standard AC8A) was poured, and a composite material member was formed by the same high-pressure casting as in the case of Example 1. As a result, this composite material member was also made of an aluminum alloy composite material that was composite-reinforced with alumina short fibers. And a portion consisting essentially of an aluminum alloy only, the alumina short fibers are substantially absent in the aluminum alloy portion, and the Ni content of the aluminum alloy portion is the same as the original.
The blood was found to be higher than the Ni content.

尚何れの複合材料部材に於ても、個々のアルミナ短繊
維の間にアルミニウム合金が良好に充填されており、ま
たそれらの間の密着性も良好であることが認められた。
In each of the composite material members, it was confirmed that the aluminum alloy was well filled between the individual alumina short fibers, and the adhesion between them was also good.

以上に於ては本発明を二つの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。
Although the present invention has been described in detail with reference to two embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. Some will be apparent to those skilled in the art.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第4図は本発明による金属基複合材料部材の
製造方法の一連の工程を示す工程図である。 10……アルミニウム合金粉末,12……多孔質成形体,14…
…吸引成形装置,16……アルミナ−シリカ短繊維,18……
分散液,20……強化材成形体,22……複合成形体,24……
高圧鋳造装置,26……鋳造,28……モールドキャビティ,3
0……アルミニウム合金の溶湯,32……プランジャ,34…
…ノックアウトピン,36……複合材料,38……複合材料部
1 to 4 are process diagrams showing a series of steps in the method for manufacturing a metal-based composite material member according to the present invention. 10 …… Aluminum alloy powder, 12 …… Porous compact, 14…
… Suction molding equipment, 16 …… Alumina-silica short fibers, 18 ……
Dispersion, 20 …… Reinforcement molding, 22 …… Composite molding, 24 ……
High-pressure casting equipment, 26 …… Casting, 28 …… Mold cavity, 3
0 …… Aluminum alloy melt, 32 …… Plunger, 34…
… Knockout pin, 36 …… Composite material, 38 …… Composite material member

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属の微細片にて所定形状の多孔質成形体
を形成し、強化材が分散された分散流体に対し前記多孔
質成形体を濾過要素として吸引成形を行い前記多孔質成
形体の所定の表面にこれと一体的に強化材成形体を形成
することにより前記多孔質成形体及び前記強化材成形体
よりなる複合成形体を形成し、前記強化材成形体が鋳型
の内面に当接すると共に前記多孔質成形体により前記鋳
型内の所定の位置に維持されるように前記複合成形体を
前記鋳型内に配置し、前記鋳型内にマトリックス金属の
溶湯を導入し、前記複合成形体に前記マトリックス金属
の溶湯を浸透させ、前記多孔質成形体を前記マトリック
ス金属の溶湯により溶融させることを含む金属複合材料
部材の製造方法。
1. A porous molded body having a predetermined shape is formed from fine metal pieces, and suction molding is performed on a dispersion fluid in which a reinforcing material is dispersed by using the porous molded body as a filtering element. By forming a reinforcing material molded body integrally with a predetermined surface of the above, to form a composite molded body composed of the porous molded body and the reinforcing material molded body, the reinforcing material molded body abuts the inner surface of the mold. The composite molded body is placed in the mold so as to be maintained in a predetermined position in the mold by the porous molded body while contacting, and a molten metal of a matrix metal is introduced into the mold to form the composite molded body. A method for producing a metal composite material member, which comprises infiltrating the molten metal of the matrix metal and melting the porous molded body with the molten metal of the matrix metal.
JP63248528A 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member Expired - Fee Related JP2679160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248528A JP2679160B2 (en) 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248528A JP2679160B2 (en) 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member

Publications (2)

Publication Number Publication Date
JPH0297629A JPH0297629A (en) 1990-04-10
JP2679160B2 true JP2679160B2 (en) 1997-11-19

Family

ID=17179528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248528A Expired - Fee Related JP2679160B2 (en) 1988-09-30 1988-09-30 Method for manufacturing metal-based composite material member

Country Status (1)

Country Link
JP (1) JP2679160B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187835A (en) * 1984-10-08 1986-05-06 Honda Motor Co Ltd Production of fiber reinforced metallic material
JPH0713272B2 (en) * 1986-06-23 1995-02-15 三菱電機株式会社 Preform for producing fiber reinforced metal and method for producing the same
JPS63145852U (en) * 1987-03-16 1988-09-27

Also Published As

Publication number Publication date
JPH0297629A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
US4932099A (en) Method of producing reinforced composite materials
EP0364963B1 (en) A method of producing a ceramic reinforced composite automotive component
US2893102A (en) Article fabrication from powders
CA2081048C (en) Nickel coated carbon preforms
EP1132490B1 (en) Piston with a metal matrix composite
JP2679160B2 (en) Method for manufacturing metal-based composite material member
JPH0636984B2 (en) Method for manufacturing partial composite member
JPS6021306A (en) Manufacture of composite reinforced member
US5172746A (en) Method of producing reinforced composite materials
JP4524591B2 (en) Composite material and manufacturing method thereof
US6202618B1 (en) Piston with tailored mechanical properties
JP2948226B2 (en) Method for producing fiber composite member
JPS6221456A (en) Production of hollow casting
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JPH03138304A (en) Manufacture of porous sintered hard alloy
JPS6353225A (en) Cylinder sleeve for engine
JP2003171703A (en) Porous sintered compact and its manufacturing method
JPH0636983B2 (en) Method for manufacturing partial composite member
JPS60115361A (en) Production of composite material
JPS60138031A (en) Fibrous molding for composite material
JPH0420973B2 (en)
JPH08303297A (en) Piston for internal combustion engine and manufacture thereof
JPH01195249A (en) Modification of aluminum-silicon alloy of metal matrix composite
JPS6173846A (en) Porous fiber reinforced metallic composite material and its manufacture
JPH05320788A (en) High wear resistant metal matrix composite and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees