JPH0636983B2 - Method for manufacturing partial composite member - Google Patents

Method for manufacturing partial composite member

Info

Publication number
JPH0636983B2
JPH0636983B2 JP28828289A JP28828289A JPH0636983B2 JP H0636983 B2 JPH0636983 B2 JP H0636983B2 JP 28828289 A JP28828289 A JP 28828289A JP 28828289 A JP28828289 A JP 28828289A JP H0636983 B2 JPH0636983 B2 JP H0636983B2
Authority
JP
Japan
Prior art keywords
alloy
base material
composite
composite base
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28828289A
Other languages
Japanese (ja)
Other versions
JPH03151158A (en
Inventor
高士 小田
稔 深沢
節男 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP28828289A priority Critical patent/JPH0636983B2/en
Publication of JPH03151158A publication Critical patent/JPH03151158A/en
Publication of JPH0636983B2 publication Critical patent/JPH0636983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Al合金の所定部位をSiCウイスカーによ
り強化する部分的複合部材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a partial composite member in which a predetermined portion of an Al alloy is reinforced with SiC whiskers.

〔従来の技術〕[Conventional technology]

内燃機関のピストン、ロッカーアーム、コンロッド等を
軽量のAl合金で構成し、過酷な熱衝撃または摺動を受
ける部位を局部的にSiCウイスカーで強化する手段と
して、SiCウイスカーのプリフォームを鋳型の所定箇
所にセットしてAl合金の溶湯を加圧鋳造する方法が知
られている(例えば特開昭55-24763号公報、同55-24945
号公報)。ところが、SiCウイスカーのプリフォーム
は極めて脆弱な集合体であるため、加圧鋳造の段階で往
々にして変形、破壊等を招く欠点がある。このため、プ
リフォームの強化法に関する研究も盛んにおこなわれて
いるが十分に満足するものは得られていない。
As a means to locally strengthen the parts of the internal combustion engine, such as pistons, rocker arms, connecting rods, etc., that are made of a lightweight Al alloy and are subjected to severe thermal shock or sliding with SiC whiskers, the preforms of SiC whiskers are used as molds. A method is known in which the molten metal of Al alloy is set under pressure and cast under pressure (for example, JP-A-55-24763 and JP-A-55-24945).
Issue). However, since the SiC whisker preform is an extremely fragile aggregate, it often suffers from deformation and breakage during the pressure casting stage. For this reason, researches on methods for strengthening preforms have been actively conducted, but none have been sufficiently satisfied.

更に、SiCウイスカーの表層部には製造時の熱処理な
どの過程で若干のOもしくはSiO等が介在する
が、これら酸化性成分の存在はSiCウイスカー中のS
iとマトリックスとなるAl合金中に含有されるMgと
の選択的な反応を促進し、複合欠陥の原因となるMg
Siなどの偏析部分を析出する。この現象は、通常、マ
トリックスとしてAC8A、AC4C、AC4D等の鋳
造用あるいは2618、2024、5052、6061
のような展伸材などMgを含むAl合金類が多用されて
いる関係で重大な障害となる。
Further, some O 2 or SiO 2 intervenes in the surface layer portion of the SiC whiskers during the process of heat treatment during manufacturing, but the presence of these oxidizing components causes the presence of S in the SiC whiskers.
promote selective reaction with the Mg contained in the Al alloy serving as i and the matrix, causing complex defects Mg 2
A segregated portion such as Si is deposited. This phenomenon is usually caused by casting of AC8A, AC4C, AC4D, etc. as a matrix or 2618, 2024, 5052, 6061.
This is a serious obstacle because Al alloys containing Mg such as wrought materials are frequently used.

上記の偏析防止に対しては、予め表層部に介在するSi
成分を除去したSiCウイスカープリフォームを用
いてAl合金の溶湯を加圧鋳造する方法(特公昭62-404
09号公報)が有効な手段となるが、この方法による場合
にはプリフォーム自体の強化は図れない難点がある。
In order to prevent the above-mentioned segregation, Si intervening in the surface layer in advance is used.
A method of press-casting a molten aluminum alloy using a SiC whisker preform from which the C 2 component has been removed (Japanese Patent Publication No. 62-404).
No. 09 gazette) is an effective means, but there is a drawback that the preform itself cannot be strengthened by this method.

また、予めSiCウイスカーとAl合金とによる所定形
状の予備複合体を形成しておき、これを鋳型の所定箇所
にセットしたのちAl合金の溶湯で鋳包する部分的複合
方法も考えられる。しかしながら、この場合には予備複
合体を形成する過程あるいは鋳包時の予熱段階等で酸化
により表面にAlが生成し、この酸化膜がマトリ
ックスAl合金との濡れ性を著しく阻害して界面の接合
強度を減退させる結果を招来する。
Alternatively, a partial composite method may be considered in which a pre-composite body having a predetermined shape is preliminarily formed of SiC whiskers and an Al alloy, set at a predetermined location of a mold, and then cast in a molten metal of the Al alloy. However, in this case, Al 2 O 3 is generated on the surface due to oxidation during the process of forming the pre-composite or during the preheating step during casting, and this oxide film significantly impedes the wettability with the matrix Al alloy. This results in a decrease in the bonding strength at the interface.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者らは、Al合金の所定部位をSiCウイスカー
により部分的に複合強化する際に障害となる上記の問題
点を解消する目的で鋭意研究を重ねた結果、SiCウイ
スカーとAl合金粉末により予め形成した焼結複合体の
表面に貴金属系の金属薄膜を被着し、これを強化部分に
セットしてAl溶湯を鋳包するプロセスをとることが効
果的であることを確認して本発明の開発に至った。
The inventors of the present invention have conducted extensive studies for the purpose of solving the above-mentioned problems that become obstacles when a predetermined portion of an Al alloy is partially strengthened by SiC whiskers, and as a result, SiC whiskers and Al alloy powder have been used in advance. It was confirmed that it is effective to apply a noble metal-based metal thin film on the surface of the formed sintered composite, set this on the strengthened portion, and cast in the molten aluminum to confirm the effect of the present invention. Led to development.

繊維強化複合材料を形成する場合、強化繊維の表面に金
属物質を蒸着した繊維成形体を用いて加圧鋳造すること
により複合体の耐摩耗性と自己潤滑性を改善する方法
(特開昭58-93843号公報)は知られているが、SiCウ
イスカーのような微小短繊維に均質薄膜の金属被覆を形
成することは容易ではなく、また被覆する金属は減摩性
を有するPb、Zn、Sn、Cu等であるから、本発明
とは趣旨を異にするものである。
In the case of forming a fiber-reinforced composite material, a method of improving wear resistance and self-lubricating property of the composite by pressure casting using a fiber molded body in which a metal substance is vapor-deposited on the surface of the reinforcing fiber (JP-A-58) -93843) is known, it is not easy to form a homogeneous thin film metal coating on minute short fibers such as SiC whiskers, and the coating metal is Pb, Zn, Sn having anti-friction properties. , Cu, etc., are different from the present invention.

〔課題を解決するための手段〕[Means for Solving the Problems]

すなわち、本発明による部分的複合部材の製造方法は、
SiCウイスカーとAl合金粉末の混合物を所定の形状
に焼結して複合母材を作製し、該複合母材の表面に貴金
属系物質の薄膜を形成して鋳型の所定箇所にセットした
のちAl合金の溶湯で鋳包することを構成上の特徴とす
る。
That is, the method for manufacturing a partial composite member according to the present invention is
A mixture of SiC whiskers and Al alloy powder is sintered into a predetermined shape to prepare a composite base material, a thin film of a noble metal-based material is formed on the surface of the composite base material, and the composite base material is set at a predetermined location of a mold and then the Al alloy is formed. The characteristic feature of the structure is that it is cast and wrapped with the molten metal.

強化材となるSiCウイスカーには、直径0.1〜5μ
m、長さ30〜100μmのアスペクト性状を有する針
状単結晶が用いられる。
The diameter of SiC whiskers used as reinforcement is 0.1 to 5μ.
An acicular single crystal having an aspect property of m and a length of 30 to 100 μm is used.

本発明において強化部分を構成するための複合母材は、
SiCウイスカーとAl合金粉末とを湿式混合し、この
混合物を真空もしくは不活性雰囲気中でホットプレス、
HIP等を用いて所定の形状に焼結することにより作製
される。用いるAl合金粉末は後工程で鋳包するマトリ
ックスAl合金と同一のものとし、またSiCウイスカ
ーとAl合金粉末の混合比率は、複合母材に占めるSi
CウイスカーのVfが10〜50%範囲の所望値になる
ように設定する。
In the present invention, the composite base material for constituting the reinforced portion,
Wet-mixing SiC whiskers and Al alloy powder, hot pressing this mixture in a vacuum or an inert atmosphere,
It is manufactured by sintering into a predetermined shape using HIP or the like. The Al alloy powder used is the same as the matrix Al alloy cast in the subsequent step, and the mixing ratio of the SiC whiskers and the Al alloy powder is Si in the composite base material.
The Vf of the C whiskers is set to a desired value within the range of 10 to 50%.

ついで、複合母材の表面に貴金属系物質の薄膜を形成す
る。貴金属系物質は、Au、Ag、PtもしくはPt−
Pdから選択することが好適で、例えばイオンプレーテ
ィング、真空蒸着、溶射などの被覆手段により好ましく
は6μm以下の厚さになるように被膜形成する。被膜の
厚さが6μmを越えると、後工程の鋳包の過程で複合母
材の表面に貴金属成分が残存し、鋳包するAl合金との
接合を減退させる原因となる。
Then, a thin film of a noble metal-based material is formed on the surface of the composite base material. The noble metal-based substance is Au, Ag, Pt or Pt-
It is preferable to select from Pd, and the film is preferably formed by a coating means such as ion plating, vacuum deposition, and thermal spraying so as to have a thickness of 6 μm or less. When the thickness of the coating exceeds 6 μm, noble metal components remain on the surface of the composite base material in the casting process in the subsequent step, which causes a decrease in bonding with the Al alloy to be cast.

貴金属系物質の表面薄膜を形成した複合母材は鋳型の強
化部位に相当する所定箇所にセットし、Al合金の溶湯
を加圧鋳造法によって鋳込む。この際、複合母材をその
固相線より−20〜−100℃の範囲に予熱し、Al合
金の溶湯温度をその液相温度より50℃以上高い条件に
することが好ましい。複合母材の予熱温度が固相線−2
0℃を上廻ると材料変形が生じ、またこれが固相線−1
00℃未満もしくはAl溶湯温度が液相温度+50℃を
下廻る場合には溶湯冷却は急速に進行して接合不良を起
こす現象が発生する。鋳造時の圧力は250〜3000
kg/cm2の範囲に設定することが望ましい。この理由は、
250kg/cm2未満の加圧力では複合母材とマトリックス
Al合金の界面接合力が不十分となり、3000kg/cm2
を越えると材料変形を起こすからである。
The composite base material on which the surface thin film of the noble metal-based material is formed is set at a predetermined position corresponding to the strengthened part of the mold, and the molten Al alloy is cast by the pressure casting method. At this time, it is preferable to preheat the composite base material in the range of −20 to −100 ° C. from the solidus and set the molten metal temperature of the Al alloy to be higher than the liquidus temperature by 50 ° C. or more. Preheating temperature of composite base material is solidus-2
Material deformation occurs at temperatures above 0 ° C, and this is the solidus -1
When the temperature is lower than 00 ° C or the temperature of the molten aluminum is lower than the liquidus temperature + 50 ° C, the cooling of the molten metal progresses rapidly, causing a phenomenon of defective bonding. Pressure during casting is 250-3000
It is desirable to set in the range of kg / cm 2 . The reason for this is
If the applied pressure is less than 250 kg / cm 2, the interfacial bonding force between the composite base material and the matrix Al alloy becomes insufficient, and 3000 kg / cm 2
This is because the material will be deformed if the value exceeds.

このようにして、特定された箇所にSiCウイスカー強
化部位を備えるAl合金系の部分的複合部材が製造され
る。
In this manner, the Al alloy-based partial composite member having the SiC whisker reinforced portion at the specified portion is manufactured.

〔作 用〕[Work]

本発明によれば、予めSiCウイスカーとAl合金物末
とを焼結した複合母材の表面に貴金属系物質の薄膜を被
覆して強化部分を形成するから、溶湯鋳包の段階で強化
部部分が変形したり破壊されることはなく、また表面に
Al等の酸化層が生成することもない。したがっ
た、マトリックスAl合金の溶湯は常に濡れ性の良好な
貴金属薄膜を介して接触するとともに、この貴金属成分
は鋳包時に付与する加圧力により最終的にマトリックス
Al合金の組織内に分散するため接合界面には残留しな
い。
According to the present invention, since the surface of the composite base material obtained by previously sintering the SiC whiskers and the Al alloy powder is coated with the thin film of the noble metal-based material to form the strengthened portion, the strengthened portion portion is formed at the stage of molten metal casting. Is not deformed or destroyed, and an oxide layer of Al 2 O 3 or the like is not formed on the surface. Therefore, the molten metal of the matrix Al alloy always contacts through the noble metal thin film having good wettability, and this noble metal component is finally dispersed in the structure of the matrix Al alloy due to the pressure applied at the time of casting. Does not remain at the interface.

上記の作用によって、複合母材とマトリックスAl合金
との界面が強固に接合した一体構造の部分的複合形態が
発現する。
Due to the above action, a partial composite form of an integral structure in which the interface between the composite base material and the matrix Al alloy is strongly bonded is developed.

〔実施例〕〔Example〕

以下に本発明を実施例に基づいて説明する。 The present invention will be described below based on examples.

実施例1 平均直径0.5μm、平均長さ20μmSiCウイスカ
ーとAl合金粉末(AC8A)とを水に攪拌分散し、濾過、乾
燥してSiCウイスカーのVfが10%の均一混合物を
得た。この混合物280gをホットプレスにより温度6
00℃、真空度5×10-5Torr、圧力1000kg/cm2
加圧時間20分の条件で焼結して厚さ20mm、直径80
mmの円盤状の複合母材を作製した。
Example 1 A SiC whisker having an average diameter of 0.5 μm and an average length of 20 μm and Al alloy powder (AC8A) were stirred and dispersed in water, filtered, and dried to obtain a uniform mixture of SiC whiskers having a Vf of 10%. 280 g of this mixture was hot pressed to a temperature of 6
00 ° C, vacuum degree 5 × 10 -5 Torr, pressure 1000 kg / cm 2 ,
Sintered under the condition of 20 minutes pressing time, thickness 20mm, diameter 80
A disc-shaped composite base material of mm was prepared.

上記の複合母材を中心部から切断して半月形状とし、そ
の切断面にAuを0.23μmの薄膜状態に真空蒸着し
た(真空度7×10-5Torr)。
The above composite base material was cut from the central portion into a half-moon shape, and Au was vacuum-deposited on the cut surface in a thin film state of 0.23 μm (vacuum degree 7 × 10 −5 Torr).

Au薄膜を形成した複合母材を直径80.0mmの鋳型に半月
状にセットし、Ar中で500℃に予熱して加圧鋳造機
に設置した。ついで、700℃の温度に保持されたマト
リックスAl合金(AC8A)の溶湯を鋳型に注湯し、500
kg/cm2の圧力を付与しながら加圧鋳造した。
The composite base material on which the Au thin film was formed was set in a mold having a diameter of 80.0 mm in a half-moon shape, preheated to 500 ° C. in Ar and set in a pressure casting machine. Next, a molten matrix Al alloy (AC8A) maintained at a temperature of 700 ° C was poured into the mold, and the temperature was changed to 500
Pressure casting was performed while applying a pressure of kg / cm 2 .

得られた部分的複合材は、複合母材の切断面を介して半
月状のマトリックスAl合金が接合した形態を有するも
のであったが、SEM観察及びEPMAによる線分析を
した結果により観察した結果、接合面にAuの残留は全
く認められなかった。
The obtained partial composite material had a shape in which a crescent-shaped matrix Al alloy was joined through the cut surface of the composite base material, but the results were observed by the results of SEM observation and line analysis by EPMA. No residual Au was observed on the joint surface.

この部分的複合材について接合面に直角方向の引張り強
さを測定したところ32kgf/mm2であった。
The tensile strength of this partial composite in the direction perpendicular to the joint surface was measured and found to be 32 kgf / mm 2 .

実施例2 実施例1においてAuの代わりにPtを用いて同様に切
断面被覆を行い、そのほかは実施例1と同一条件によっ
て部分的複合材を製造した。
Example 2 A partial composite material was produced in the same manner as in Example 1 except that Pt was used instead of Au in the same manner as in Example 1 to perform cut surface coating.

このものにつき実施例1に準じて引張り強さを測定した
ところ、30kgf/mm2であった。
When the tensile strength of this material was measured according to Example 1, it was 30 kgf / mm 2 .

比較例1 実施例1と同一の複合母材を用い、切断面になんの被覆
も施さずに実施例1と同一条件でマトリックスAl合金
を加圧鋳造した。
Comparative Example 1 Using the same composite base material as in Example 1, a matrix Al alloy was pressure-cast under the same conditions as in Example 1 without coating the cut surface.

このものにつき実施例1に準じて引張り強さを測定した
ところ4kgf/mm2と、実施例1および2に比べて著しく
低い値であった。
When the tensile strength of this material was measured according to Example 1, it was 4 kgf / mm 2 , which was a remarkably low value as compared with Examples 1 and 2.

比較例2 実施例1と同一のSiCウイスカーを用いて直径80m
m、高さ30mm、Vf10%のプリフォームを作製し、
これを中心部から2分割に切断した。
Comparative Example 2 Using the same SiC whiskers as in Example 1, the diameter was 80 m.
m, height 30mm, Vf10% preform,
This was cut in two from the center.

上記の半月状プリフォームにより実施例1と同一条件で
部分的複合材を製造した。
A partial composite material was manufactured under the same conditions as in Example 1 using the above half-moon shaped preform.

このものにつき実施例1に準じて引張り強さを測定した
ところ16kgf/mm2であり、実施例1および2よりも極
めて劣るものであった。
When the tensile strength of this material was measured according to Example 1, it was 16 kgf / mm 2 , which was extremely inferior to Examples 1 and 2.

〔発明の効果〕〔The invention's effect〕

以上のとおり、本発明に従えば強化部分が強固な焼結体
からなる複合母材によって構成されるから、プリフォー
ム成形体のようにプロセスの段階で外力を受けて変形、
破壊を生じることは全くない。このため、肉厚が薄く複
雑形状の強化部分でも容易に成形することが可能とな
る。また、複合母材の表面を貴金属系物質によって被覆
しているためAlなどの酸化物介在に伴うトラブ
ルは有効に解消され、常にマトリックスAl合金との間
に良好な界面接合が得られる。
As described above, according to the present invention, since the reinforced portion is composed of the composite base material made of a strong sintered body, it deforms by receiving an external force at the process stage like a preform molded body,
There is no destruction. For this reason, it becomes possible to easily mold even a strengthened portion having a thin wall and a complicated shape. Further, since the surface of the composite base material is coated with a noble metal-based substance, troubles caused by inclusion of oxides such as Al 2 O 3 are effectively eliminated, and good interface bonding with the matrix Al alloy is always obtained. .

したがって、比較的簡単な製造工程により強靭な一体構
造の部分的複合部材を製造することができるから、例え
ばピストンベッドのような過酷な熱衝撃、摩擦等を受け
る部位に局部的なSiCウイスカー強化組織を形成する
ケースに極めて有用である。
Therefore, since it is possible to manufacture a tough one-piece partial composite member by a relatively simple manufacturing process, for example, a SiC whisker reinforced structure local to a portion such as a piston bed which is subjected to severe thermal shock, friction, etc. Is extremely useful in the case of forming

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 1/09 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 1/09 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiCウイスカーとAl合金粉末の混合物
を所定の形状に焼結して複合母材を作製し、該複合母材
の表面に貴金属系物質の薄膜を形成して鋳型の所定箇所
にセットしたのちAl合金の溶湯で鋳包することを特徴
とする部分的複合部材の製造方法。
1. A composite base material is produced by sintering a mixture of SiC whiskers and Al alloy powder into a predetermined shape, and a thin film of a noble metal-based material is formed on the surface of the composite base material to form a predetermined location on a mold. A method for producing a partial composite member, which comprises setting and then casting with a molten aluminum alloy.
【請求項2】貴金属系物質が、Au、Ag、Ptもしく
はPt−Pdから選択され、薄膜を6μm以下の厚さに
形成する請求項1記載の部分的複合部材の製造方法。
2. The method for producing a partial composite member according to claim 1, wherein the noble metal-based material is selected from Au, Ag, Pt or Pt-Pd, and the thin film is formed to a thickness of 6 μm or less.
JP28828289A 1989-11-06 1989-11-06 Method for manufacturing partial composite member Expired - Lifetime JPH0636983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28828289A JPH0636983B2 (en) 1989-11-06 1989-11-06 Method for manufacturing partial composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28828289A JPH0636983B2 (en) 1989-11-06 1989-11-06 Method for manufacturing partial composite member

Publications (2)

Publication Number Publication Date
JPH03151158A JPH03151158A (en) 1991-06-27
JPH0636983B2 true JPH0636983B2 (en) 1994-05-18

Family

ID=17728148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28828289A Expired - Lifetime JPH0636983B2 (en) 1989-11-06 1989-11-06 Method for manufacturing partial composite member

Country Status (1)

Country Link
JP (1) JPH0636983B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960031023A (en) * 1995-02-22 1996-09-17 와다 요시히로 METHOD FOR MANUFACTURING PARTIAL COMPOSITE REINFORCED LIGHT-ALLOY PARTS AND PRE-MOLDED FABRICATED THEREFOR
DE19712808B4 (en) * 1996-03-26 2009-06-18 Mazda Motor Corp. Aluminum or aluminum alloy composite components in combination with preform structures
JP3314141B2 (en) * 1996-03-26 2002-08-12 マツダ株式会社 Preformed body for compounding, composite aluminum-based metal part obtained by compounding the preformed body, and method for producing the same

Also Published As

Publication number Publication date
JPH03151158A (en) 1991-06-27

Similar Documents

Publication Publication Date Title
CA1325706C (en) Process for obtaining a metallurgical bond between a metal material, or a composite material having a metal matrix, and a metal casting or a metal-alloy casting
Huda et al. MMCs: materials, manufacturing and mechanical properties
US6599466B1 (en) Manufacture of lightweight metal matrix composites with controlled structure
JP2651975B2 (en) Gamma titanium aluminide and its manufacturing method
US5791397A (en) Processes for producing Mg-based composite materials
US5337803A (en) Method of centrifugally casting reinforced composite articles
JPH0636984B2 (en) Method for manufacturing partial composite member
US5199481A (en) Method of producing reinforced composite materials
US5236032A (en) Method of manufacture of metal composite material including intermetallic compounds with no micropores
JPH0636983B2 (en) Method for manufacturing partial composite member
JP2909546B2 (en) Manufacturing method of metal matrix composite material
JP3618106B2 (en) Composite material and method for producing the same
EP0408257B1 (en) Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
US4740428A (en) Fiber-reinforced metallic member
JPH0533079A (en) Production of partial composite member
JP3078411B2 (en) Method for manufacturing composite aluminum member
JP2976448B2 (en) Reinforced piston
JPH0645833B2 (en) Method for manufacturing aluminum alloy-based composite material
EP0501539A2 (en) Metal matrix composite composition and method
JPH05131264A (en) Production of aluminum partial composite member
JPH03155449A (en) Manufacture of partially composite member
JPH07278714A (en) Aluminum powder alloy and its production
JP2001123884A (en) Piston having adjusted mechanical characteristics
JPH0533080A (en) Production of partial composite member
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof