JPS62207832A - Copper-carbon composite material for semiconductor and its production - Google Patents

Copper-carbon composite material for semiconductor and its production

Info

Publication number
JPS62207832A
JPS62207832A JP4987086A JP4987086A JPS62207832A JP S62207832 A JPS62207832 A JP S62207832A JP 4987086 A JP4987086 A JP 4987086A JP 4987086 A JP4987086 A JP 4987086A JP S62207832 A JPS62207832 A JP S62207832A
Authority
JP
Japan
Prior art keywords
copper
base material
carbon
carbon base
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4987086A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Yasuhiro Nakajima
安啓 中島
Masato Watari
渡 真人
Akitoshi Saito
斉藤 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4987086A priority Critical patent/JPS62207832A/en
Publication of JPS62207832A publication Critical patent/JPS62207832A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a copper-carbon composite material for semiconductor excellent in property of thermal stress relaxation, by impregnating the pores of a carbon base material with prescribed amounts of copper containing specific amounts of P and/or Mg. CONSTITUTION:The carbonaceous or graphitiferous carbon base material in block form is charged into a mold and the above carbon base material is heated to about 1,080-1,300 deg.C together with the mold. Then, molten copper heated up to about 1,083-1,400 deg.C is poured onto the above carbon base material, which is cast with being pressurized from one direction of the above mold at a pressure of about 0.5-50kgf/mm<2>. By exerting casting in this manner, gases existing in the pores of the carbon base material are removed from the carbon base material and simultaneously the molten copper is impregnated into the carbon base material, so that pores of the carbon base material is impregnated with 2-40vol% copper containing 0.001-1.0wt% P and/or Mg. In this way, the copper-carbon composite material for semiconductor excellent in property of thermal stress relaxation and having characteristics equal to those of conventional copper-carbon fiber composite material can be obtained with ease.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体用、銅−炭素複合材料およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper-carbon composite material for semiconductors and a method for producing the same.

[従来技術] シリコンチップと基板材質とは熱膨張係数の差が大きい
ため、素子組み立て中あるいは使用中の熱によって銅と
シリコンチップとの間に生じる熱応力が生じる。熱応力
(あるいは熱ひすみ)によるシリコンチップの破壊防止
のために半導体用の応力緩和材としては従来熱膨張係数
がシリコンチップに近いW 、 M oなどが用いられ
てきた。
[Prior Art] Since there is a large difference in thermal expansion coefficient between the silicon chip and the substrate material, thermal stress is generated between the copper and the silicon chip due to heat during device assembly or use. In order to prevent silicon chips from breaking due to thermal stress (or thermal strain), W 2 , Mo 2 , etc., which have thermal expansion coefficients close to those of silicon chips, have been used as stress relaxation materials for semiconductors.

ま声調一度素繊m複合材料も使用される様になった。At some point, fiber-based composite materials also came into use.

[従来技術の問題点] W 、 M oなどは、その熱膨張係数はシリコンチッ
プに近いが熱伝導性が低い(Mo)、あるいは比重が大
きく重い(W)などの問題点に加え、W 、 M oは
戦略物質でもあるので価格の変動が大きく、製造コスト
も高いと言う問題点を持っている。
[Problems with conventional technology] W, Mo, etc. have a thermal expansion coefficient close to that of a silicon chip, but have low thermal conductivity (Mo), or have a large specific gravity and are heavy (W). Since Mo is also a strategic material, it has the problems of large price fluctuations and high manufacturing costs.

一方、銅−炭素m維複合材は炭素m#1の配向状態によ
る異方性が大きく、シリコンチップに接する面内での二
次元的な等方性を得るためには炭素繊維の配向が渦巻状
、二方向交差状および網状などの複雑な配向状態を持っ
た繊維集合体を成型する工程が必要である。またホット
プレス法で銅−炭素繊維複合材料を製造する場合には炭
素#a雑に銅あるいは銅合金をめっきする必要があるな
ど、銅 炭素繊維複合材は製造工程が複雑であり、生産
性が悪いと云う問題点を有している。一方、ブロック状
炭素基材と銅との複合材がキ習動材料として加圧鋳造法
により製造されてはいるが、これは本発明の目的と異な
り、耐摩耗性などの特性に重点を置いたものであり熱伝
導率、熱膨張係数なグの特性は半導体用複合材料として
満足するものではない。
On the other hand, the copper-carbon m-fiber composite material has a large anisotropy due to the orientation state of carbon m#1, and in order to obtain two-dimensional isotropy in the plane in contact with the silicon chip, the orientation of the carbon fibers must be spiral. It is necessary to form a fiber aggregate having a complicated orientation such as a shape, a two-way cross shape, and a net shape. In addition, when manufacturing copper-carbon fiber composite materials using the hot press method, it is necessary to plate carbon #a with copper or copper alloy.The manufacturing process for copper-carbon fiber composite materials is complicated, and productivity is low. It has the problem of being bad. On the other hand, a composite material of a block-shaped carbon base material and copper has been manufactured as a dynamic material by a pressure casting method, but this differs from the purpose of the present invention and focuses on properties such as wear resistance. However, its properties such as thermal conductivity and coefficient of thermal expansion are not satisfactory as a composite material for semiconductors.

[発明の目的] 半導体用の熱応力緩和材として従来の銅−炭素繊維複合
材と同等の特性を有し、しかも従来材よりも容易に製造
することが可能な銅−炭素基材複合材およびその製造法
を提供することを目的とする。
[Object of the invention] A copper-carbon base composite material that has properties equivalent to conventional copper-carbon fiber composite materials as a thermal stress relaxation material for semiconductors, and which can be manufactured more easily than conventional materials. The purpose is to provide a manufacturing method for the same.

[発明の概要] 本出願に係る第1発明は、炭素質又は黒鉛質のブロック
状炭素基材(以後は単に炭素基材と称す)の気孔に、P
又はMgを1種以上0.001−1.0wt%含有した
銅を2〜40vo 1%含浸させたことを特徴とする半
導体用銅−炭素複合材料である。
[Summary of the Invention] The first invention according to the present application includes P in the pores of a carbonaceous or graphite block-like carbon base material (hereinafter simply referred to as a carbon base material).
Alternatively, it is a copper-carbon composite material for a semiconductor, characterized in that it is impregnated with 2 to 40vo 1% of copper containing one or more types of Mg at 0.001 to 1.0 wt%.

本出願に係る第2発明は、炭素基材をFj型内に装入し
、該鋳型とともに該炭素基材を1080〜1300℃に
加熱後、1083〜1400℃に加熱した溶銅を、該鋳
型の一方向から0.5〜50 kgf/mm2の圧力で
加圧しながら鋳造することにより、該炭素基材中の気孔
に存在する気体を該炭素基材から抜くと同時に該溶銅を
炭素基材に含浸させることを特徴とする炭素質又は黒鉛
質のブロック状炭素基材(以後は単に炭素基材と称す)
の気孔に、P又はMgを1種以上0.001〜1.Ow
t%含有した銅を2〜40vol%含浸させたことを特
徴とする半導体用銅−炭素複合材料の製造方法である。
A second invention according to the present application is to charge a carbon base material into an Fj mold, heat the carbon base material together with the mold to 1080 to 1300°C, and then pour the molten copper heated to 1083 to 1400°C into the mold. By casting while applying pressure from one direction at a pressure of 0.5 to 50 kgf/mm2, the gas present in the pores in the carbon base material is removed from the carbon base material, and at the same time, the molten copper is poured into the carbon base material. A carbonaceous or graphite block-like carbon base material (hereinafter simply referred to as a carbon base material) characterized by being impregnated with
One or more types of P or Mg are added to the pores of 0.001 to 1. Ow
This is a method for producing a copper-carbon composite material for a semiconductor, characterized in that the copper-carbon composite material is impregnated with 2 to 40 vol% of copper containing t%.

まず本発明に係る半導体用複合材料について説明する0
本復合材料においてブロック状炭素基材を用いる理由は
、炭素繊維と比較して安価であること、および銅−炭素
繊維複合材の場合半導体用として熱膨張係数を満足させ
るために炭素繊維を複雑な配向にする必要があるのに対
して、ブロック状炭素基材の場合その必要はなく、製造
方法が容易であることなどの優れた点を有しているから
である。
First, the composite material for semiconductors according to the present invention will be explained.
The reason why a block-shaped carbon base material is used in this composite material is that it is cheaper compared to carbon fiber, and in the case of copper-carbon fiber composite material, carbon fiber is used in a complicated manner to satisfy the coefficient of thermal expansion for semiconductor use. This is because, while it is necessary to orient the carbon substrate, this is not necessary in the case of a block-shaped carbon substrate, and it has the advantage of being easy to manufacture.

次に炭素基材中に金材させる銅にPまたはMgを1種以
上0.01=l−0wt%添加させる理由はPまたはM
gにより溶銅を脱酸するためであり、脱酸を行なわない
場合はガスによる気孔を複合材中に生じるからである。
Next, the reason for adding one or more types of P or Mg at 0.01=l-0wt% to the copper that is made into a gold material in the carbon base material is P or Mg.
This is because the molten copper is deoxidized by the gas, and if deoxidation is not performed, gas pores will be created in the composite material.

ここで添加量を0 、001−1 、0wt%とするの
は、0.001wt%未満では脱酸の効果が少なく、1
.0wt%を超えると、脱酸の効果がそれ以上丘からな
いうえ、Mgの場合には溶銅の流動性が低下し、溶銅の
含浸不良を引き起すからである。
Here, the addition amount is set to 0, 001-1, 0 wt% because if it is less than 0.001 wt%, the deoxidizing effect is small.
.. If it exceeds 0 wt%, the deoxidizing effect will not be any more effective, and in the case of Mg, the fluidity of the molten copper will decrease, causing poor impregnation of the molten copper.

なお黒鉛中に含浸され凝固した銅の結晶粒を微細化する
ためにZrをo、ooi〜0.1wt%含有させても良
い、この場合結晶粒微細化により複合材料の機械的強度
が向上する。また固溶強化および析出強化により複合材
の機械的強度を向上させる目的でSn、Ni 、Zn。
Note that in order to refine the crystal grains of copper impregnated into graphite and solidified, Zr may be included in an amount of o, ooi to 0.1 wt%. In this case, the mechanical strength of the composite material is improved by refining the crystal grains. . In addition, Sn, Ni, and Zn are added for the purpose of improving the mechanical strength of composite materials through solid solution strengthening and precipitation strengthening.

Ai、Si 、Fe、Co、Ti 、Crを0.001
〜1wt%の範囲で含有させても良い。
Ai, Si, Fe, Co, Ti, Cr at 0.001
It may be contained in a range of 1 wt%.

複合材料中の銅の充填率を2〜40vol%とするのは
2vol%未満では熱伝導率が詐導体用として不充分で
あり、40vol%を超えると8膨張係数が半導体用と
して大きくなりすぎるためである。
The reason why the copper filling rate in the composite material is set to 2 to 40 vol% is because if it is less than 2 vol%, the thermal conductivity is insufficient for use as a conductor, and if it exceeds 40 vol%, the 8 expansion coefficient becomes too large for use in semiconductors. It is.

また、炭素基材中に銅を含浸させた後、複合材料中に残
存する独立した気孔のうち、複合材料表面に存在するも
のについては、使用に際し複合材に銅などのめっき処理
を行なうことにより何ら問題とはならず、また複合材内
部に残存する独立した気孔についても半導体用複合材と
して必要な特性(熱膨張係数、熱伝導率など)に悪影響
をおよぼすことはない。
In addition, among the independent pores that remain in the composite material after impregnating copper into the carbon base material, those that exist on the surface of the composite material can be removed by plating the composite material with copper etc. before use. This does not pose any problem, and the independent pores remaining inside the composite material do not adversely affect the properties (thermal expansion coefficient, thermal conductivity, etc.) required for a composite material for semiconductors.

次に本出願に係る第2発明である半導体用複合材の製造
法について説明する。
Next, a method for manufacturing a composite material for semiconductors, which is the second invention according to the present application, will be explained.

鋳型およびブロック状炭素を1080〜1300℃の温
度で加熱するのは1080℃未満では溶銅を鋳型に注い
で0.5〜50kgf/mm2の圧力で加圧しても、鋳
型および炭素に熱を奪われ凝固点以下の温度になった溶
銅は炭素の下端に達する迄に凝固を開始し、溶銅は炭素
の下端に迄行き渡らないからである。一方1300℃を
超えて加熱すると加圧により炭素下端に迄達した溶銅は
抜熱が不充分なため高い流動性を有したままであり、鋳
型の隙間から流出してしまい、従って溶銅には必要な圧
力が加わらない、その結果溶銅は炭素全体に行き渡りは
するが、微細な気孔部に迄充分溶銅が入らなかったり、
あるいは凝固の際に引は巣が生じたりする。よってg型
および炭素の加熱温度は1080〜1300℃とする。
Heating the mold and block-shaped carbon at a temperature of 1,080 to 1,300°C is because if the temperature is lower than 1,080°C, even if molten copper is poured into the mold and pressurized at a pressure of 0.5 to 50 kgf/mm2, the mold and carbon will lose heat. This is because the molten copper, whose temperature is below the freezing point, starts to solidify before reaching the lower end of the carbon, and the molten copper does not reach the lower end of the carbon. On the other hand, when heated above 1300°C, the molten copper that has reached the lower end of the carbon due to pressurization remains highly fluid due to insufficient heat removal, and flows out through the gaps in the mold, resulting in the molten copper reaching the lower end of the carbon. The necessary pressure is not applied, and as a result, although the molten copper is distributed throughout the carbon, it may not be able to reach the minute pores.
Or, during coagulation, cavities may form. Therefore, the heating temperature of the g-type and carbon is set to 1080 to 1300°C.

次に溶銅の温度を1080〜1400℃とするのは、上
記の鋳型および炭素の加熱温度を決めたのと同じ理由か
らであり、溶銅が充分炭素の下端に迄達し、しかも鋳型
の隙間から溶銅が洩れない温度であるからである。
Next, the temperature of the molten copper is set at 1,080 to 1,400°C for the same reason as the above heating temperature of the mold and carbon. This is because the temperature is such that molten copper will not leak out.

次に加圧力を0.5〜50 Kgf/履112 とする
のは、加圧力が0 、5 Kgf/ms2未満では溶銅
が微細な気孔部に迄入らないし、凝固の際に引は巣を生
じたりするからであり、ヒ限を50kgF/+*m2 
としたのは溶銅の充填および引は巣の防止には50 k
gf/+m2迄で充分であり、それ以上の圧力は省エネ
の点から不要である。よって加圧力は0 、5〜50 
kgf/amzトする。
Next, the pressure is set to 0.5 to 50 Kgf/ms2, because if the pressure is less than 0.5 Kgf/ms2, the molten copper will not penetrate into the minute pores and will not be pulled during solidification. The limit is 50kgF/+*m2.
50k was used to fill the molten copper and prevent cavities.
A pressure up to gf/+m2 is sufficient, and higher pressure is unnecessary from the point of view of energy saving. Therefore, the pressing force is 0,5~50
kgf/amz.

なお鋳型の隙間から溶銅が洩れるのを防上するため、注
湯と同時に鋳型下部をガス等で強制冷却することは安定
した加圧条件を得るのに効果的である。
In order to prevent molten copper from leaking from the gaps in the mold, it is effective to forcibly cool the lower part of the mold with gas or the like at the same time as pouring the metal, in order to obtain stable pressurizing conditions.

溶銅を炭素基材へ含浸させる方向には特に限定は無いが
、一方向から含浸させる理由は溶銅の進行により炭素基
材中のガスが片端から抜は出る様にするためである。溶
銅の中に炭素を浸漬し加圧する従来の方法において生じ
る可能性のある、炭素基材中央部にとじこめられたガス
による気孔は本方法によれば生じない。
There is no particular limitation on the direction in which the carbon base material is impregnated with molten copper, but the reason for impregnating from one direction is to allow the gas in the carbon base material to escape from one end as the molten copper advances. This method does not create pores due to gas trapped in the center of the carbon substrate, which can occur in the conventional method of immersing carbon in molten copper and pressurizing it.

[実施例] 鋳型を1120℃に加熱保温したのち、炭素基材を鋳型
の中に装入し、炭素基材と鋳型を再度1120℃に昇温
した。その後、鋳型内の炭素基材の上部に表2に示す成
分からなる添加物を含む1320℃とした溶銅を注ぎ、
さらにそのh部にパンチを置いて15 kgf/■2の
圧力で加圧を行ないながら溶銅を凝固させた。加圧を始
める際鋳型底部よりN2ガスによる強制冷却を行なった
[Example] After the mold was heated and kept at 1120°C, a carbon base material was charged into the mold, and the temperature of the carbon base material and the mold was raised to 1120°C again. After that, molten copper heated to 1320°C containing additives consisting of the ingredients shown in Table 2 was poured onto the top of the carbon base material in the mold.
Furthermore, a punch was placed on the h portion and the molten copper was solidified while applying pressure at a pressure of 15 kgf/2. When starting pressurization, forced cooling was performed using N2 gas from the bottom of the mold.

第1図には本実施例で用いた加圧鋳造装置を模式的に示
す。
FIG. 1 schematically shows the pressure casting apparatus used in this example.

加圧鋳造装置は鋳型1、パンチ4、加圧シリンダー5、
加熱ヒーター6から成っており、炭素基材2の上におい
た溶銅3をパンチ4で加圧することにより、炭素基材2
中の気孔に溶銅を押し込むものである。
The pressure casting device includes a mold 1, a punch 4, a pressure cylinder 5,
It consists of a heating heater 6, which pressurizes the molten copper 3 placed on the carbon base material 2 with a punch 4.
Molten copper is forced into the pores inside.

得られた銅−炭素複合材料の特性を従来例と比較して表
1に示す0表1の1〜3は実施例を示し、4,5は銅の
充填率が本発明範囲外である比較例である。比較例4で
は銅の充填率が2%以下であるため熱伝導率が半導体用
としては不充分であることが分かる。また比較例5では
銅の充填率が40%以上であるため熱膨張係数が半導体
用としては大きくなりすぎていることが分かる。
The properties of the obtained copper-carbon composite material are compared with those of conventional examples and are shown in Table 1. 1 to 3 in Table 1 show examples, and 4 and 5 are comparisons in which the copper filling rate is outside the range of the present invention. This is an example. It can be seen that in Comparative Example 4, the copper filling rate was 2% or less, so the thermal conductivity was insufficient for semiconductor use. Moreover, in Comparative Example 5, since the copper filling rate is 40% or more, it can be seen that the coefficient of thermal expansion is too large for semiconductor use.

実施例1,2.3は従来例より優れた熱伝導性を有し、
熱膨張係数も従来例と同等の低い値を有していることが
分る。炭素中の銅の分布状態も均一であり、半導体用の
熱応力緩和材として充分性tkを満足するものである。
Examples 1, 2.3 have better thermal conductivity than the conventional example,
It can be seen that the coefficient of thermal expansion is also as low as that of the conventional example. The distribution state of copper in carbon is also uniform, and satisfies sufficiency tk as a thermal stress relaxation material for semiconductors.

・[発明の効果] 上記説明の様に1本発明による半導体用銅炭素複合材料
は上記の構成を有しているものであるから、熱応力緩和
特性に優れ半導体用としての特性を充分に満足し、しか
も従来の銅−炭素繊維複合材よりも簡単な工程で製作が
可能であるという優れた効果を有している。
- [Effects of the Invention] As explained above, the copper-carbon composite material for semiconductors according to the present invention has the above-mentioned structure, and therefore has excellent thermal stress relaxation properties and fully satisfies the properties for semiconductors. Moreover, it has an excellent effect in that it can be manufactured through a simpler process than conventional copper-carbon fiber composite materials.

表! 表2table! Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加圧鋳造装置を示す模式図である。 FIG. 1 is a schematic diagram showing a pressure casting apparatus.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素質又は黒鉛質のブロック状炭素基材(以後は
単に炭素基材と称す)の気孔に、P又はMgを1種以上
0.001〜1.0wt%含有した銅を2〜40vol
%含浸させたことを特徴とする半導体用銅−炭素複合材
料。
(1) 2 to 40 vol of copper containing 0.001 to 1.0 wt% of one or more types of P or Mg is added to the pores of a carbonaceous or graphitic block-shaped carbon base material (hereinafter simply referred to as carbon base material).
A copper-carbon composite material for semiconductors, characterized in that it is impregnated with %.
(2)炭素基材を鋳型内に装入し、該鋳型とともに該炭
素基材を1080〜1300℃に加熱後、1083〜1
400℃に加熱した溶銅を、該鋳型の一方向から0.5
〜50kgf/mm^2の圧力で加圧しながら鋳造する
ことにより、該炭素基材中の気孔に存在する気体を該炭
素基材から抜くと同時に該溶銅を炭素基材に含浸させる
ことを特徴とする炭素質又は黒鉛質のブロック状炭素基
材(以後は単に炭素基材と称す)の気孔に、P又はMg
を1種以上0.001〜1.0wt%含有した銅を2〜
40vol%含浸させたことを特徴とする半導体用銅−
炭素複合材料の製造方法。
(2) After charging the carbon base material into a mold and heating the carbon base material together with the mold to 1080 to 1300°C,
Molten copper heated to 400°C is heated to 0.5% from one direction of the mold.
The feature is that by casting while pressurizing at a pressure of ~50 kgf/mm^2, the gas existing in the pores in the carbon base material is extracted from the carbon base material, and at the same time, the molten copper is impregnated into the carbon base material. P or Mg is added to the pores of a carbonaceous or graphitic block-like carbon base material (hereinafter simply referred to as a carbon base material).
Copper containing 0.001 to 1.0 wt% of one or more types of
Copper for semiconductors characterized by being impregnated with 40 vol%
Method for manufacturing carbon composite materials.
JP4987086A 1986-03-06 1986-03-06 Copper-carbon composite material for semiconductor and its production Pending JPS62207832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4987086A JPS62207832A (en) 1986-03-06 1986-03-06 Copper-carbon composite material for semiconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4987086A JPS62207832A (en) 1986-03-06 1986-03-06 Copper-carbon composite material for semiconductor and its production

Publications (1)

Publication Number Publication Date
JPS62207832A true JPS62207832A (en) 1987-09-12

Family

ID=12843077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4987086A Pending JPS62207832A (en) 1986-03-06 1986-03-06 Copper-carbon composite material for semiconductor and its production

Country Status (1)

Country Link
JP (1) JPS62207832A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634494A2 (en) * 1993-07-14 1995-01-18 Doryokuro Kakunenryo Kaihatsu Jigyodan Copper-carbon composite material with graded function and method for manufacturing the same
US6927421B2 (en) * 2001-10-26 2005-08-09 Ngk Insulators, Ltd. Heat sink material
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
CN103397283A (en) * 2013-07-07 2013-11-20 中南大学 Preparation method of carbon/carbon-copper composite material
CN112646989A (en) * 2020-12-08 2021-04-13 昆明理工大学 Method for preparing copper-based composite material by in-situ generation of carbonaceous reinforcement
WO2021125196A1 (en) * 2019-12-17 2021-06-24 宇部興産株式会社 Graphite-copper composite material, heating member using same, and method for manufacturing graphite-copper composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634494A2 (en) * 1993-07-14 1995-01-18 Doryokuro Kakunenryo Kaihatsu Jigyodan Copper-carbon composite material with graded function and method for manufacturing the same
EP0634494A3 (en) * 1993-07-14 1995-10-11 Doryokuro Kakunenryo Copper-carbon composite material with graded function and method for manufacturing the same.
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
US6927421B2 (en) * 2001-10-26 2005-08-09 Ngk Insulators, Ltd. Heat sink material
CN103397283A (en) * 2013-07-07 2013-11-20 中南大学 Preparation method of carbon/carbon-copper composite material
WO2021125196A1 (en) * 2019-12-17 2021-06-24 宇部興産株式会社 Graphite-copper composite material, heating member using same, and method for manufacturing graphite-copper composite material
JPWO2021125196A1 (en) * 2019-12-17 2021-06-24
CN112646989A (en) * 2020-12-08 2021-04-13 昆明理工大学 Method for preparing copper-based composite material by in-situ generation of carbonaceous reinforcement
CN112646989B (en) * 2020-12-08 2022-02-08 昆明理工大学 Method for preparing copper-based composite material by in-situ generation of carbonaceous reinforcement

Similar Documents

Publication Publication Date Title
CN106702204B (en) Copper based powder metallurgy friction material and preparation method thereof
US4492265A (en) Method for production of composite material using preheating of reinforcing material
US4971755A (en) Method for preparing powder metallurgical sintered product
CN101984112B (en) High thermal conductivity copper-reinforced aluminum composite material and preparation method thereof
JP4718685B2 (en) Method and device for chill molding
CN101260488A (en) Silicon nitride ceramic particles enhancement aluminum-base composite material and preparing method thereof
CN107398544B (en) A kind of lost-foam casting method of three-dimensional network ceramics-iron base composite material
JPS62207832A (en) Copper-carbon composite material for semiconductor and its production
JPS61140328A (en) Formation of superplastic material by using granular body as pressure-transmitting medium
RU2356968C1 (en) Method of receiving of cast high-reinforced alumo-matrix composite material
CN212451584U (en) Vertical manufacturing device and horizontal manufacturing device of brake disc
CN102161082B (en) Side sealing plate for thin-belt continuous casting and manufacturing method
CN110323188A (en) A kind of IGBT module of aluminium silicon carbide of high-volume fractional and preparation method thereof
JP2001073102A (en) Carbon fiber dispersed aluminum matrix composite material having high thermal conductivity and low thermal expansibility
CN114807644B (en) Silicon-aluminum composite material and preparation method and application thereof
JPH04198407A (en) Sintered metal mold and production thereof
CN109576528B (en) Copper-based composite material with SiC-CDCs @ TiC as reinforcing phase and preparation method thereof
US5406029A (en) Electronic package having a pure metal skin
JPS606265A (en) Production of composite fiber member
JPH10298685A (en) Electrode parts for semiconductor producing device
CN105312536A (en) High-thermal-conductivity low-expansion aluminum silicon carbide substrate material of controllable structure and manufacturing method
CN110614370A (en) Preparation method of Ti6Al4V alloy porous material
JPH07236963A (en) Manufacture of molding die having heating/cooling hole and molding die
JPH01165706A (en) Sintered compact having double phase structure and manufacture thereof
CN113737045A (en) Method for preparing bicontinuous phase SiC/Cu composite material