JPS62183956A - Production of metallic composite material - Google Patents

Production of metallic composite material

Info

Publication number
JPS62183956A
JPS62183956A JP2339186A JP2339186A JPS62183956A JP S62183956 A JPS62183956 A JP S62183956A JP 2339186 A JP2339186 A JP 2339186A JP 2339186 A JP2339186 A JP 2339186A JP S62183956 A JPS62183956 A JP S62183956A
Authority
JP
Japan
Prior art keywords
mixture
metal
composite material
matrix
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2339186A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tatematsu
立松 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2339186A priority Critical patent/JPS62183956A/en
Publication of JPS62183956A publication Critical patent/JPS62183956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To easily obtain a metallic composite material with a simple installation by melting metals to constitute a mixture after molding by using a welding device and uniting and solidifying the mixture thereby forming the metallic composite material. CONSTITUTION:Silicon carbide whiskers are used as a heat resistant dispersoid and Al alloy powder as a matrix metal. Both the whiskers and powder are mixed. The resulted mixture 1 is put into a molding tool and is compressively molded in a molding stage. The mixture 1 molded in the above-mentioned manner is disposed in the groove of the Al alloy 2 provided with the groove. A TIG welding device 3 is used and is moved at a slow speed from one end of the mixture 1 toward the other end to successively melt the matrix metal constituting the mixture 1. The metal is melted by the welding device 3 and while the metal is still soft, the solidifying stage which is the final stage is executed. The molten metal is solidified while the molten metallic surface is pressurized by using a roller 4 to unite the mixture 1 in the solidifying stage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属基複合材料の製造方法に関するものである
。本発明の製造方法は構造材料或いは機械部品の製造に
用いることができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a metal matrix composite material. The manufacturing method of the present invention can be used for manufacturing structural materials or mechanical parts.

[従来の技術1 従来、金属基複合材料の一種である繊維強化金属(FR
M)の製造方法としては、金属が表面に被覆されるセラ
ミックI!維を用いるプリフォーム法が一般的に知られ
ている。しかしかかるプリフォームを使用せず、11維
状或いは粒子状の耐熱性分改質と繊維状或いは粒子状の
マトリックス金属とを機械的に混合した後に成形型内に
入れて、圧縮成形したものを焼結、或いはホットプレス
と呼ぶ加熱、加圧、凝固の工程によって一体化する方法
も知られている。この方法は、いわゆる粉末冶金技術を
応用したものである。
[Conventional technology 1 Conventionally, fiber reinforced metal (FR), which is a type of metal matrix composite material, has been used.
The manufacturing method for M) is ceramic I! whose surface is coated with metal. A preform method using fibers is generally known. However, instead of using such a preform, it is possible to mechanically mix fibrous or granular heat resistant component modified with fibrous or granular matrix metal, then put it into a mold and compression mold it. There is also known a method of integrating by a process of heating, pressurizing, and solidifying called sintering or hot pressing. This method applies so-called powder metallurgy technology.

[発明が解決しようとする問題点] 従来の粉末冶金技術を応用して耐熱性分散質とマトリッ
クス金属を混ぜ、圧縮成形したものを焼結、或いはポッ
トプレスによって一体化し金属基複合材料を製造する方
法は、焼結成いは加熱加圧のために特別な炉等の設備を
必要とし、又複合化のための所要時間が良くなる等の問
題点がある。
[Problems to be solved by the invention] Applying conventional powder metallurgy technology, a heat-resistant dispersoid and a matrix metal are mixed, compression molded, and then integrated by sintering or pot pressing to produce a metal matrix composite material. This method has problems such as sintering requires equipment such as a special furnace for heating and pressurizing, and the time required for composite formation is shortened.

本発明はプリフォームを使用せず、前記粉末冶金全技術
を応用した方法により、簡単な設備で金属基複合材料が
得られる金属基複合材料の製造方法を提供することを目
的とするものである。
An object of the present invention is to provide a method for manufacturing a metal matrix composite material, which can be obtained with simple equipment by a method applying all the powder metallurgy techniques without using a preform. .

[発明の構成] (問題点を解決するための手段〉 本発明の金属基複合材料の製造方法は、繊維状或いは粒
子状の耐熱性分散質と、繊維状或いは粒子状のマトリッ
クス金属とを所定の体積比で混合して、該混合物を得る
混合工程、得られた該混合物を一定形状に配置する成形
工程、成形された該混合物を溶接装置にて、該混合物を
構成づる該マトリックス金属を溶融させる溶融工程、及
び溶融した該マトリックス金属を凝固させる凝固工程と
から成ることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a metal matrix composite material of the present invention includes a method for producing a metal matrix composite material in which a fibrous or particulate heat-resistant dispersoid and a fibrous or particulate matrix metal are mixed in a predetermined manner. A mixing step of obtaining the mixture by mixing in a volume ratio of This method is characterized by comprising a melting step in which the matrix metal is melted, and a solidification step in which the molten matrix metal is solidified.

本発明においては溶接装置、すなわち溶接という手段を
用いて、混合物を構成する金属を溶融し、混合物を一体
化、凝固して金属基複合材料を形成している。このため
に極めて簡単に金属基複合材料が得られる。
In the present invention, a welding device, that is, a means called welding, is used to melt the metals constituting the mixture, and the mixture is integrated and solidified to form a metal matrix composite material. For this reason, a metal matrix composite material can be obtained extremely easily.

(発明の構成の詳細な説明) 本発明は混合物を得る混合工程、成形工程、溶融工程及
び凝固工程よりなる。
(Detailed Description of the Structure of the Invention) The present invention comprises a mixing step for obtaining a mixture, a molding step, a melting step, and a solidifying step.

混合工程は、繊維状或いは粒子状の耐熱性分改質と繊維
状或いは粒子状のマトリックス金属とを機械的に混合し
、混合物を得る工程である。ここで耐熱性分改質として
は、アルミナ、シリカ、アルミナ−シリカ、ボロン、炭
素、黒鉛、炭化珪素、ガラス又はステンレススチール等
の長繊維、短繊維、それらのウィスカー或いは粉末状の
粒子を使用することができる。
The mixing step is a step of mechanically mixing a fibrous or particulate modified heat-resistant component and a fibrous or particulate matrix metal to obtain a mixture. Here, as the heat-resistant modification, long fibers, short fibers, whiskers or powder particles thereof, such as alumina, silica, alumina-silica, boron, carbon, graphite, silicon carbide, glass or stainless steel, are used. be able to.

マトリックス金属としては、アルミニウム、銅、鉄等の
構造オ料として使用出来る金属が用いられる。混合力、
kは耐熱性分散質とマトリックスがともに粉末状゛ある
場合には、従来と同様に機械的に混合させ;しばよく、
又繊維状の耐熱性分[11!質とマトリックス金属粉末
を用いる場合には、スラリーと呼ばれる懸濁したドロド
ロの液の中を通して、繊維間に−2トリツクス粒子が分
散するようにして混合さ1′、でもよい。成形工程は(
qられた混合物を一定形状に成形する工程である。この
成形工程としては、例えば成形型の凹部内に混合物を配
置し、加圧等で四部形状に圧縮成形すること、或いは金
属部品本体の溝、凹部等に、圧縮成形された混合物を詰
め込んで一定形状に成形すること、その他束状に成形さ
れた混合物を金属本体の外周面に巻ぎつける等により一
定形状に混合物を成形することが出来る。溶融工程は、
成形された混合物に溶接装置により熱を加え、マトリッ
クス金属を溶融させ該混合物を一体化するものである。
As the matrix metal, metals that can be used as structural materials, such as aluminum, copper, and iron, are used. mixing power,
When the heat-resistant dispersoid and the matrix are both in powder form, k is mechanically mixed as in the conventional method;
Also, the fibrous heat resistance [11! When a matrix metal powder is used, it may be mixed by passing it through a suspended mushy liquid called slurry so that the -2 trix particles are dispersed between the fibers. The molding process is (
This is a step of molding the quenched mixture into a certain shape. This molding process involves, for example, placing the mixture in the recess of a mold and compressing it into a four-part shape by applying pressure, or filling the grooves, recesses, etc. of the metal part body with the compression-molded mixture so that it remains constant. The mixture can be formed into a certain shape by forming the mixture into a certain shape, or by wrapping the mixture formed into a bundle around the outer peripheral surface of a metal body. The melting process is
Heat is applied to the molded mixture by a welding device to melt the matrix metal and integrate the mixture.

なお成形された混合物を部分的に溶接装置により加熱し
、部分的に溶融を行うことが出来る。凝固工程は、溶融
したマトリックス金属を凝固させる工程である。該凝固
工程は、該マトリックス金属が溶融直後でまだ軟らかい
うちにローラ等で加圧し凝固させることが出来る。溶!
I[fとしては、従来公知のT I G溶接装置、酸素
−水素バーナ、電気溶接等の装置を利用することができ
る。
Note that the molded mixture can be partially heated by a welding device to partially melt the mixture. The solidification process is a process of solidifying the molten matrix metal. In the solidification step, the matrix metal can be solidified by applying pressure with a roller or the like while it is still soft immediately after melting. Melt!
As I[f, conventionally known devices such as a TIG welding device, an oxygen-hydrogen burner, and an electric welding device can be used.

本発明の金腐り複合材料の製造方法は溶接装置により混
合物を一体化している。このために得られた金属基複合
材料の少なくとも露出した表面は所定の平滑度におさえ
ることが困難である。かがる場合には、金属部複合材料
成形後、機械加工を行う必要がある。
In the method for producing a rotten metal composite material of the present invention, the mixture is integrated using a welding device. Therefore, it is difficult to maintain at least the exposed surface of the obtained metal matrix composite material to a predetermined level of smoothness. In the case of darning, it is necessary to perform machining after molding the metal part of the composite material.

[発明の実施例] 第1図に示す第1の実施例においては、耐熱性分改質と
して炭化珪素ウィスカー(平均径0.5μm、平均長1
50um)を、マトリックス金属としてアルミニウム合
金粉末(粒子)(JIs6061 、平均径150μm
)を、使用し、まず混合工程において、両者を体積比で
15:85の割合で混合する。次いで成形工程において
、得られた該混合物1を成形型の中へ入れ、寸法が1゜
O+mx 100+amx 10IImでがさ密度が2
.55Q/’Cm3の板状になるように圧縮成形する。
[Embodiment of the Invention] In the first embodiment shown in FIG. 1, silicon carbide whiskers (average diameter 0.5 μm, average length 1
50 um) and aluminum alloy powder (particles) (JIs6061, average diameter 150 μm) as the matrix metal.
), and first, in the mixing step, both are mixed at a volume ratio of 15:85. Next, in the molding process, the obtained mixture 1 is put into a mold with dimensions of 1°O+mx 100+amx 10IIm and a bulk density of 2.
.. Compression molding into a plate shape of 55Q/'Cm3.

こうして成形された前記混合物1を溝が設【ノられたア
ルミニウム合金板2 (J Is  6061 )の溝
内へ配置する。その後溶融工程へ移り、前記溝内に配置
された混合物1をその一方の端がら他端へ向って、従来
公知のIIG溶接装置3を用い、該溶接装F?3をゆっ
くり(送り3!!度2.5m1ll/秒)した速さで移
動させ、順に混合物1を構成するマトリックス金属を溶
融していく。溶接5A置3により金属が溶融してまだ軟
らかい間に最後の工程である凝固工程を行う。凝固工程
では、ローラ4を用いて溶融した金属面を加圧しつつ凝
固させ前記混合物1を一体化させる。
The mixture 1 thus formed is placed into the grooves of an aluminum alloy plate 2 (J Is 6061) provided with grooves. Thereafter, the process moves to a melting process, in which the mixture 1 placed in the groove is moved from one end to the other using a conventionally known IIG welding device 3, and the welding device F? 3 is moved at a slow speed (feed 3!! degree 2.5 ml/sec), and the matrix metal constituting mixture 1 is sequentially melted. The final process, the solidification process, is performed while the metal is melted by welding 5A and still soft. In the solidification step, the mixture 1 is solidified while pressurizing the molten metal surface using the roller 4 to integrate the mixture 1.

以上の工程により製造された金属基複合材料の機械的特
性及び金属!複合材1131化された組織の密度を調べ
るため、前記アルミニウム合金板2をT6熱処理後、金
属基複合材料部のみを機械加工で切り出し、寸法が80
111m×8111m×2I1mのサンプル片を製作し
て引張り試験を実施した結果、強度は45kg/m+u
であった。なお、この時の繊維体積率は約15%であっ
た。更に金属基複合材料を構成する組織の密度を調べる
ため顕微鏡観察を行ったところ、繊維間にはアルミニウ
ム合金が十分充填されていることが確認され、複合状態
は良好であることがわかった。
Mechanical properties and metal of the metal matrix composite material manufactured by the above process! In order to investigate the density of the composite material 1131 structure, after T6 heat treatment of the aluminum alloy plate 2, only the metal matrix composite material part was cut out by machining, and the size was 80 mm.
As a result of making a sample piece of 111m x 8111m x 2I1m and conducting a tensile test, the strength was 45kg/m+u
Met. Note that the fiber volume percentage at this time was about 15%. Further, when microscopic observation was performed to investigate the density of the structure constituting the metal matrix composite material, it was confirmed that the aluminum alloy was sufficiently filled between the fibers, indicating that the composite condition was good.

(実施例2) 第2図および第3図に示す、本発明の第2の実施例にお
いては、耐熱性分散質としてアルミナ良識Wt<デュポ
ン類、商品名[ファイバーFPJ、平均径20μm)を
、マトリックス金属としてはアルミニウム合金製のワイ
ヤー(J Is  4032、径200μm)を使用し
、まず、混合工程において、両者を体積比で45:55
の割合になるにう混合する。次いで成形工程において、
得られた該混合物5を束状に成るように成形した後アル
ミニウム合金N (AC8A)のピストン本体6(直径
84m1ll)のスカート肩部に配設された溝(幅3I
、深さ4mm)内に配置し巻ぎっけ成形づる。続いて、
溶融工程に移り、ピストン6をゆっくりした速さく約0
.7回/分)で回転させながら、TIG溶接装回3を用
いて、電流160アンペアにて前記ワイr−状に成形さ
れた混合物5を溝に沿って溶接していき、該混合物5を
構成するアルミニウム合金を溶融させる。最後に、凝固
工程を実施し溶接装置により金属が溶融してまだ軟らか
い状態にある間にローラ4を用いて溶融面を加圧しつつ
凝固させ、前記混合物5の一体化を達成する。前記第1
の実施例と同様、顕微鏡で11!検査を行った結果、繊
維間にアルミニウム合金が十分充填されており、複合状
態は良好であることが確認された。
(Example 2) In the second example of the present invention shown in FIGS. 2 and 3, alumina common sense Wt<DuPont, trade name [Fiber FPJ, average diameter 20 μm) was used as the heat-resistant dispersoid. An aluminum alloy wire (J Is 4032, diameter 200 μm) was used as the matrix metal, and first, in the mixing process, the volume ratio of both was 45:55.
Mix until the proportions are as follows. Next, in the molding process,
The obtained mixture 5 was formed into a bundle, and then a groove (width 3I
, a depth of 4 mm) and wrap it around the mold. continue,
Moving on to the melting process, move the piston 6 at a slow speed of about 0.
.. While rotating at a speed of 7 times/min), the wire-shaped mixture 5 was welded along the groove using a TIG welding equipment 3 at a current of 160 amperes to form the mixture 5. melt the aluminum alloy. Finally, a solidification step is carried out, and while the metal is melted by a welding device and is still in a soft state, the molten surface is pressed using rollers 4 and solidified, thereby achieving the integration of the mixture 5. Said first
Similar to the example, 11! with a microscope! As a result of the inspection, it was confirmed that the aluminum alloy was sufficiently filled between the fibers and the composite condition was good.

特に、本実施例においては、熱膨張率の小さいアルミナ
繊維を内燃機関のピストン本体6の外周面に複合化した
ことによりピストンの熱変形がおさえられ、冷同時のピ
ストン6の打音の低減化および焼付防止を可能にするな
どの実用的効果が得られた。
In particular, in this embodiment, thermal deformation of the piston is suppressed by compounding alumina fiber with a small coefficient of thermal expansion on the outer circumferential surface of the piston body 6 of the internal combustion engine, thereby reducing the hammering noise of the piston 6 during cooling. Practical effects such as anti-seizure and seizure prevention were obtained.

上記2つの実施例では耐熱性分改質として、炭化珪素ウ
ィスカー及びアルミナ長[tを用いているが、この他の
シリカ、アルミナ−シリカ、ボロン、又はガラス等の長
繊維、短繊維それらのウィスカー或いは粉末を、又マト
リックスとして銅、鉄等を用いてもよい。更に溶接装置
についても、TIG溶接機に限られるわ【)でなく、従
来公知の例えば電気溶接機等を用いることができる。
In the above two examples, silicon carbide whiskers and alumina length [t] are used as the heat resistance modification, but other whiskers such as silica, alumina-silica, boron, or glass or other long fibers or short fibers are used. Alternatively, a powder or a matrix of copper, iron, etc. may be used. Further, the welding device is not limited to a TIG welder, but a conventionally known electric welder or the like may be used.

[発明の効果] 本発明によれば、溶接装置、すなわち、溶接という手段
を用いて、成形後の混合物を構成する金属を溶融し、混
合物を一体化凝固して金属基複合材料を形成している。
[Effects of the Invention] According to the present invention, a welding device, that is, a means of welding, is used to melt the metals constituting the mixture after forming, and solidify the mixture into one piece to form a metal matrix composite material. There is.

このために、従来公知の製造方法に比べ極めて簡単な設
備で、容易に金属基複合材料がヤIられるとともに、得
られた金属基複合材料の特性が従来に比較して改善され
ていることが実験で確認されている。更に本発明の製造
方法は構造材料或いは機械部品の製造に用いることが出
来、実用的価値は高いものである。
For this reason, metal matrix composite materials can be easily produced using extremely simple equipment compared to conventionally known production methods, and the properties of the obtained metal matrix composite materials are improved compared to conventional methods. Confirmed by experiment. Furthermore, the manufacturing method of the present invention can be used for manufacturing structural materials or mechanical parts, and has high practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1の実施例の概略説明用斜視図
であり、第2図は、本発明による第2の実施例の説明用
側面図であり、第3図は、同実施例の説明用正面図であ
る。 1・・・炭化珪素ウィスカーとアルミニウム合金粒子と
の成形体 2・・・アルミニウム合金板 3・・・TIG溶接機  4・・・ローラ5・・・アル
ミナ繊維とアルミニウム合金線の成形束6・・・ピスト
ン本体 特許出願人   トヨタ自動車株式会社代理人    
弁理士 大川 宏 同     弁理士 丸山明夫
FIG. 1 is a schematic perspective view of a first embodiment of the present invention, FIG. 2 is a side view of a second embodiment of the present invention, and FIG. 3 is a perspective view of the second embodiment of the present invention. It is an explanatory front view of. 1... Molded body of silicon carbide whiskers and aluminum alloy particles 2... Aluminum alloy plate 3... TIG welding machine 4... Roller 5... Molded bundle of alumina fiber and aluminum alloy wire 6...・Piston body patent applicant Toyota Motor Corporation representative
Patent Attorney Hirodo Okawa Patent Attorney Akio Maruyama

Claims (6)

【特許請求の範囲】[Claims] (1)繊維状或いは粒子状の耐熱性分散質と、繊維状或
いは粒子状のマトリックス金属とを所定の体積比で混合
して混合物を得る混合工程、 得られた該混合物を一定形状に配置する成形工程、 成形された該混合物を溶接装置にて該混合物を構成する
該マトリックス金属を溶融させる溶融工程、及び溶融し
た該マトリックス金属を凝固させる凝固工程とからなる
ことを特徴とする金属基複合材料の製造方法。
(1) A mixing step in which a fibrous or particulate heat-resistant dispersoid and a fibrous or particulate matrix metal are mixed at a predetermined volume ratio to obtain a mixture, and the resulting mixture is arranged in a certain shape. A metal matrix composite material comprising: a forming step, a melting step of melting the matrix metal constituting the mixture using a welding device, and a solidifying step of solidifying the molten matrix metal. manufacturing method.
(2)凝固工程は、該マトリックス金属が溶融状態の間
に、該金属を加圧し凝固させる工程である特許請求の範
囲第1項記載の金属基複合材料の製造方法。
(2) The method for producing a metal matrix composite material according to claim 1, wherein the solidification step is a step of pressurizing and solidifying the matrix metal while the matrix metal is in a molten state.
(3)耐熱性分散質は、アルミナ、シリカ、アルミナ−
シリカ、ボロン、炭素、黒鉛、炭化珪素、ガラス又はス
テンレススチールから構成されている特許請求の範囲第
1項記載の金属基複合材料の製造方法。
(3) Heat-resistant dispersoids include alumina, silica, and alumina.
The method for producing a metal matrix composite material according to claim 1, which is composed of silica, boron, carbon, graphite, silicon carbide, glass, or stainless steel.
(4)成形工程は、型内に混合物を入れ該型内で圧縮成
形を行う工程である特許請求の範囲第1項記載の金属基
複合材料の製造方法。
(4) The method for manufacturing a metal matrix composite material according to claim 1, wherein the molding step is a step of placing the mixture in a mold and performing compression molding in the mold.
(5)溶接装置は、TIGアーク溶接機である特許請求
の範囲第1項記載の金属基複合材料の製造方法。
(5) The method for manufacturing a metal matrix composite material according to claim 1, wherein the welding device is a TIG arc welder.
(6)成形工程は金属製ピストン本体の外周側に設けら
れた溝内に混合物を配置する工程であり、溶融工程は該
混合物のマトリックスを溶融させる工程であり、凝固工
程は溶融したマトリックスにより該混合物を一体化しか
つ該ピストン本体の該溝に一体的に溶接凝固する工程で
ある特許請求の範囲第1項記載の金属基複合材料の製造
方法。
(6) The forming process is a process in which the mixture is placed in a groove provided on the outer circumferential side of the metal piston body, the melting process is a process in which the matrix of the mixture is melted, and the solidification process is a process in which the mixture is melted by the molten matrix. 2. The method of manufacturing a metal matrix composite material according to claim 1, which comprises a step of integrating the mixture and integrally welding and solidifying the mixture into the groove of the piston body.
JP2339186A 1986-02-05 1986-02-05 Production of metallic composite material Pending JPS62183956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339186A JPS62183956A (en) 1986-02-05 1986-02-05 Production of metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339186A JPS62183956A (en) 1986-02-05 1986-02-05 Production of metallic composite material

Publications (1)

Publication Number Publication Date
JPS62183956A true JPS62183956A (en) 1987-08-12

Family

ID=12109209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339186A Pending JPS62183956A (en) 1986-02-05 1986-02-05 Production of metallic composite material

Country Status (1)

Country Link
JP (1) JPS62183956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098399A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Method for producing composite steel material, composite steel material and rail steel obtained by using the same
US8606353B2 (en) 2004-06-17 2013-12-10 Samsung Electronics Co., Ltd. Method, medium, and apparatus measuring biological signals using multi-electrode module, with a lead search

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8606353B2 (en) 2004-06-17 2013-12-10 Samsung Electronics Co., Ltd. Method, medium, and apparatus measuring biological signals using multi-electrode module, with a lead search
JP2007098399A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Method for producing composite steel material, composite steel material and rail steel obtained by using the same

Similar Documents

Publication Publication Date Title
EP2282060B1 (en) Powder metal scrolls
US5385195A (en) Nickel coated carbon preforms
CN107000249A (en) Ceramic preform and method
Baumeister et al. New approaches in microcasting: permanent mold casting and composite casting
US6432557B2 (en) Metal matrix composite and piston using the same
JPS62183956A (en) Production of metallic composite material
JPS63126661A (en) Production of piston
JP2504199B2 (en) Method for producing fiber-reinforced metal composite material
JPS616242A (en) Fiber reinforced metallic composite material
US1944758A (en) Method of making drawing dies
CN115007863B (en) Method for repairing internal defects of large aluminum alloy casting
JPS5827023B2 (en) Manufacturing method of fiber reinforced composite member
JPS59227781A (en) Ceramic metal bonding method
JPS6221456A (en) Production of hollow casting
JP2003171703A (en) Porous sintered compact and its manufacturing method
JP3226421B2 (en) Aluminum-based composite disk rotor
EP0240308B1 (en) Piston for internal combustion engine and method for reinforcing the same
JPS62183957A (en) Production of fiber reinforced metallic material
JPS606265A (en) Production of composite fiber member
RU2062202C1 (en) Method to produce wire of pig-iron used for welding electrodes production
JPH03264607A (en) Manufacture of complex cylinder and screw for injection and extrusion compacting machine
JPS61108493A (en) Alumina-silica fiber reinforced copper composite material for electrode
JPS6173846A (en) Porous fiber reinforced metallic composite material and its manufacture
JPS6160257A (en) Production of composite metallic material
JPH02255262A (en) Method for molding aluminum alloy