JPH0294697A - Manufacture of multilayer print circuit board - Google Patents

Manufacture of multilayer print circuit board

Info

Publication number
JPH0294697A
JPH0294697A JP24697788A JP24697788A JPH0294697A JP H0294697 A JPH0294697 A JP H0294697A JP 24697788 A JP24697788 A JP 24697788A JP 24697788 A JP24697788 A JP 24697788A JP H0294697 A JPH0294697 A JP H0294697A
Authority
JP
Japan
Prior art keywords
circuit board
insulating layer
multilayer printed
printed circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24697788A
Other languages
Japanese (ja)
Other versions
JPH0634453B2 (en
Inventor
Junichi Katagiri
片桐 純一
Akira Nagai
晃 永井
Akio Takahashi
昭雄 高橋
Toshio Sugawara
捷夫 菅原
Masahiro Ono
正博 小野
Akio Kobi
向尾 昭夫
Motoyo Wajima
和嶋 元世
Nobuaki Oki
大木 伸昭
Kiyonori Furukawa
古川 清則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63246977A priority Critical patent/JPH0634453B2/en
Publication of JPH0294697A publication Critical patent/JPH0294697A/en
Publication of JPH0634453B2 publication Critical patent/JPH0634453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To improve heat impact proof characteristic (cracking resistance) by insulating signal circuits mutually or insulating a signal circuit from a power supply circuit through an insulating layer and by constituting each insulating layer wherein resin of a large bending strength is immersed and cured. CONSTITUTION:Insulation is made between signal circuits 2 or between a signal circuit 2 and a power source circuit 1 by an insulating layer whose dielectric constant at one MHz is at most 4. Resin (which shows a value of the upper side of the line l1) whose bending strength after cured is larger than a value of a heat stress between a signal circuit conductor shown by a line l1 and the insulating layer, is immersed in the insulating layer of the signal circuit 2. In the insulating layer of the power source circuit 1, resin (which shows a value of the upper side of a line l2) whose bending strength after cured is larger than a value of a heat stress between the power source circuit conductor shown in the line l2 and the insulating layer is immersed. Cracks in each insulat ing layer can be thereby prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、多層プリント回路板に係わり、特に。 信号伝送速度を改善した電子計算機用の多層プリント回
路板およびその製法に関する。 〔従来の技術〕 電子計算機等に使用される多層プリント回路板は、難燃
性が要求されるため、基板樹脂に雅燃剤を添加したり、
臭素化変性樹脂を配合したエポキシ樹脂やポリイミド樹
脂が使用されている。 近年、大型電子計算機においては、演算速度を高めるた
めに、各種部品の信号伝送速度が問題となっている。 特に1wt子計算機に用いられている多層プリント回路
板の信号回路の信号電送速度の向上が強く要求されてい
る。 こうした、多層プリント回路板の信号電送速度は、信号
回路の絶縁層の比誘電率に左右され、低比誘電率のもの
ほど信号電送速度が速い、従って。 低比誘電率材料でプリント回路基板を形成することによ
って、計算機の高速演算化を図ることができる。低比誘
電率のものとしては、ポリテトラフルオロエチレン(p
TrE) 、ポリブタジェン(PB)等があり、これら
を絶縁材料としたプリント回路板が開発されている(特
開昭55−127426号、特開昭62−283694
号)。 〔発明が解決しようとする課題〕 しかし、PTFEは熱可塑性樹脂であるために、多層プ
リント回路板に用いた場合1寸法安定性、スルホール信
頼性が劣ると云う問題があった。また、適当な溶剤がな
いので、積層接着には加熱溶融圧着法に頼らざるを得な
い、しかし、PTFEは溶融温度が高い(250〜35
0℃)ために作業性が悪く、従来のエポキシ樹脂等に比
べて扱いにくいなど問題が多かった。 一方、PB系としては、側鎖に二重結合を有する1、2
−ポリブタジェンと二官能性モノマの架橋型難燃剤を組
み合わせた樹脂材料が開発されている(特開昭55−1
26451号)。 しかし、繊維質基材への含浸性を考慮して低分子量ポリ
マを用いたものは、得られたプリプレグの粘着性が高い
ために、プリプレグの裁断加工や保管が容易でなく、積
層接着時の作業性にも影響を与える。一方、プリプレグ
とした場合のタックフリー性を考慮して高分子量ポリマ
を用いると、含浸りニスとしての粘度が高いために含浸
性が劣り、品質のよいプリプレグの作成が容易でない。 更に、PBは、硬化反応がラジカル重合による架橋反応
であるために、反応速度が速く積層成形時のコントロー
ルが容易でない。また、FBは、硬化時の収縮が大きい
ために成形時に層間にクラックが発生し易く、基板とし
ての機械強度が低い。 耐熱性1回路導体との接着力も低い等の問題が多い。な
お、PBは、分子構造上品燃焼性と云う欠点もある。 信号伝送速度の向上が要求される信号回路の絶縁層に前
記PTFEやPBを用い、その他の絶縁層には他の樹脂
を用いることが考えられている(特開昭55−1201
96) 、 Lかし、こうした方法では、樹脂相互間の
接着性が悪く半田耐熱試験やヒートサイクルにおいて層
間剥離を起こしたり、また、PTFEではドリルによる
孔空は加工時にスミアを発生し易い。更に、こうした方
法では耐クラツク性が問題となっている。 本発明の第1の目的は、信号伝送速度がこれまでのもの
よりも速く、かつ、耐クラツク性の優れた多層プリント
回路板およびその製法を提供することにある。 本発明の第2の目的は、信号伝送速度がこれまでのもの
よりも速く、かつ、耐クラツク性および難燃性の優れた
多層プリント回路板およびその製法を提供することにあ
る。 〔課題を解決するための手段〕 本発明は、上記の課題を解決するためになされたもので
、その要旨は次のとおりである。 (I)複数の信号回路および電源回路と、これらの回路
間に熱硬化性樹脂を繊維質基材に含浸硬化して成る絶縁
層を有する多層プリント回路板において。 少なくとも信号回路相互間または信号回路と電源回路間
が、1MHzにおける比誘電率が4以下である絶縁層に
より絶縁されており、 かつ、信号回路および電源回路の各絶縁層が回路金属箔
との積層接着時または回路板のヒートサイクル時に発生
するそれぞれの熱応力よりも曲げ強度が大きな樹脂をそ
れぞれ含浸硬化された絶縁層から成ることを特徴とする
多層プリント回路板。 (2)複数の信号回路および電源回路と、これらの回路
間に熱硬化性樹脂を繊維質基材に含浸硬化して成る絶縁
層を有する多層プリント回路板において。 少なくとも信号回路相互間または信号回路と電源回路間
が、繊維質基材にポリエーテルイミドを含浸硬化して成
る絶縁層により絶縁されており、かつ、電源回路が、絶
縁層と回路金属箔との積層接着時または回路板のヒート
サイクル時に発生する熱応力よりも曲げ強度の大きな樹
脂を含浸硬化した絶縁層で絶縁されていることを特徴と
する多層プリント回路板。 (3)ポリエーテルイミドが、一般式(I)(式中R1
〜R4は水素原子、低級アルキル基、低級アルコキシ基
、ハロゲン原子を示し、互いに同じでも異なっていても
よい。R5およびReは水素原子、メチル基、エチル基
、トリフルオロメチル基、トリクロロメチル基であり、
互いに同じでも異なっていてもよい。Dはエチレン性不
飽和二重結合を有するジカルボン酸残基)で示されるエ
ーテルイミド系化合物の重合体または共重合体であるこ
とを特徴とする前項(2)記載の多層プリント回路板。 (4)lt電源回路絶縁層がマレイミド系樹脂を含浸硬
化して成る絶縁層から成ることを特徴とする前項(I)
〜(3)のいずれかに記載の多層プリント回路板。 (5)信号回路および電源回路の絶縁層の熱膨張率が、
同一または近似した絶縁層から成ることを特徴とする前
項(I)〜(4)のいずれかに記載の多層プリント回路
板。 (6)信号回路と電源回路を有し、これらの回路間が熱
硬化性樹脂を繊維質基材に含浸硬化して成る絶縁層で絶
縁されている多層プリント回路板の製法において。 (A)プリプレグと金属箔との積層接着成形によって発
生する熱応力よりも、硬化後の曲げ強度が大きい熱硬化
性樹脂を繊維質基材に含浸して成る比誘電率が4以下の
プリプレグaと。 金属箔を積層し硬化して回路基板を形成し、該回路基板
に信号回路パターンを形成する信号回路板a′の形成工
程、 (B)プリプレグと金属箔との積層接着成形によって発
生する熱応力よりも、硬化後の曲げ強度が大きい樹脂を
含浸したプリプレグbと金属箔を積層し硬化して電源回
路基板を形成し、該回路基板に電源回路パターンを形成
する電源回路板b′の形成工程、 (C)前記信号回路板a′と前記電源回路板b′の必要
層数を、前記信号回路板(a  −a’)相互間または
信号回路板と電源回路板(a′−b′)間には前記プリ
プレグaを、また、電源回路板(b’ −b’ )相互
間には前記プリプレグbを介在させて積層接着する工程
。 を含むことを特徴とする多層プリント回路板の製法。 (7)プリプレグaが、一般式(I) (式中R1〜R4は水素原子、低級アルキル基、低級ア
ルコキシ基、ハロゲン原子を示し、互いに同じでも異な
っていてもよい。R6およびR8は水素原子、メチル基
、エチル基、トリフルオロメチル基、トリクロロメチル
基であり、互いに同じでも異なっていてもよい。Dはエ
チレン性不飽和二重結合を有するジカルボン酸残基)で
示されるエーテルイミド系化合物の重合体または共重合
体からなる熱硬化性樹脂を含浸したものであることを特
徴とする前項(6)記載の多層プリント回路板の製法。 (8)プリプレグbがマレイミド系樹脂を含浸したもの
であることを特徴とする前項(6)記載の多層プリント
回路板の製法。 (9)プリプレグaとプリプレグbの硬化後の熱膨張率
が、同一または近似したものを用いることを特徴とする
前項(6)〜(8)のいずれかに記載の多層プリント回
路板の製法。 本発明は、前記のとおり信号回路層およびその近傍に低
誘電率材料から成る絶縁層を形成し、かつ、信号回路層
および電源回路層の絶縁層として。 プリプレグと回路導体である金属箔との積層接着時の加
熱によって発生する熱応力、あるいは該回路板のヒート
サイクル等により発生する熱応力よりも、大きい曲げ強
度を有する熱硬化性樹脂を含浸したプリプレグから成る
絶縁層を用いることが特徴である。 第1図に示すように、信号回路の絶縁層には、直線aX
で示される信号回路導体と絶縁層との熱応力の値よりも
、硬化後の曲げ強度が大きい樹脂(直線finよりも上
側の値を示すもの)を含浸し、電源回路の絶縁層には、
直線Q2で示される電源回路導体と絶縁層との熱応力の
値よりも、硬化後の曲げ強度が大きい樹脂(直線122
よりも上側の値を示すもの)を含浸した絶縁層を、それ
ぞれ用いることにある。これによって、各絶縁層のクラ
ックが防止できるのである。 上記一般式(I)で示されるポリエーテルイミド系化合
物としては、例えば2.2−ビス(4−(4−マレイミ
ドフェノキシ)フェニル〕プロパン、2゜2−ビス〔3
−メチル−4−(4−マレイミドフェノキシ)フェニル
〕プロパン、2,2−ビス
FIELD OF INDUSTRIAL APPLICATION This invention relates to multilayer printed circuit boards, and more particularly. This invention relates to a multilayer printed circuit board for electronic computers with improved signal transmission speed and a method for manufacturing the same. [Prior art] Multilayer printed circuit boards used in electronic computers, etc. are required to be flame retardant, so flame retardants are added to the board resin,
Epoxy resins and polyimide resins containing brominated modified resins are used. In recent years, in large electronic computers, in order to increase the calculation speed, the signal transmission speed of various parts has become a problem. In particular, there is a strong demand for an improvement in the signal transmission speed of the signal circuit of the multilayer printed circuit board used in 1wt slave computers. The signal transmission speed of such a multilayer printed circuit board depends on the dielectric constant of the insulating layer of the signal circuit, and the lower the dielectric constant, the faster the signal transmission speed. By forming the printed circuit board using a material with a low dielectric constant, it is possible to achieve high-speed calculations in a computer. Polytetrafluoroethylene (p
TrE), polybutadiene (PB), etc., and printed circuit boards using these as insulating materials have been developed (JP-A-55-127426, JP-A-62-283694).
issue). [Problems to be Solved by the Invention] However, since PTFE is a thermoplastic resin, when used in a multilayer printed circuit board, it has a problem of poor one-dimensional stability and through-hole reliability. In addition, since there is no suitable solvent, we have no choice but to rely on the hot melt pressure bonding method for lamination bonding. However, PTFE has a high melting temperature (250 to 35
0°C), it has poor workability and is difficult to handle compared to conventional epoxy resins. On the other hand, as a PB system, 1, 2 having a double bond in the side chain
- A resin material combining polybutadiene and a crosslinked flame retardant of a difunctional monomer has been developed (JP-A-55-1
No. 26451). However, when using low-molecular-weight polymers in consideration of impregnation into fibrous base materials, the resulting prepreg has high adhesiveness, making it difficult to cut and store the prepreg, and when laminating and bonding. It also affects workability. On the other hand, if a high molecular weight polymer is used in consideration of tack-free properties when used as a prepreg, the viscosity of the impregnating varnish is high, resulting in poor impregnating properties, making it difficult to produce a high-quality prepreg. Furthermore, since the curing reaction of PB is a crosslinking reaction by radical polymerization, the reaction rate is fast and control during lamination molding is not easy. Further, since FB has a large shrinkage during curing, cracks are likely to occur between layers during molding, and the mechanical strength as a substrate is low. There are many problems such as low adhesive strength with heat-resistant single-circuit conductors. Note that PB also has the disadvantage of poor flammability due to its molecular structure. It has been considered to use the above-mentioned PTFE or PB for the insulating layer of a signal circuit that requires an improvement in signal transmission speed, and to use other resins for other insulating layers (Japanese Patent Laid-Open No. 55-1201
96) However, in this method, the adhesion between resins is poor and delamination occurs during solder heat resistance tests and heat cycles, and in PTFE, holes created by drilling tend to cause smearing during processing. Furthermore, crack resistance is a problem with these methods. A first object of the present invention is to provide a multilayer printed circuit board that has a faster signal transmission speed than conventional circuit boards and has excellent crack resistance, and a method for manufacturing the same. A second object of the present invention is to provide a multilayer printed circuit board that has a faster signal transmission speed than conventional circuit boards and has excellent crack resistance and flame retardancy, and a method for manufacturing the same. [Means for Solving the Problems] The present invention has been made to solve the above problems, and the gist thereof is as follows. (I) A multilayer printed circuit board having a plurality of signal circuits and power supply circuits, and an insulating layer formed by impregnating and curing a thermosetting resin into a fibrous base material between these circuits. At least the signal circuits or the signal circuit and the power supply circuit are insulated by an insulating layer having a dielectric constant of 4 or less at 1 MHz, and each insulating layer of the signal circuit and the power supply circuit is laminated with circuit metal foil. A multilayer printed circuit board comprising insulating layers impregnated and cured with a resin each having a bending strength greater than the thermal stress generated during bonding or heat cycling of the circuit board. (2) A multilayer printed circuit board having a plurality of signal circuits and power supply circuits, and an insulating layer formed by impregnating and curing a thermosetting resin into a fibrous base material between these circuits. At least the signal circuits or the signal circuit and the power supply circuit are insulated by an insulating layer formed by impregnating and curing a fibrous base material with polyetherimide, and the power supply circuit is insulated between the insulating layer and the circuit metal foil. A multilayer printed circuit board characterized by being insulated with an insulating layer impregnated with a hardened resin that has a bending strength greater than the thermal stress generated during lamination bonding or heat cycling of the circuit board. (3) The polyetherimide has the general formula (I) (wherein R1
~R4 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a halogen atom, and may be the same or different from each other. R5 and Re are a hydrogen atom, a methyl group, an ethyl group, a trifluoromethyl group, a trichloromethyl group,
They may be the same or different. The multilayer printed circuit board according to item (2) above, wherein D is a polymer or copolymer of an etherimide compound represented by a dicarboxylic acid residue having an ethylenically unsaturated double bond. (4) Item (I) above, characterized in that the lt power supply circuit insulating layer is composed of an insulating layer formed by impregnating and curing a maleimide resin.
The multilayer printed circuit board according to any one of (3) to (3). (5) The coefficient of thermal expansion of the insulating layer of the signal circuit and power supply circuit is
The multilayer printed circuit board according to any one of the preceding items (I) to (4), characterized in that the multilayer printed circuit board is composed of the same or similar insulating layers. (6) A method for producing a multilayer printed circuit board having a signal circuit and a power supply circuit, the circuits being insulated by an insulating layer formed by impregnating and curing a thermosetting resin into a fibrous base material. (A) Prepreg a with a dielectric constant of 4 or less, which is made by impregnating a fibrous base material with a thermosetting resin whose bending strength after curing is greater than the thermal stress generated by laminated adhesive molding of prepreg and metal foil. and. A process for forming a signal circuit board a′ in which metal foils are laminated and cured to form a circuit board, and a signal circuit pattern is formed on the circuit board. (B) Thermal stress generated by laminated adhesive molding of prepreg and metal foil. A step of forming a power circuit board b' in which a prepreg b impregnated with a resin having a high bending strength after curing and a metal foil are laminated and cured to form a power circuit board, and a power circuit pattern is formed on the circuit board. (C) The required number of layers of the signal circuit board a' and the power circuit board b' is determined between the signal circuit boards (a-a') or between the signal circuit board and the power circuit board (a'-b'). A step of laminating and adhering the prepreg a between the power supply circuit boards (b' and b') and the prepreg b between the power supply circuit boards (b' and b'). A method for manufacturing a multilayer printed circuit board, comprising: (7) Prepreg a has the general formula (I) (wherein R1 to R4 represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a halogen atom, and may be the same or different from each other. R6 and R8 are hydrogen atoms) , a methyl group, an ethyl group, a trifluoromethyl group, or a trichloromethyl group, which may be the same or different from each other; D is a dicarboxylic acid residue having an ethylenically unsaturated double bond). The method for manufacturing a multilayer printed circuit board according to item (6) above, characterized in that the multilayer printed circuit board is impregnated with a thermosetting resin consisting of a polymer or copolymer of (8) The method for producing a multilayer printed circuit board according to item (6) above, wherein the prepreg b is impregnated with a maleimide resin. (9) The method for manufacturing a multilayer printed circuit board according to any one of (6) to (8) above, characterized in that prepreg a and prepreg b have the same or similar thermal expansion coefficients after curing. As described above, the present invention forms an insulating layer made of a low dielectric constant material in the signal circuit layer and its vicinity, and serves as an insulating layer for the signal circuit layer and the power supply circuit layer. A prepreg impregnated with a thermosetting resin that has a bending strength greater than the thermal stress generated by heating during lamination bonding between the prepreg and the metal foil that is the circuit conductor, or the thermal stress generated by heat cycling of the circuit board. It is characterized by the use of an insulating layer consisting of. As shown in Figure 1, the insulating layer of the signal circuit has a straight line aX
The insulating layer of the power supply circuit is impregnated with a resin whose bending strength after curing is greater than the value of thermal stress between the signal circuit conductor and the insulating layer shown by (the value above the straight line fin).
A resin whose bending strength after curing is greater than the value of thermal stress between the power circuit conductor and the insulating layer shown by straight line Q2 (straight line 122
The method is to use an insulating layer impregnated with a material having a value higher than . This can prevent cracks in each insulating layer. Examples of the polyetherimide compound represented by the above general formula (I) include 2,2-bis(4-(4-maleimidophenoxy)phenyl)propane, 2゜2-bis[3
-Methyl-4-(4-maleimidophenoxy)phenyl]propane, 2,2-bis

【3−クロロ−4−(4−マ
レイミドフェノキシ)フェニル〕プロパン、2,2−ビ
ス(3−ブロモ−4−(4−マレイミドフェノキシ)フ
ェニル〕プロパン、2,2−ビス〔3−エチル−4−(
マレイミドフェノキシ)フェニル】プロパン、2゜2−
ビス〔3−プロピル−4−(4−マレイミドフェノキシ
)フェニル〕プロパン、2.2−ビス〔3−イソプロピ
ル−4−(4−マレイミドフェノキシ)フェニル〕プロ
パン、2,2−ビス〔3−ブチル−4−(4−マレイミ
ドフェノキシ)フェニル〕プロパン、2,2−ビス(3
−5ec−ブチル−4−(4−マレイミドフェノキシ)
フェニル〕プロパン、2,2−ビス
[3-chloro-4-(4-maleimidophenoxy)phenyl]propane, 2,2-bis(3-bromo-4-(4-maleimidophenoxy)phenyl)propane, 2,2-bis[3-ethyl-4 −(
maleimidophenoxy)phenyl]propane, 2゜2-
Bis[3-propyl-4-(4-maleimidophenoxy)phenyl]propane, 2,2-bis[3-isopropyl-4-(4-maleimidophenoxy)phenyl]propane, 2,2-bis[3-butyl- 4-(4-maleimidophenoxy)phenyl]propane, 2,2-bis(3
-5ec-butyl-4-(4-maleimidophenoxy)
phenyl]propane, 2,2-bis

【3−メトキシ−4
−(4−マレイミドフェノキシ)フェニル】プロパン、
1,1−ビス(4−(4−マレイミドフェノキシ)フェ
ニル〕エタン、1,1−ビス〔3−メチル−4−(4−
マレイミドフェノキシ)フェニル〕エタン、1,1−ビ
ス〔3−クロロ−4−(4−マレイミドフェノキシ)フ
ェニル〕エタン、1.1−ビス〔3−ブロモ−4−(4
−マレイミドフェノキシ)フェニル〕エタン、ビス〔4
−(4−マレイミドフェノキシ)フェニルコメタン、ビ
ス〔3−クロロ−4−(4−マレイミドフェノキシ)フ
ェニルコメタン、ビス〔3−クロロ−4−(4−マレイ
ミドフェノキシ)フェニルコメタン、ビス〔3−ブロモ
−4−(4−マレイミドフェノキシ)フェニルコメタン
、1,1,1,3,3,3−へキサフルオロ−2,2−
ビス[4−(4−マレイミドフェノキシ)フェニル]プ
ロパン、1,1゜1.3,3,3−へキサクロロ−2,
2−ビス〔4−(4−マレイミドフェノキシ)フェニル
〕プロパン、3,3−ビス(4−(4−マレイミドフェ
ノキシ)フェニル〕ペンタン、1,1.l、3,3゜3
−へキサフルオロ−2,2−ビス〔3−5−ジブロモ−
4−(4−マレイミドフェノキシ)フェニル〕プロパン
、1,1.1,3,3.3−へキサフルオロ−2,2−
ビ〔3−メチル−4−(4−マレイミドフェノキシ)フ
ェニル〕プロパンなどがありこれらの少なくとも1種が
用いられる。 また1本発明で用いるマレイミド系化合物としては、例
えばN、N’ −m−フェニレンビスマレイミド、N、
N’ −・p−フェニレンビスマレイミド%N、N’−
4,4’ −ジフェニルメタンビスマレイミド、N、N
’−4,4’ −ジフェニルエーテルビスマレイミド、
N、N’ −メチレンビス(3クロロ−p−)二二しン
)ビスマレイミド。 N、N’−4,4’ −ジフェニルスルホンビスマレイ
ミド、N、N’−4,4’ −ジシクロヘキシルメタン
ビスマレイミド、N、N’−α、α′4.4′−ジメチ
レンシクロヘキサンビスマレイミド、N、N’ −m−
キシレンビスマレイミド。 N、N’−4,4’ −ジフェニルシクロヘキサンビス
マレイミド等のビスマレイミド化合物、及びアニリンと
ホルムアルデヒドの縮合物を無水マレイン酸と反応させ
て得られる次式(II)で示される多価マレイミド化合
物がある。 (但しnは1〜3) これらにアミン及びエポキシ化合物を組み合せた化合物
として使用することが好ましい。 また、必要に応じて上記マレイミド系樹脂に成形性改良
や難燃性付与等の目的でポリブタジェン変性ポリブタジ
ェン、反応性難燃剤等を配合することも可能である。 本発明における多層プリント板の製法の一例を説明する
。 まず、I M Hzにおける比誘電率が4以下の積層板
を得るには、エーテルイミド系化合物および目的に応じ
た変性樹脂を有機溶媒とともに加熱溶解してワニスを調
製する。 有機溶媒としては、例えばトルエン、キシレン。 アセトン、メチルエチルケトン、メチルイソブチルケト
ン、N、N−ジメチルホルムアミド、N−メチルピロリ
ドン、エチレングリコールモノメチルエーテル、ジメチ
ルスルホキシド、トリクロロエタン、塩化メチレン、ジ
オキサン、四塩化炭素。 テトラクロロエチレン、シクロヘキサン、酢酸エチル等
であり、前記樹脂組成物を均一に溶解することができる
もので後述の乾燥工程で揮散するものであればよい。 該ワニスにはラジカル重合開始剤等の触媒を添加して、
含浸用ワニスとする。 次に、上記で得た含浸用ワニスを、繊維質基材例えばガ
ラス繊維に含浸塗工し、室温〜170℃で乾燥して、プ
リプレグを作成する。この場合の乾燥温度は、用いた溶
媒、配合した硬化触媒等によって設定する。 上記によって得たプリプレグaは、金属箔と積層し、加
圧、加熱成形して回路基板を作成し、基板表面の金属箔
を公知の方法により回路パターンを形成して信号回路基
板a′を作成する。なお、金属箔としては、一般にプリ
ント回路板に用いられている銅箔が使用される。 次に、上記と同様にして、マレイミド系化合物をワニス
とするプリプレグbを作成し、該プリプレグbと金属箔
を積層して電源回路基板b′を作成する。 上記信号回路基板a′と電源回路基板b′とを必要層数
積層し、(aI、/)間および(a−b′)間には前記
プリプレグaを、また、(b’−b′)間にはプリプレ
グbを挟んで積層し、加圧、加熱成形することにより、
本発明の多層′プリント回路板が得られる。 なお、上記において、各回路基板並びに多層プリント回
路板の成形条件は、100〜2.50 ”C110〜1
.OOkgf/a+fで行うのがよい。 前記繊維質基材としては、一般に積層板用として用いら
れているものが使用できるが、耐熱性を考慮して、無機
質繊維からなるものがよい。 例えば、S i Oz、 A Q zos等を主成分と
するSガラス、Cガラス、Aガラス、Sガラス、Tガラ
ス、D−ガラス、YM−31−Aガラス、または石英ガ
ラス(Cガラス)等各種のガラス繊維が使用できる。 また、有機繊維としては、耐熱性の優れた芳香族ポリア
ミドイミド骨格を有する高分子繊維1例えばアラミド繊
維等が使用できる。 繊維質基材の量としては、絶縁層全体に対し20〜40
容量%が好ましい。 〔作用〕 本発明は、信号回路層およびその近や・;低比誘電率材
料から成り、かつ、信号回路層や 絶縁層との熱応力の
値よりも、硬化後の曲げ強度が大きい樹脂を含む絶縁層
を配し、電源回路の絶縁層には7電源回路導体と絶縁層
との熱応力の値よりも、硬化後の曲げ強度が大きい樹脂
を含む絶縁層を配したことにより、低比誘電率で耐クラ
ツク性の優れた多層プリント回路板が得ることができる
。 特に、ポリエーテルイミド系樹脂を信号回路層に、マレ
イミド系樹脂を電源回路層に用いることにより、該樹脂
の特徴である難燃性を活かして、難燃性多層プリント回
路板を提供することができる。 実施例1 一般式(I)で表わされるエーテルイミド系化合物とし
て2,2−ビス(4−(4−マレイミドフェノキシ)フ
ェニル〕プロパン50重量部にジグリシジルエーテルビ
スフェノールAで変性したポリブタジェン(EPB:日
本曹達社製)30重量部、反応性難燃剤として臭素化ポ
リ(P−ヒドロキシスチレン)メタクリル酸エステル2
0重量部をN、N−ジメチルホルムアミドに加熱(80
〜120℃)溶解させ固形分量50重量%のワニスを得
る。さらに、ラジカル重合開始剤として2゜5−ジメチ
ル−2,5−ジ(t−ブチルパーオキシ)ヘキシン3を
0.5重量部硬化剤としてベンゾグアナミン2重量部を
添加した後、このワニスをEガラスクロス(500m 
X 600 m X 50μmt)に含浸塗工し、12
0〜160℃、10〜20分間乾燥してタックフリーの
プリプレグを得た。 次に該プリプレグを2枚重ね、プリプレグと接着する側
の面が粗化された銅箔(I8μmt)2枚で挟んで、圧
力30kgf/a#、温度130℃で30分、さらに1
70℃で1時間、220℃で1時間プレスを行い絶縁層
の比誘電率3.6の銅張り積層板を得た。得られた銅張
り積層基板をフォトエツチング法により信号回路パター
ンを形成し、下記の方法によって回路パターンの銅表面
を処理して両面配線された信号回路板を作成した。 溶液組成: (I)濃塩酸300g、塩化第2銅50g、蒸留水ss
og (銅表面の粗化)。 (2)水酸化ナトリウム5g、リン酸三ナトリウム10
g、亜塩素酸ナトリウム30g、蒸留水9ssg(銅表
面の安定化)。 また、銅箔貼リマレイミド系積層板MCL−I−67(
日立化成工業社製0 、1 m t )を用いて、上記
と同様な方法により回路パターンを形成し電源回路板を
作成した。 次に第2図に示すような構成で、前記のプリプレグシー
ト3を用いて、電源回路層1と信号回路層2を30層積
層形成し、170℃、圧力20kgf/d、80分の条
件で接着成形を行い、多層プリント回路板を作成した。 多層化接着のためのプリプレグシートはそれぞれ2枚重
ねで行った。 その厚さは約100μmである。 多層化接着は位置ずれ防止のために各基板の四方に設け
た穴にガイドピンを挿入して行った。多層化接着後、孔
径0.3mおよび0.6閣の孔をマイクロドリルによっ
てあけ、孔内全面に周知の方法で化学銅めっきを行って
スルーホール導体4を形成した1次に、最外層回路をエ
ツチングにより形成して多層プリント回路板を作成した
。 本実施例では厚さが約4■X570mX420Iの大き
さで、ライン幅70μm及び100μmの2種、チャン
ネル/グリッドが2〜3本/ 1 、3 wm −層間
ずれが約100μm以下のものを得ることができた。な
お、ガラスクロスの絶縁層にしめる割合は約30容積%
であった。 実施例2 エーテルイミド系化合物として1,1,1,3゜3.3
−へキサフルオロ−2,2′−ビス〔4−(4−マレイ
ミドフェノキシ)フェニル〕プロパンを用いた以外は、
実施例1と同様にして多層プリント回路板を得た。信号
回路の絶縁層の比誘電率は3,4であった。 実施例3 エーテルイミド系化合物)として2,2−ビス(4−(
4−マレイミドフェノキシ)フェニル〕プロパン60重
量部、クレゾールノボラック型エポキシ変性ポリブタジ
ェン30重量部、2,2−ビス〔3,5−ジブロモ−4
−(2−メタクリロイルオキシエトキシフェニル〕プロ
パン10重量部を配合しクロスを得る。さらに繊維質基
材としてTガラスクロス(日東紡社製=50μmt)を
用いた以外は、実施例1と同様にして多層プリント回路
板を得た。信号回路の絶縁層の比誘電率は3.5であっ
た。 実施例4 エーテルイミド系化合物として2,2−ビス〔3−メチ
ル−4(4−マレイミドフェノキシ)フェニル〕プロパ
ン40重量部、クレゾールノボラック型エポキシ変性ポ
リブタジェン30重量部、臭素化ポリ(P−ヒドロキシ
スチレン)アクリル酸エステル30重量部、繊維質基材
としてDガラスクロス(日東紡社製:100μmt)を
用いた以外は実施例1と同様にして多層プリント回路板
を得た。 信号回路の絶!l−層の比誘電率は3.4 であった。 実施例5 エーテルイミド系化合物としで2,2−ビス(4−(4
−マレイミドフェノキシ)フェニル〕プロパン40重量
部、N、N’−4,4’−ジフェニルメタンビスマレイ
ミド20重量部を用いた以外は、実施例3と同様にして
多層プリント回路板を得た。 信号回路の絶縁層の比誘電率は3.8であった、比較例
1 マレイミド系銅箔張積層板MCL−I−67(日立化成
工業社製)を信号回路層および電源回路層の両方に用い
、マレイミド系プリプレグとしてGLA−67N (日
立化成工業社m>を接着層として用い積層接着を行い、
実施例1と同じ層数の多層プリント回路板を作成した。 比較例2 電源回路層にエポキシ系銅箔張積層板MCL−E−67
(日立化成工業社製)を用いた以外は。 実施例1と同じ暦数の多層プリント回路板を作成した。 比較例3 1.2−ポリブタジェン樹脂50重量部、フェノールノ
ボラック型エポキシ変性ポリブタジェン樹脂50重量部
をキシレンに溶解し、固形分量25重量%のワニスを作
成した。 これに、ラジカル重合開始剤としてジグミルパーオキサ
イド3重量部、2−ウンデシルイミダゾール1重量部を
添加したワニスを用いてプリプレグを作成し、信号回路
層および電源回路層ならびに両層間を該プリプレグで構
成し、実施例1と同じ層数の多層プリント回路板を作成
した。 比較例4 実施例1において用いたエーテルイミド系樹脂から成る
プリプレグを、信号回路および電源回路の全絶縁層に使
用した多層プリント回路板を、実施例1と同様にして作
成した。 第1表に、前記実施例および比較例の多層プリント回路
板に関する特性を示す。 なお、第1表中において、熱分解温度は含浸樹脂の硬化
物作成し、これを粉砕して、熱天秤により11011I
の試料を空気中、昇温速度5℃/分で加熱し、トータル
減量が5重量%に達した時の温度を熱分解温度とした。 信号回路層の比誘電率は、信号層基板をJISC648
1に基づき1周波数1MHzにおける静電容量を測定し
て求めた。 熱膨張率は、多層プリント回路板の導電回路の無い絶縁
層のみの積層板を成形して、10IIaI角に裁断し、
これを50℃から220℃まで昇温(昇温速度2℃/分
)加熱した場合の熱膨張による厚さ方向の寸法変化を測
定して求めた。 なお、該値は含浸樹脂のみ硬化した場合の熱膨張率とほ
ぼ一致した。 半田耐熱性は、JISC6481に準じて行い、300
℃の半田浴に多層プリント回路板(50mx50m)を
浮べ、300秒間放置した場合の″ふくれ発生″の有無
等の表面状態を目視により調べた。 難燃性は、作成したプリント回路板(I27ninx1
2.7+w+)をUl、−94規格の垂直法に準じガス
バーナ炎により行った。 曲げ強度は、各プリプレグに含浸した樹脂を25 m 
X 50 m X 1 、2 rm tの大きさに成形
硬化したものを用い、支点間距離30na、曲げ速度1
m/分、室温で測定した。 回路銅箔のビール強度は、35μmの膜厚の銅箔を接着
した試験片により、引き剥がし速度50■/分で垂直方
向に銅箔を引き剥がした場合の強度を室温で測定した。 吸水率は、JISC6481に準じ、沸騰水中で24時
間放置後の吸水量を測定して求めた。 熱衝撃試験は、プリント回路板を一65℃中2時間、+
125℃中2時間を1サイクル(ω)として、ヒートサ
イクル試験を行い1回路の絶縁層にクラックが発生する
までのサイクル数を求めた。 また、テスト回路による回路断線の有無も調べた。 なお、クラック発生までに回路断線が生じたものは無か
った。 これらの結果、第1表に示すように、本発明の多層プリ
ント回路板は信号回路層の比誘電率が3.8以下であり
、かつ、熱膨張率が8×10″″b/℃以下と小さく、
寸法安定性に優れているので、グリッド間1.3II*
lに2〜3本のパターン配線が可能となり、かつ、信号
回路層の厚さを約70μm程度とすることが可能である
。従って、20層以上の高多層プリント回路板を容易に
得ることができる。 本発明の多層プリント回路板は、前記第1表の熱衝撃試
験の結果から明らかなように、耐クラツク性に優れてい
ることが分かる。 また、耐熱性、半田耐熱性、難燃性、ビール強度、耐吸
水性等も問題ない特性を示した。 〔発明の効果〕 本発明によれば、信号回路層の比誘電率が4以下で耐熱
衝撃性(耐クラツク性)が優れた多層プリント回路板が
得られる。該プリント回路板は、従来のエポキシ樹脂系
のプリント回路板に比べて、信号遅延時間を約15%低
減することができ、高速電子計算機用の多層プリント回
路板として優れている。
[3-methoxy-4
-(4-maleimidophenoxy)phenyl]propane,
1,1-bis(4-(4-maleimidophenoxy)phenyl)ethane, 1,1-bis[3-methyl-4-(4-
maleimidophenoxy)phenyl]ethane, 1,1-bis[3-chloro-4-(4-maleimidophenoxy)phenyl]ethane, 1,1-bis[3-bromo-4-(4
-maleimidophenoxy)phenyl]ethane, bis[4
-(4-Maleimidophenoxy)phenylcomethane, bis[3-chloro-4-(4-maleimidophenoxy)phenylcomethane, bis[3-chloro-4-(4-maleimidophenoxy)phenylcomethane, bis[3 -bromo-4-(4-maleimidophenoxy)phenylcomethane, 1,1,1,3,3,3-hexafluoro-2,2-
Bis[4-(4-maleimidophenoxy)phenyl]propane, 1,1゜1.3,3,3-hexachloro-2,
2-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3-bis(4-(4-maleimidophenoxy)phenyl)pentane, 1,1.l, 3,3゜3
-hexafluoro-2,2-bis[3-5-dibromo-
4-(4-maleimidophenoxy)phenyl]propane, 1,1.1,3,3.3-hexafluoro-2,2-
There are bi[3-methyl-4-(4-maleimidophenoxy)phenyl]propane, and at least one of these is used. Further, examples of maleimide compounds used in the present invention include N,N'-m-phenylenebismaleimide, N,
N'-/p-phenylene bismaleimide%N, N'-
4,4'-diphenylmethane bismaleimide, N, N
'-4,4'-diphenyl ether bismaleimide,
N,N'-methylenebis(3chloro-p-)dinidine)bismaleimide. N, N'-4,4'-diphenylsulfone bismaleimide, N, N'-4,4'-dicyclohexylmethane bismaleimide, N, N'-α, α'4,4'-dimethylenecyclohexane bismaleimide, N, N'-m-
Xylene bismaleimide. A polyvalent maleimide compound represented by the following formula (II) obtained by reacting a bismaleimide compound such as N,N'-4,4'-diphenylcyclohexane bismaleimide and a condensate of aniline and formaldehyde with maleic anhydride is be. (However, n is 1 to 3) It is preferable to use these as a compound in combination with an amine and an epoxy compound. Furthermore, if necessary, polybutadiene-modified polybutadiene, reactive flame retardants, etc. can be blended with the maleimide resin for the purpose of improving moldability and imparting flame retardancy. An example of the method for manufacturing a multilayer printed board according to the present invention will be explained. First, in order to obtain a laminate having a dielectric constant of 4 or less at I MHz, a varnish is prepared by heating and dissolving an etherimide compound and a modified resin depending on the purpose together with an organic solvent. Examples of organic solvents include toluene and xylene. Acetone, methyl ethyl ketone, methyl isobutyl ketone, N,N-dimethylformamide, N-methylpyrrolidone, ethylene glycol monomethyl ether, dimethyl sulfoxide, trichloroethane, methylene chloride, dioxane, carbon tetrachloride. Tetrachloroethylene, cyclohexane, ethyl acetate, etc. may be used as long as they can uniformly dissolve the resin composition and volatilize in the drying step described below. Adding a catalyst such as a radical polymerization initiator to the varnish,
Use as impregnating varnish. Next, the impregnating varnish obtained above is applied to a fibrous base material, such as glass fiber, and dried at room temperature to 170° C. to prepare a prepreg. The drying temperature in this case is set depending on the solvent used, the curing catalyst blended, etc. The prepreg a obtained above is laminated with metal foil, pressurized and heated to form a circuit board, and the metal foil on the surface of the board is formed into a circuit pattern by a known method to create a signal circuit board a'. do. Note that as the metal foil, copper foil, which is generally used for printed circuit boards, is used. Next, in the same manner as described above, a prepreg b using a maleimide compound as a varnish is prepared, and the prepreg b and metal foil are laminated to form a power supply circuit board b'. The signal circuit board a' and the power circuit board b' are laminated in the required number of layers, and the prepreg a is placed between (aI, /) and between (a-b'), and (b'-b'). By stacking prepreg B in between, pressurizing and heat forming,
A multilayer printed circuit board according to the invention is obtained. In the above, the molding conditions for each circuit board and multilayer printed circuit board are 100 to 2.50" C110 to 1
.. It is best to use OOkgf/a+f. As the fibrous base material, those generally used for laminates can be used, but in consideration of heat resistance, it is preferable to use inorganic fibers. For example, various types of glass such as S glass, C glass, A glass, S glass, T glass, D glass, YM-31-A glass, or quartz glass (C glass) whose main components are SiOz, AQ zos, etc. glass fiber can be used. Further, as the organic fiber, a polymer fiber 1 having an aromatic polyamide-imide skeleton with excellent heat resistance, such as aramid fiber, etc. can be used. The amount of fibrous base material is 20 to 40% of the total insulating layer.
Volume % is preferred. [Function] The present invention uses a resin that is made of a low dielectric constant material in the signal circuit layer and its vicinity, and has a bending strength after curing that is greater than the value of thermal stress with the signal circuit layer and the insulating layer. The insulating layer of the power circuit has a resin-containing insulating layer that has a higher bending strength after curing than the thermal stress value between the power circuit conductor and the insulating layer. A multilayer printed circuit board with excellent dielectric constant and crack resistance can be obtained. In particular, by using polyetherimide resin for the signal circuit layer and maleimide resin for the power supply circuit layer, it is possible to provide a flame-retardant multilayer printed circuit board by taking advantage of the flame retardant properties of these resins. can. Example 1 As an etherimide compound represented by general formula (I), polybutadiene (EPB: Japan (manufactured by Soda Co., Ltd.) 30 parts by weight, brominated poly(P-hydroxystyrene) methacrylic acid ester 2 as a reactive flame retardant
0 parts by weight was heated in N,N-dimethylformamide (80 parts by weight).
~120°C) to obtain a varnish with a solid content of 50% by weight. Furthermore, after adding 0.5 parts by weight of 2゜5-dimethyl-2,5-di(t-butylperoxy)hexyne 3 as a radical polymerization initiator and 2 parts by weight of benzoguanamine as a hardening agent, this varnish was mixed with E glass. Cross (500m
x 600 m x 50 μmt), and
A tack-free prepreg was obtained by drying at 0 to 160°C for 10 to 20 minutes. Next, two sheets of the prepreg were stacked and sandwiched between two sheets of copper foil (I8 μmt) with roughened surfaces to be bonded to the prepreg, and the pressure was 30 kgf/a# and the temperature was 130°C for 30 minutes, and then 1
Pressing was performed at 70° C. for 1 hour and at 220° C. for 1 hour to obtain a copper-clad laminate with an insulating layer having a dielectric constant of 3.6. A signal circuit pattern was formed on the obtained copper-clad laminate board by photoetching, and the copper surface of the circuit pattern was treated by the following method to produce a signal circuit board with wiring on both sides. Solution composition: (I) 300 g of concentrated hydrochloric acid, 50 g of cupric chloride, distilled water ss
og (roughening of copper surface). (2) 5g of sodium hydroxide, 10g of trisodium phosphate
g, 30 g of sodium chlorite, 9 ssg of distilled water (stabilization of copper surface). In addition, copper foil laminated limaleimide laminate MCL-I-67 (
A power supply circuit board was prepared by forming a circuit pattern in the same manner as described above using 0,1 m t (manufactured by Hitachi Chemical Co., Ltd.). Next, with the configuration shown in FIG. 2, 30 layers of power supply circuit layer 1 and signal circuit layer 2 were formed using the prepreg sheet 3 described above, and the layers were laminated at 170° C. and under a pressure of 20 kgf/d for 80 minutes. Adhesive molding was performed to create a multilayer printed circuit board. Two prepreg sheets were used for multilayer adhesion. Its thickness is approximately 100 μm. Multilayer adhesion was performed by inserting guide pins into holes provided on all sides of each substrate to prevent positional shift. After multi-layer bonding, a hole with a hole diameter of 0.3 m and 0.6 mm was drilled using a microdrill, and the entire surface of the hole was chemically copper plated using a well-known method to form a through-hole conductor 4. A multilayer printed circuit board was fabricated by etching. In this example, the thickness is approximately 4 mm x 570 m x 420 mm, the line width is 70 μm and 100 μm, the number of channels/grids is 2 to 3 lines/1,3 wm, and the interlayer deviation is approximately 100 μm or less. was completed. The ratio of glass cloth to the insulating layer is approximately 30% by volume.
Met. Example 2 1,1,1,3°3.3 as an etherimide compound
-hexafluoro-2,2'-bis[4-(4-maleimidophenoxy)phenyl]propane was used.
A multilayer printed circuit board was obtained in the same manner as in Example 1. The dielectric constant of the insulating layer of the signal circuit was 3.4. Example 3 2,2-bis(4-(
60 parts by weight of 4-maleimidophenoxy)phenyl]propane, 30 parts by weight of cresol novolac type epoxy-modified polybutadiene, 2,2-bis[3,5-dibromo-4
A cloth was obtained by blending 10 parts by weight of -(2-methacryloyloxyethoxyphenyl)propane.The same procedure as in Example 1 was carried out except that T-glass cloth (manufactured by Nittobo Co., Ltd. = 50 μm) was used as the fibrous base material. A multilayer printed circuit board was obtained.The dielectric constant of the insulating layer of the signal circuit was 3.5.Example 4 2,2-bis[3-methyl-4(4-maleimidophenoxy)] was used as the etherimide compound. 40 parts by weight of [phenyl]propane, 30 parts by weight of cresol novolak type epoxy-modified polybutadiene, 30 parts by weight of brominated poly(P-hydroxystyrene) acrylic ester, and D glass cloth (manufactured by Nittobo Co., Ltd.: 100 μmt) as a fibrous base material. A multilayer printed circuit board was obtained in the same manner as in Example 1 except that the dielectric constant of the signal circuit layer was 3.4. 2-bis(4-(4
A multilayer printed circuit board was obtained in the same manner as in Example 3, except that 40 parts by weight of -maleimidophenoxy)phenyl]propane and 20 parts by weight of N,N'-4,4'-diphenylmethane bismaleimide were used. The dielectric constant of the insulating layer of the signal circuit was 3.8. Comparative Example 1 Maleimide copper foil clad laminate MCL-I-67 (manufactured by Hitachi Chemical Co., Ltd.) was used as both the signal circuit layer and the power circuit layer. Using GLA-67N (Hitachi Chemical Co., Ltd.) as a maleimide prepreg as an adhesive layer, lamination adhesion was carried out.
A multilayer printed circuit board having the same number of layers as in Example 1 was produced. Comparative Example 2 Epoxy copper foil clad laminate MCL-E-67 on power circuit layer
(manufactured by Hitachi Chemical Co., Ltd.) was used. A multilayer printed circuit board with the same number of calendars as in Example 1 was created. Comparative Example 3 50 parts by weight of 1.2-polybutadiene resin and 50 parts by weight of phenol novolak type epoxy-modified polybutadiene resin were dissolved in xylene to prepare a varnish having a solid content of 25% by weight. A prepreg was prepared using a varnish to which 3 parts by weight of digmyl peroxide and 1 part by weight of 2-undecylimidazole were added as radical polymerization initiators, and the signal circuit layer, the power supply circuit layer, and the gap between the two layers were formed using the prepreg. A multilayer printed circuit board having the same number of layers as in Example 1 was prepared. Comparative Example 4 A multilayer printed circuit board was produced in the same manner as in Example 1, using the prepreg made of the etherimide resin used in Example 1 for all the insulating layers of the signal circuit and power supply circuit. Table 1 shows the characteristics of the multilayer printed circuit boards of the Examples and Comparative Examples. In Table 1, the thermal decomposition temperature is determined by preparing a cured product of the impregnated resin, pulverizing it, and measuring 11011I using a thermobalance.
The sample was heated in air at a heating rate of 5° C./min, and the temperature at which the total weight loss reached 5% by weight was defined as the thermal decomposition temperature. The relative permittivity of the signal circuit layer is JISC648 for the signal layer board.
The electrostatic capacitance at one frequency of 1 MHz was measured based on 1. The coefficient of thermal expansion is determined by molding a laminate of only insulating layers without conductive circuits of a multilayer printed circuit board and cutting it into 10IIaI squares.
This was determined by measuring the dimensional change in the thickness direction due to thermal expansion when this was heated from 50° C. to 220° C. (heating rate 2° C./min). Note that this value almost coincided with the coefficient of thermal expansion when only the impregnated resin was cured. Solder heat resistance was determined according to JISC6481 and was 300
A multilayer printed circuit board (50 m x 50 m) was floated in a solder bath at 0.degree. C. and left for 300 seconds. Surface conditions such as the presence or absence of "blistering" were visually inspected. The flame retardance was determined by the printed circuit board (I27ninx1
2.7+w+) was carried out using a gas burner flame according to the vertical method of Ul, -94 standard. The bending strength of the resin impregnated into each prepreg is 25 m.
Using a molded and hardened material with a size of X 50 m
m/min, measured at room temperature. The beer strength of the circuit copper foil was measured at room temperature by peeling off the copper foil in the vertical direction at a peeling rate of 50 μm/min using a test piece to which a 35 μm thick copper foil was adhered. The water absorption rate was determined according to JISC6481 by measuring the amount of water absorbed after standing in boiling water for 24 hours. The thermal shock test involves exposing a printed circuit board to -65°C for 2 hours.
A heat cycle test was conducted with 2 hours at 125° C. as one cycle (ω), and the number of cycles until cracks occurred in the insulating layer of one circuit was determined. We also checked whether there was any circuit breakage using the test circuit. Note that there were no cases where circuit breakage occurred before cracking occurred. As a result, as shown in Table 1, in the multilayer printed circuit board of the present invention, the signal circuit layer has a dielectric constant of 3.8 or less and a thermal expansion coefficient of 8×10''b/°C or less. and small,
Due to its excellent dimensional stability, the grid spacing is 1.3II*
2 to 3 pattern wirings can be formed in one area, and the thickness of the signal circuit layer can be approximately 70 μm. Therefore, a highly multilayer printed circuit board having 20 or more layers can be easily obtained. As is clear from the thermal shock test results shown in Table 1, the multilayer printed circuit board of the present invention has excellent crack resistance. It also showed satisfactory properties such as heat resistance, soldering heat resistance, flame retardancy, beer strength, and water absorption resistance. [Effects of the Invention] According to the present invention, a multilayer printed circuit board with a signal circuit layer having a dielectric constant of 4 or less and excellent thermal shock resistance (crack resistance) can be obtained. The printed circuit board can reduce signal delay time by about 15% compared to conventional epoxy resin printed circuit boards, and is excellent as a multilayer printed circuit board for high-speed electronic computers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、多層プリント回路板の絶縁層の熱膨張率と絶
縁層に含浸した熱硬化性樹脂の曲げ強度との関係を示す
グラフ、第2図は7本発明の一実施例の多層プリント回
路板の一部断面模式斜視図である。 1・・・lli源回路層、2・・・信号回路層、3・・
・プリプレグシート(接着層)、4・・・スルーホール
FIG. 1 is a graph showing the relationship between the coefficient of thermal expansion of the insulating layer of a multilayer printed circuit board and the bending strength of the thermosetting resin impregnated into the insulating layer, and FIG. FIG. 2 is a partially cross-sectional schematic perspective view of a circuit board. 1...lli source circuit layer, 2... signal circuit layer, 3...
・Prepreg sheet (adhesive layer), 4...Through hole.

Claims (9)

【特許請求の範囲】[Claims] 1. 複数の信号回路および電源回路と、これらの回路
間に熱硬化性樹脂を繊維質基材に含浸硬化して成る絶縁
層を有する多層プリント回路板において、 少なくとも信号回路相互間または信号回路と電源回路間
が、1MHzにおける比誘電率が4以下である絶縁層に
より絶縁されており、 かつ、信号回路および電源回路の各絶縁層が回路金属箔
との積層接着時または回路板のヒートサイクル時に発生
するそれぞれの熱応力よりも曲げ強度の大きな樹脂がそ
れぞれ含浸硬化された絶縁層から成ることを特徴とする
多層プリント回路板。
1. In a multilayer printed circuit board having a plurality of signal circuits and power supply circuits, and an insulating layer formed by impregnating and hardening a thermosetting resin into a fibrous base material between these circuits, at least between the signal circuits or between the signal circuit and the power supply circuit. The gap is insulated by an insulating layer with a dielectric constant of 4 or less at 1 MHz, and each insulating layer of the signal circuit and power circuit is bonded to the circuit metal foil or during heat cycling of the circuit board. A multilayer printed circuit board characterized by comprising insulating layers impregnated and cured with a resin having a bending strength greater than the thermal stress of each layer.
2. 複数の信号回路および電源回路と、これらの回路
間に熱硬化性樹脂を繊維質基材に含浸硬化して成る絶縁
層を有する多層プリント回路板において、 少なくとも信号回路相互間または信号回路と電源回路間
が、繊維質基材にポリエーテルイミドを含浸硬化して成
る絶縁層により絶縁されており、 かつ、電源回路が、絶縁層と回路金属箔との積層接着時
または回路板のヒートサイクル時に発生する熱応力より
も曲げ強度の大きな樹脂が含浸硬化された絶縁層で絶縁
されていることを特徴とする多層プリント回路板。
2. In a multilayer printed circuit board having a plurality of signal circuits and power supply circuits, and an insulating layer formed by impregnating and hardening a thermosetting resin into a fibrous base material between these circuits, at least between the signal circuits or between the signal circuit and the power supply circuit. The power supply circuit is insulated by an insulating layer made by impregnating and curing polyetherimide into a fibrous base material, and the power supply circuit is insulated by an insulating layer formed by impregnating and curing polyetherimide into a fibrous base material, and the power circuit is protected from heat generated during lamination bonding between the insulating layer and circuit metal foil or during heat cycling of the circuit board. A multilayer printed circuit board characterized by being insulated with an insulating layer impregnated with a hardened resin that has a bending strength greater than the thermal stress caused by the thermal stress.
3. ポリエーテルイミドが、一般式( I )▲数式、
化学式、表等があります▼( I ) (式中R_1〜R_4は水素原子、低級アルキル基、低
級アルコキシ基、ハロゲン原子を示し、互いに同じでも
異なつていてもよい。R_5およびR_6は水素原子、
メチル基、エチル基、トリフルオロメチル基、トリクロ
ロメチル基であり、互いに同じでも異なつていてもよい
。Dはエチレン性不飽和二重結合を有するジカルボン酸
残基)で示されるエーテルイミド系化合物の重合体また
は共重合体であることを特徴とする請求項第2項記載の
多層プリント回路板。
3. Polyetherimide has the general formula (I)▲mathematical formula,
There are chemical formulas, tables, etc. ▼ (I) (In the formula, R_1 to R_4 represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a halogen atom, and may be the same or different from each other. R_5 and R_6 are hydrogen atoms,
These are a methyl group, an ethyl group, a trifluoromethyl group, and a trichloromethyl group, and they may be the same or different. 3. The multilayer printed circuit board according to claim 2, wherein D is a polymer or copolymer of an etherimide compound represented by a dicarboxylic acid residue having an ethylenically unsaturated double bond.
4. 電源回路の絶縁層がマレイミド系樹脂を含浸硬化
して成る絶縁層から成ることを特徴とする請求項第1項
〜第3項のいずれかに記載の多層プリント回路板。
4. 4. The multilayer printed circuit board according to claim 1, wherein the insulating layer of the power supply circuit is formed by impregnating and curing a maleimide resin.
5. 信号回路および電源回路の絶縁層の熱膨張率が、
同一または近似した絶縁層から成ることを特徴とする請
求項第1項〜第4項のいずれかに記載の多層プリント回
路板。
5. The coefficient of thermal expansion of the insulating layer of the signal circuit and power supply circuit is
5. A multilayer printed circuit board according to claim 1, characterized in that it consists of identical or similar insulating layers.
6. 信号回路と電源回路を有し、これらの回路間が熱
硬化性樹脂を繊維質基材に含浸硬化して成る絶縁層で絶
縁されている多層プリント回路板の製法において、 (A)プリプレグと金属箔との積層接着成形によつて発
生する熱応力よりも、硬化後の曲げ強度が大きい熱硬化
性樹脂を繊維質基材に含浸して成る比誘電率が4以下の
プリプレグaと、金属箔を積層し硬化して回路基板を形
成し、該回路基板に信号回路パターンを形成する信号回
路板a′の形成工程、 (B)プリプレグと金属箔との積層接着成形によつて発
生する熱応力よりも、硬化後の曲げ強度が大きい樹脂を
含浸したプリプレグbと金属箔を積層し硬化して電源回
路基板を形成し、該回路基板に電源回路パターンを形成
する電源回路板b′の形成工程、 (C)前記信号回路板a′と前記電源回路板b′の必要
層数を、前記信号回路板(a′−a′)相互間または信
号回路板と電源回路板(a′−b′)間には前記プリプ
レグaを、また、電源回路板(b′−b′)相互間には
前記プリプレグbを介在させて積層接着する工程、を含
むことを特徴とする多層プリント回路板の製法。
6. In the manufacturing method of a multilayer printed circuit board that has a signal circuit and a power supply circuit, and the circuits are insulated by an insulating layer made by impregnating and curing a thermosetting resin into a fibrous base material, (A) prepreg and metal. Prepreg a with a dielectric constant of 4 or less, which is made by impregnating a fibrous base material with a thermosetting resin that has a bending strength that is greater in bending strength after curing than the thermal stress generated by laminated adhesive molding with foil, and metal foil. (B) Thermal stress generated by lamination adhesive molding of prepreg and metal foil; A step of forming a power circuit board b' in which a prepreg b impregnated with a resin having a high bending strength after curing and a metal foil are laminated and cured to form a power circuit board, and a power circuit pattern is formed on the circuit board. (C) The required number of layers of the signal circuit board a' and the power circuit board b' is determined between the signal circuit boards (a'-a') or between the signal circuit board and the power circuit board (a'-b'). ) A method for manufacturing a multilayer printed circuit board, comprising the step of laminating and bonding the prepreg a between the power circuit boards (b' and b') and the prepreg b between the power circuit boards (b' and b'). .
7. プリプレグaが、一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中R_1〜R_4は水素原子、低級アルキル基、低
級アルコキシ基、ハロゲン原子を示し、互いに同じでも
異なつていてもよい。R_5およびR_6は水素原子、
メチル基、エチル基、トリフルオロメチル基、トリクロ
ロメチル基であり、互いに同じでも異なつていてもよい
。Dはエチレン性不飽和二重結合を有するジカルボン酸
残基)で示されるエーテルイミド系化合物の重合体また
は共重合体からなる熱硬化性樹脂を含浸したものである
ことを特徴とする請求項第6項記載の多層プリント回路
板の製法。
7. Prepreg a has the general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) R_5 and R_6 are hydrogen atoms,
These are a methyl group, an ethyl group, a trifluoromethyl group, and a trichloromethyl group, and they may be the same or different. D is impregnated with a thermosetting resin consisting of a polymer or copolymer of an etherimide compound represented by a dicarboxylic acid residue having an ethylenically unsaturated double bond. A method for manufacturing a multilayer printed circuit board according to item 6.
8. プリプレグbがマレイミド系樹脂を含浸したもの
であることを特徴とする請求項第6項記載の多層プリン
ト回路板の製法。
8. 7. The method for producing a multilayer printed circuit board according to claim 6, wherein the prepreg b is impregnated with a maleimide resin.
9. プリプレグaとプリプレグbの硬化後の熱膨張率
が、同一または近似したものを用いることを特徴とする
請求項第6項〜第8項のいずれかに記載の多層プリント
回路板の製法。
9. 9. The method for manufacturing a multilayer printed circuit board according to claim 6, wherein the prepregs a and b have the same or similar thermal expansion coefficients after curing.
JP63246977A 1988-09-30 1988-09-30 Multilayer printed circuit board and manufacturing method thereof Expired - Lifetime JPH0634453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246977A JPH0634453B2 (en) 1988-09-30 1988-09-30 Multilayer printed circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63246977A JPH0634453B2 (en) 1988-09-30 1988-09-30 Multilayer printed circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0294697A true JPH0294697A (en) 1990-04-05
JPH0634453B2 JPH0634453B2 (en) 1994-05-02

Family

ID=17156534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246977A Expired - Lifetime JPH0634453B2 (en) 1988-09-30 1988-09-30 Multilayer printed circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0634453B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177542A (en) * 1992-12-09 1994-06-24 Nec Corp Multilayer interconnection board
JPH08148832A (en) * 1994-11-24 1996-06-07 Canon Inc Multilayered printed board
JPH11121934A (en) * 1997-10-13 1999-04-30 Ngk Spark Plug Co Ltd Low loss multilayered wiring board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182496A (en) * 1984-09-28 1986-04-26 日立化成工業株式会社 Multilayer wiring board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182496A (en) * 1984-09-28 1986-04-26 日立化成工業株式会社 Multilayer wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177542A (en) * 1992-12-09 1994-06-24 Nec Corp Multilayer interconnection board
JPH08148832A (en) * 1994-11-24 1996-06-07 Canon Inc Multilayered printed board
JPH11121934A (en) * 1997-10-13 1999-04-30 Ngk Spark Plug Co Ltd Low loss multilayered wiring board

Also Published As

Publication number Publication date
JPH0634453B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US3985928A (en) Heat-resistant laminating resin composition and method for using same
US6187416B1 (en) Resin composition for copper-clad laminate, resin-coated copper foil, multilayered copper-clad laminate, and multilayered printed circuit board
JPWO2017183621A1 (en) Prepreg, metal-clad laminate and printed wiring board
KR960007765B1 (en) Thermosetting resin composition, and prepreg and laminated sheet which use the same
KR0155542B1 (en) Thermosetting resin composition printed circuit board using the resin composition nd process for producing printed circuit board
JP2003073543A (en) Resin composition, prepreg and printed circuit board using the same
JPH0294697A (en) Manufacture of multilayer print circuit board
JPH08231847A (en) Polyphenylene oxide resin composition and prepreg and laminate prepared by using the same
JP2866661B2 (en) Thermosetting resin composition, prepreg and laminate using the same
JP2001031782A (en) Prepreg and laminate prepared by using the same
US5212244A (en) Thermosetting resin composition, and prepreg and laminated sheet which use the same
JPH0826116B2 (en) Thermosetting resin composition and printed circuit board using the same
JPH02185517A (en) Thermosetting resin composition and prepreg and laminate prepared therefrom
JP2003096296A (en) Resin composition, prepreg and printed circuit board using the same
JP3323873B2 (en) Composite copper-clad laminate
JP2002088175A (en) Prepreg and laminate
JP2002088626A (en) Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet
JPH01215852A (en) Flame-retarding polyphenylene oxide resin composition and metal-clad laminate thereof
JP2002265634A (en) Glass fiber nonwoven fabric for electric insulation, composite laminate and printed circuit board
JP2001105443A (en) Method for producing laminated sheet
JPS62243396A (en) Multilayer printed circuit board
JP2002241521A (en) Epoxy resin prepreg, epoxy resin copper-clad board, epoxy resin printed circuit board and epoxy resin multilayer printed circuit board
JPS63280721A (en) Resin composition for printed circuit board and printed circuit board using same
JPH01118539A (en) Preparation of copper-clad laminate
JPH07162114A (en) Composite copper-clad laminated board