JP2002088626A - Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet - Google Patents

Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet

Info

Publication number
JP2002088626A
JP2002088626A JP2000284603A JP2000284603A JP2002088626A JP 2002088626 A JP2002088626 A JP 2002088626A JP 2000284603 A JP2000284603 A JP 2000284603A JP 2000284603 A JP2000284603 A JP 2000284603A JP 2002088626 A JP2002088626 A JP 2002088626A
Authority
JP
Japan
Prior art keywords
glass fiber
nonwoven fabric
fiber nonwoven
resin binder
laminated sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000284603A
Other languages
Japanese (ja)
Inventor
Minoru Midokochi
稔 御堂河内
Tatsu Sakaguchi
達 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000284603A priority Critical patent/JP2002088626A/en
Publication of JP2002088626A publication Critical patent/JP2002088626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite laminated sheet responsive to a narrower pitch of interval between through-hole walls of a printed wiring board while maintaining conventional general characteristics. SOLUTION: A glass fiber nonwoven fabric composing a central layer of the composite laminated sheet is improved. A first glass fiber nonwoven fabric is obtained by adjusting the density of the glass fiber nonwoven fabric to <=0.135 g/cm3 and adjusting the number of voids formed by covering with a resin binder to <=20 based on 100 mm cross sectional length of the glass fiber nonwoven fabric. A second glass fiber nonwoven fabric is prepared by adjusting the density of the glass fiber nonwoven fabric so as to exceed 0.135 g/cm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気絶縁用途の積
層板に適したガラス繊維不織布に関する。また、このガ
ラス繊維不織布を用いたコンポジット積層板に関する。
[0001] The present invention relates to a glass fiber nonwoven fabric suitable for a laminate for electrical insulation. Further, the present invention relates to a composite laminate using the glass fiber nonwoven fabric.

【0002】[0002]

【従来の技術】近年、IC、LSI等の集積回路を使用
した電子機器の発達は目覚ましく、それらに使用される
プリント配線板も多種多様となり、プリント配線板材料
である積層板にも一段と優れた特性が要求されている。
積層板は、シート状繊維基材にエポキシ樹脂等の熱硬化
性樹脂を含浸し乾燥したプリプレグの層を加熱加圧成形
したものであるが、前記のような状況の中で、シート状
繊維基材としてその一部にガラス繊維不織布を使用した
コンポジット積層板が多用されている。コンポジット積
層板は、エポキシ樹脂含浸ガラス繊維織布の表面層と、
エポキシ樹脂含浸ガラス繊維不織布の中心層とを加熱加
圧成形により一体化した構成であり、加熱加圧成形時に
少なくとも片側表面に金属箔を配置し一体成形したコン
ポジット銅張り積層板と、両表面とも金属箔を一体化し
ないアンクラッドのコンポジット積層板がある。ガラス
繊維不織布に含浸したエポキシ樹脂中には、充填材とし
て水酸化アルミニウム、タルク等を含有している。ま
た、難燃性を付与するために、エポキシ樹脂としてハロ
ゲン(臭素)含有エポキシ樹脂が多用され、エポキシ樹
脂の硬化剤としてアミンやフェノールノボラック樹脂が
使用されている。最近では、環境安全の面から、上記ハ
ロゲン含有エポキシ樹脂の代わりに、反応型であれば窒
素含有あるいは窒素及びリン含有のフェノールノボラッ
ク樹脂を、添加型であればメラミンシアヌレート等を難
燃剤に用いる検討がされるようになってきた。
2. Description of the Related Art In recent years, the development of electronic devices using integrated circuits such as ICs and LSIs has been remarkable, and the types of printed wiring boards used therein have been diversified. Characteristics are required.
The laminated board is obtained by impregnating a sheet-like fiber base material with a thermosetting resin such as an epoxy resin and drying and drying the prepreg layer under heat and pressure. A composite laminate using a glass fiber nonwoven fabric as a part of the material is often used. The composite laminate has a surface layer of epoxy resin impregnated glass fiber woven fabric,
It is a structure in which the center layer of the epoxy resin impregnated glass fiber nonwoven fabric is integrated by heat and pressure molding. There is an unclad composite laminate that does not integrate metal foil. The epoxy resin impregnated in the glass fiber nonwoven fabric contains aluminum hydroxide, talc, and the like as a filler. Further, halogen (bromine) -containing epoxy resins are frequently used as epoxy resins to impart flame retardancy, and amine and phenol novolak resins are used as curing agents for the epoxy resins. Recently, from the viewpoint of environmental safety, instead of the halogen-containing epoxy resin, a phenol novolak resin containing nitrogen or nitrogen and phosphorus is used as a flame retardant in the case of a reactive type, and melamine cyanurate is used in the case of an addition type. Considerations have begun to be made.

【0003】コンポジット積層板は、寸法安定性、スル
ーホール信頼性が優れ、かつ打抜加工が容易である。電
気特性も、シート状繊維基材としてガラス繊維織布を使
用した積層板とほぼ同等である。しかし、プリント配線
パターンはスルーホール穴壁間隔の狭ピッチ化が進み、
コンポジット積層板には、さらに、穴壁間隔0.2mm以
下のスルーホールへの対応が求められている。
[0003] Composite laminates have excellent dimensional stability and through-hole reliability and are easy to punch. The electrical characteristics are also substantially the same as those of a laminate using a glass fiber woven fabric as the sheet-like fiber base material. However, in printed wiring patterns, the pitch between through-hole holes has become narrower,
The composite laminate is further required to cope with through holes having a hole wall interval of 0.2 mm or less.

【0004】[0004]

【発明が解決しようとする課題】上記のコンポジット積
層板は、これを絶縁層としたプリント配線板のスルーホ
ール穴壁間隔の狭ピッチ化に対応するべく、さらに性能
を向上させることが望まれる。プリント配線加工のめっ
き工程後に、隣接するスルーホール間で短絡が発生する
ことがあるからである。
It is desired that the above-mentioned composite laminate be further improved in performance in order to cope with a narrow pitch between the wall holes of the through holes of the printed wiring board using the composite laminate as an insulating layer. This is because a short circuit may occur between adjacent through holes after the plating step of the printed wiring processing.

【0005】本発明が解決しようとする課題は、従来の
一般特性を維持したまま、プリント配線板のスルーホー
ル穴壁間隔の狭ピッチ化に十分に対応できるコンポジッ
ト積層板を提供することである。コンポジット積層板の
中心層を構成するガラス繊維不織布を改良することによ
りこの課題を達成する。
An object of the present invention is to provide a composite laminate which can sufficiently cope with a narrow pitch between through-hole holes of a printed wiring board while maintaining conventional general characteristics. This object is achieved by improving the glass fiber nonwoven fabric constituting the central layer of the composite laminate.

【0006】[0006]

【課題を解決するための手段】隣接するスルーホール間
の短絡がプリント配線加工のめっき工程後に発生する現
象は、成形した積層板中に残留しているボイドが原因と
推測される。これを詳細に検討した結果、コンポジット
積層板の中心層を構成するガラス繊維不織布に原因があ
ることが判明した。ガラス繊維不織布は、ガラス繊維を
水中に分散して抄造し、これに樹脂バインダを適用して
ガラス繊維同士を結着し構成したものである。樹脂バイ
ンダはガラス繊維同士の交叉点に付着しこれらを結着し
ている。その樹脂バインダで覆われてできた空隙がある
と、この空隙は成形した積層板にまで持ち込まれて残存
することが明らかになった。
The phenomenon in which a short circuit between adjacent through-holes occurs after the plating step of printed wiring processing is presumed to be caused by voids remaining in the formed laminate. As a result of examining this in detail, it was found that the cause was the glass fiber nonwoven fabric constituting the central layer of the composite laminate. The glass fiber nonwoven fabric is formed by dispersing glass fibers in water, forming a paper, and applying a resin binder thereto to bind the glass fibers together. The resin binder adheres to the intersections of the glass fibers and binds them. It was found that if there was a void formed by covering with the resin binder, this void was brought to the molded laminate and remained.

【0007】そこで、本発明に係るコンポジット積層板
は、エポキシ樹脂含浸ガラス繊維織布の表面層とエポキ
シ樹脂含浸ガラス繊維不織布の中心層とを加熱加圧成形
により一体化した構成において、ガラス繊維不織布を、
次の第一又は第二のガラス繊維不織布とする。
Therefore, the composite laminate according to the present invention has a structure in which a surface layer of an epoxy resin impregnated glass fiber woven fabric and a central layer of an epoxy resin impregnated glass fiber nonwoven fabric are integrated by heat and pressure molding. To
The following first or second glass fiber nonwoven fabric is used.

【0008】第一のガラス繊維不織布は、ガラス繊維不
織布の密度が0.135g/cm3以下であり、樹脂バイ
ンダで覆われてできた空隙の個数が、ガラス繊維不織布
の断面長100mm当たり20個以下であることを特徴と
する。このように樹脂バインダで覆われてできる空隙の
個数が制限されたガラス繊維不織布を用い、当該不織布
で中心層を構成したコンポジット積層板は、たとえガラ
ス繊維不織布の密度が0.135g/cm3以下の小さい
値であっても、前記空隙が起因となって、成形した積層
板にボイドが残存する心配は少なくなる。樹脂バインダ
は不織布を構成するガラス繊維同士の交叉点に付着して
いるので、樹脂バインダで覆われた空隙があると、積層
板に残存ボイドはガラス繊維に近接して位置することに
なり、このボイドにめっき液が滲入するとガラス繊維と
樹脂の界面に沿ってさらに深くめっき液が滲入する。こ
れが短絡発生の原因となるのであり、そのようなボイド
が低減される結果、プリント配線加工のめっき工程後
に、隣接するスルーホール間で発生する短絡を少なくす
ることができる。
In the first glass fiber nonwoven fabric, the density of the glass fiber nonwoven fabric is 0.135 g / cm 3 or less, and the number of voids formed by covering with the resin binder is 20 per 100 mm cross-sectional length of the glass fiber nonwoven fabric. It is characterized by the following. Thus, a composite laminate using a glass fiber non-woven fabric in which the number of voids that can be covered with the resin binder is limited and the central layer is formed of the non-woven fabric has a glass fiber non-woven fabric density of 0.135 g / cm 3 or less. Is small, there is less concern that voids remain in the formed laminate due to the voids. Since the resin binder adheres to the intersections of the glass fibers constituting the nonwoven fabric, if there is a void covered with the resin binder, the residual voids in the laminate will be located close to the glass fibers. When the plating solution penetrates into the voids, the plating solution penetrates deeper along the interface between the glass fiber and the resin. This causes a short circuit, and as a result of reducing such voids, it is possible to reduce a short circuit generated between adjacent through holes after a plating step of printed wiring processing.

【0009】第二のガラス繊維不織布は、ガラス繊維不
織布の密度が0.135g/cm3を越えるものであるこ
とを特徴とする。このように高密度化したガラス繊維不
織布においては、樹脂バインダで覆われてできる空隙の
個数が必然的に少なくなっている。さらに、このガラス
繊維不織布にエポキシ樹脂を含浸し加熱乾燥したプリプ
レグも空隙が少ない。このような二つの事柄が、コンポ
ジット積層板中のガラス繊維に沿って生成するボイドと
そのほかのボイドを低減する。その結果、第一のガラス
繊維不織布を使用する場合と同様に、プリント配線加工
のめっき工程後に、隣接するスルーホール間で発生する
短絡を少なくすることができる。
The second glass fiber non-woven fabric is characterized in that the density of the glass fiber non-woven fabric exceeds 0.135 g / cm 3 . In the glass fiber nonwoven fabric having such a high density, the number of voids that can be covered with the resin binder is inevitably reduced. Further, the prepreg obtained by impregnating the glass fiber nonwoven fabric with an epoxy resin and drying by heating is also small in voids. These two things reduce the formation of voids and other voids along the glass fibers in the composite laminate. As a result, similarly to the case where the first glass fiber nonwoven fabric is used, it is possible to reduce a short circuit generated between the adjacent through holes after the plating step of the printed wiring processing.

【0010】上記本発明に係るガラス繊維不織布は、所
謂コンポジット積層板にのみ適用されるものではなく、
複数の絶縁層の一部をガラス繊維不織布で構成した多層
プリント配線板にも適用される。従って、本発明におい
てコンポジット積層板とは、内層にプリント配線が配置
されたものもその概念に含む。
[0010] The glass fiber nonwoven fabric according to the present invention is not applied only to a so-called composite laminate,
The present invention is also applied to a multilayer printed wiring board in which a part of a plurality of insulating layers is made of a glass fiber nonwoven fabric. Therefore, in the present invention, the term “composite laminate” includes a printed circuit board arranged in an inner layer.

【0011】[0011]

【発明の実態の形態】上記のように、本発明に係るコン
ポジット積層板は、中心層を構成するガラス繊維不織布
として、ガラス繊維同士を結着した樹脂バインダで覆わ
れてできた空隙を制限したもの又はガラス繊維不織布の
密度を高密度にしたものを使用する。ガラス繊維不織布
は、水中に分散したガラス繊維を抄造し、これに樹脂バ
インダ(例えば水溶性エポキシ樹脂)を適用し、これを
加熱乾燥して樹脂バインダを硬化させる工程を経て製造
される。樹脂バインダは、これを抄造体にスプレーする
方式又は抄造体を樹脂バインダに浸漬する方式で適用さ
れる。樹脂バインダで覆われてできる空隙を制限したガ
ラス繊維不織布は、前記加熱乾燥工程において、樹脂バ
インダが完全に硬化せず流動性が残っている間に樹脂バ
インダ中の溶媒分を十分に蒸発させることにより得られ
る。加熱温度を調整し樹脂バインダの硬化が速くならな
いようにして溶媒分が樹脂バインダ中に取込まれたまま
にならないようにする。また、高密度ガラス繊維不織布
は、樹脂バインダの加熱乾燥及び加熱硬化工程で加圧処
理などをすることにより得られる。
As described above, in the composite laminate according to the present invention, as the glass fiber nonwoven fabric constituting the central layer, the voids formed by the resin binder binding the glass fibers to each other are limited. Use a material or a glass fiber non-woven fabric with a high density. The glass fiber nonwoven fabric is manufactured through a process in which glass fibers dispersed in water are formed, a resin binder (for example, a water-soluble epoxy resin) is applied thereto, and the resultant is heated and dried to cure the resin binder. The resin binder is applied by a method of spraying the resin binder onto a papermaking body or a method of immersing the paperboard body in a resin binder. The glass fiber nonwoven fabric in which the voids formed by being covered with the resin binder are limited, in the heating and drying step, the solvent component in the resin binder is sufficiently evaporated while the resin binder is not completely cured and the fluidity remains. Is obtained by The heating temperature is adjusted so that the curing of the resin binder is not accelerated so that the solvent does not remain in the resin binder. In addition, the high-density glass fiber nonwoven fabric can be obtained by subjecting a resin binder to a pressure treatment in a heating drying and heating curing step.

【0012】コンポジット積層板は、上記のガラス繊維
不織布にエポキシ樹脂を含浸し加熱乾燥して得たプリプ
レグの層を中心層とし、ガラス繊維織布にエポキシ樹脂
を含浸し加熱乾燥して得たプリプレグの層を表面層と
し、これらを常法により加熱加圧成形し一体化して製造
する。加熱加圧成形に際しては、必要に応じて片面又は
両面に金属箔を一体化する。多層のコンポジット積層板
は、まず、上記のガラス繊維不織布にエポキシ樹脂を含
浸し加熱乾燥して得たプリプレグの層の両面に金属箔を
配置し、これらを加熱加圧成形により一体化する。前記
一体化した金属箔をプリント配線にエッチング加工し、
プリント配線板とする。そして、前記プリント配線板を
中心層とし、ガラス繊維織布にエポキシ樹脂を含浸し加
熱乾燥して得たプリプレグの層を表面層とし、さらに両
面に金属箔を配置して、これらを加熱加圧成形により一
体化して製造する。
The composite laminate is made of a prepreg obtained by impregnating the above glass fiber nonwoven fabric with an epoxy resin and heating and drying the prepreg as a central layer, impregnating a glass fiber woven fabric with an epoxy resin and heating and drying the prepreg. Is used as a surface layer, and these are molded by heating and pressing in a conventional manner and integrated. At the time of heat-press molding, a metal foil is integrated on one or both sides as necessary. In the multilayer composite laminate, first, a metal foil is placed on both sides of a prepreg layer obtained by impregnating the above-mentioned glass fiber nonwoven fabric with an epoxy resin and heating and drying, and integrating them by heating and pressing. The integrated metal foil is etched into printed wiring,
It is a printed wiring board. Then, the printed wiring board is used as a central layer, a prepreg layer obtained by impregnating a glass fiber woven fabric with an epoxy resin and heating and drying is used as a surface layer, and further, metal foils are arranged on both surfaces, and these are heated and pressed. It is manufactured integrally by molding.

【0013】尚、本発明に係るガラス繊維不織布におい
て、ガラス繊維同士を結着している樹脂バインダで覆わ
れてできた空隙の個数は、次のように数える。まず、試
料とするガラス繊維不織布に、無機充填材添加エポキシ
樹脂(A)を含浸し加熱乾燥して、エポキシ樹脂を完全
硬化させる。エポキシ樹脂(A)は、ガラス繊維不織布
の樹脂バインダ組成にない成分を含有するエポキシ樹脂
(例えば、樹脂バインダが臭素分を含んでいなければ、
エポキシ樹脂(A)は臭素化エポキシ樹脂を添加したも
の)である。これは、ガラス繊維不織布の断面観察に当
たって、樹脂バインダの存在箇所を容易に判別できるよ
うにするための手段である。次に、上記試料を裁断して
裁断面を注型により固める。注型樹脂も、上記と同様
に、ガラス繊維不織布の樹脂バインダ組成にない成分を
含有するエポキシ樹脂である。そして、注型により固め
研磨したガラス繊維不織布の断面(裁断面)を200倍
に拡大して観察し、そこに現れた空隙の個数を断面長1
00mm当たりで数える。前記空隙は、図2(a)に断面
写真で示すように、ガラス繊維間を結着した樹脂バイン
ダで覆われ、樹脂バインダもエポキシ樹脂(A)も充填
されていない空隙である。しかし、断面観察用試料の作
成段階で、前記空隙に注型樹脂が充填されることがあ
り、その場合には図2(a)に示したような空隙は現わ
れないが、このような場合でも、樹脂バインダと注型樹
脂を元素分析により判別できるので、樹脂バインダで覆
われた注型樹脂の箇所も空隙として数える。試料の断面
観察により個数を数える空隙は、このような2種類の空
隙である。
In the glass fiber nonwoven fabric according to the present invention, the number of voids formed by covering with the resin binder binding the glass fibers is counted as follows. First, a glass fiber nonwoven fabric as a sample is impregnated with an epoxy resin (A) containing an inorganic filler, and dried by heating to completely cure the epoxy resin. The epoxy resin (A) is an epoxy resin containing a component not present in the resin binder composition of the glass fiber nonwoven fabric (for example, if the resin binder does not contain bromine,
The epoxy resin (A) is obtained by adding a brominated epoxy resin). This is means for making it possible to easily determine the location of the resin binder when observing the cross section of the glass fiber nonwoven fabric. Next, the sample is cut and the cut surface is solidified by casting. Similarly to the above, the casting resin is an epoxy resin containing a component not included in the resin binder composition of the glass fiber nonwoven fabric. Then, the cross section (cut section) of the glass fiber nonwoven fabric hardened and polished by casting was magnified 200 times and observed.
Counts per 00mm. As shown in the cross-sectional photograph in FIG. 2A, the void is a void that is covered with a resin binder binding between glass fibers and is not filled with the resin binder and the epoxy resin (A). However, the cavity may be filled with the casting resin at the stage of preparing the cross-sectional observation sample. In this case, the cavity as shown in FIG. 2A does not appear. Since the resin binder and the casting resin can be distinguished by elemental analysis, locations of the casting resin covered with the resin binder are also counted as voids. The voids whose number is counted by observing the cross section of the sample are such two types of voids.

【0014】[0014]

【実施例】実施例1 (表面層)ビスフェノールA型エポキシ樹脂に硬化剤と
してジシアンジアミド、硬化促進剤として2−エチル−
4−メチルイミダゾールを配合し、表面層用ワニスを調
製する。このワニスをガラス繊維織布に含浸し加熱乾燥
して、表面層用プリプレグを作製した。 (中心層)ビスフェノールA型エポキシ樹脂に硬化剤と
してジシアンジアミド、硬化促進剤として2−エチル−
4−メチルイミダゾール、無機充填材として水酸化アル
ミニウムとタルクを配合し、中心層用ワニスを調製す
る。このワニスをガラス繊維不織布に含浸し加熱乾燥し
て、中心層用プリプレグを作製した。このガラス繊維不
織布は、密度0.125g/cm3、樹脂バインダで覆わ
れてできた空隙の個数が、ガラス繊維不織布の断面長1
00mm当たり20個以下(最大で20個、以下同様)の
ものである。このガラス繊維不織布の断面写真を図1に
示す。図1は、樹脂バインダ中に空隙がない箇所を示し
ている。中心層用プリプレグを複数枚重ね、その両側に
表面層用プリプレグを1枚ずつ重ね、さらにその両面に
銅箔を重ね、温度170℃、圧力4.0MPaで60分間
加熱加圧成形し、コンポジット銅張り積層板を製造し
た。製造した積層板の板厚は、1.6mmに調整した。
EXAMPLES Example 1 (Surface layer) Dicyandiamide as a curing agent and 2-ethyl- as a curing accelerator were added to a bisphenol A type epoxy resin.
A varnish for a surface layer is prepared by blending 4-methylimidazole. This varnish was impregnated into a glass fiber woven fabric and dried by heating to prepare a prepreg for a surface layer. (Center layer) Dicyandiamide as a curing agent and 2-ethyl- as a curing accelerator for bisphenol A type epoxy resin
4-methylimidazole, aluminum hydroxide and talc as inorganic fillers are blended to prepare a varnish for the center layer. This varnish was impregnated into a glass fiber nonwoven fabric and dried by heating to prepare a prepreg for the center layer. This glass fiber nonwoven fabric has a density of 0.125 g / cm 3 and the number of voids formed by covering with the resin binder has a cross-sectional length of 1
The number is 20 or less per 00 mm (maximum of 20 pieces, the same applies hereinafter). FIG. 1 shows a cross-sectional photograph of this glass fiber nonwoven fabric. FIG. 1 shows a portion where there is no void in the resin binder. A plurality of prepregs for the center layer are stacked, a prepreg for the surface layer is stacked on both sides of the prepreg one by one, and copper foil is further stacked on both sides thereof. A laminated board was manufactured. The thickness of the manufactured laminate was adjusted to 1.6 mm.

【0015】実施例2 実施例1において、中心層を構成するガラス繊維不織布
として、密度0.135g/cm3、樹脂バインダで覆わ
れてできた空隙の個数が、ガラス繊維不織布の断面長1
00mm当たり20個以下のものを採用し、その他は実施
例1と同様とした。
Example 2 In Example 1, as the glass fiber nonwoven fabric constituting the central layer, the number of voids formed by covering with a resin binder having a density of 0.135 g / cm 3 was 1
20 or less per 00 mm were adopted, and the others were the same as in Example 1.

【0016】実施例3 実施例1において、中心層を構成するガラス繊維不織布
として、密度0.138g/cm3、樹脂バインダで覆わ
れてできた空隙の個数が、ガラス繊維不織布の断面長1
00mm当たり15個以下のものを採用し、その他は実施
例1と同様とした。
Example 3 In Example 1, the glass fiber nonwoven fabric constituting the central layer had a density of 0.138 g / cm 3 and the number of voids covered with the resin binder was the same as the cross-sectional length of the glass fiber nonwoven fabric.
15 or less per 00 mm were adopted, and the others were the same as in Example 1.

【0017】従来例1 実施例1において、中心層を構成するガラス繊維不織布
として、密度0.125g/cm3、樹脂バインダで覆わ
れてできた空隙の個数が、ガラス繊維不織布の断面長1
00mm当たり40個以下のものを採用し、その他は実施
例1と同様とした。このガラス繊維不織布の断面写真を
図2(a)に示す。これは、樹脂バインダで覆われてで
きた空隙の箇所を示している。また、同(b)は、前記
空隙の模式図である。
Conventional Example 1 In Example 1, as the glass fiber non-woven fabric constituting the central layer, the number of voids formed by covering with a resin binder having a density of 0.125 g / cm 3 was the same as that of the glass fiber non-woven fabric.
Those having a size of 40 or less per 00 mm were adopted, and the other conditions were the same as in Example 1. FIG. 2A shows a cross-sectional photograph of this glass fiber nonwoven fabric. This shows a location of a void formed by being covered with the resin binder. FIG. 2B is a schematic diagram of the gap.

【0018】比較例1 実施例1において、中心層を構成するガラス繊維不織布
として、密度0.125g/cm3、樹脂バインダで覆わ
れてできた空隙の個数が、ガラス繊維不織布の断面長1
00mm当たり30個以下のものを採用し、その他は実施
例1と同様とした。
Comparative Example 1 In Example 1, as the glass fiber nonwoven fabric constituting the central layer, the density of the voids covered with the resin binder was 0.125 g / cm 3 , and the number of the voids was 1
Those having a size of 30 or less per 00 mm were employed, and the other conditions were the same as in Example 1.

【0019】比較例2 実施例1において、中心層を構成するガラス繊維不織布
として、密度0.135g/cm3、樹脂バインダで覆わ
れてできた空隙の個数が、ガラス繊維不織布の断面長1
00mm当たり30個以下のものを採用し、その他は実施
例1と同様とした。
Comparative Example 2 In Example 1, the glass fiber nonwoven fabric constituting the central layer had a density of 0.135 g / cm 3 and the number of voids covered with the resin binder was the same as that of the glass fiber nonwoven fabric.
Those having a size of 30 or less per 00 mm were employed, and the other conditions were the same as in Example 1.

【0020】上記実施例、従来例、比較例のコンポジッ
ト銅張り積層板について、プリント配線加工後(スルー
ホールめっき後)の短絡率ならびにそりの測定結果を表
1に示す。短絡率は、図1に示すように、1列7600
穴の独立したスルーホール(穴径0.5mm)パターンを
2列に形成し、その2列の隣接する1穴ペアの短絡の有
無を確認する。前記2列の穴壁間隔を、0.2mm,0.
3mm,0.4mm,0.5mmに設定し、そのそれぞれにつ
いて短絡の有無を確認した。そりは、510mm×340
mmのサイズで両面の銅箔を全面エッチングした試料(n
=12)を準備する。これを150℃−30分間加熱後
冷却し、定盤上に載せて四隅の浮上がり量を測定しその
平均値と最大値を求めた。
Table 1 shows the measurement results of the short-circuit rate and warpage of the composite copper-clad laminates of the above Examples, Conventional Examples and Comparative Examples after printed wiring (after through-hole plating). As shown in FIG. 1, the short-circuit rate was 7600 per row.
Two independent through-hole (hole diameter: 0.5 mm) patterns of holes are formed in two rows, and the presence or absence of a short circuit between adjacent two pairs of holes in the two rows is checked. The distance between the two rows of hole walls is 0.2 mm, 0.
The length was set to 3 mm, 0.4 mm, and 0.5 mm, and the presence or absence of a short circuit was checked for each of them. The sled is 510mm x 340
Sample (n)
= 12) is prepared. This was heated at 150 ° C. for 30 minutes, then cooled, placed on a surface plate, and the lifting amount at four corners was measured, and the average value and the maximum value were obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、本発明に係るガ
ラス繊維不織布で中心層を構成したコンポジット金属箔
張り積層板は、プリント配線加工後の隣接するスルーホ
ール間の短絡率の低減効果が顕著である。特に、第二の
ガラス繊維不織布で中心層を構成したコンポジット金属
箔張り積層板(実施例3)は、穴壁間隔0.2mmの場合
にも隣接するスルーホール間の短絡率を皆無にできる結
果を得た。また、いずれの実施例のコンポジット金属箔
張り積層板も、従来水準と同等あるいはそれ以上のそり
特性を有しており、そりの発生に対し最も影響を与える
ガラス繊維不織布が、本発明においては悪い影響を与え
ていないことも分かる。
As is evident from Table 1, the composite metal foil-clad laminate having the central layer made of the glass fiber nonwoven fabric according to the present invention has a remarkable effect of reducing the short-circuit rate between adjacent through holes after printed wiring processing. It is. In particular, the composite metal foil-clad laminate (Example 3) in which the center layer is composed of the second glass fiber nonwoven fabric can result in no short-circuit rate between adjacent through holes even when the hole wall spacing is 0.2 mm. I got Further, the composite metal foil-clad laminate of any of the examples also has a warpage property equal to or higher than the conventional level, and the glass fiber nonwoven fabric that most affects the occurrence of warpage is bad in the present invention. You can see that it has no effect.

【0023】[0023]

【発明の効果】上述のように、本発明に係るガラス繊維
不織布を適用したコンポジット積層板は、スルーホール
穴壁間隔の狭いプリント配線板へ十分に対応可能であ
り、狭いピッチで隣接するスルーホール間の短絡を起こ
さないようにすることができる。また、本発明に係るガ
ラス繊維不織布は、コンポジット積層板のそりを大きく
することもない。
As described above, the composite laminate using the glass fiber nonwoven fabric according to the present invention can sufficiently cope with a printed wiring board having a narrow hole hole wall interval, and has a small pitch between adjacent through holes. A short circuit between them can be prevented. Further, the glass fiber nonwoven fabric according to the present invention does not increase the warpage of the composite laminate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るガラス繊維不織不の拡大
断面写真である。
FIG. 1 is an enlarged sectional photograph of a glass fiber nonwoven fabric according to an example of the present invention.

【図2】(a)は従来のガラス繊維不織不の拡大断面写
真であり、(b)は(a)に示した拡大断面写真に現れ
た空隙部分の模式図である。
FIG. 2 (a) is an enlarged cross-sectional photograph of a conventional glass fiber non-woven fabric, and FIG. 2 (b) is a schematic diagram of a void portion appearing in the enlarged cross-sectional photograph shown in FIG.

【図3】短絡率を測定するためのスルーホールパターン
の説明図である。
FIG. 3 is an explanatory diagram of a through hole pattern for measuring a short circuit rate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 1/03 610 H05K 1/03 610T 610L // C08L 63:00 C08L 63:00 Fターム(参考) 4F072 AA02 AA07 AB09 AB29 AD23 AH21 AK05 AL12 4F100 AA19 AB17D AB33D AG00A AG00B AG00C AH03 AK53A AK53B AK53C BA03 BA04 BA06 BA07 BA10A BA10C CA02 CA23 DG12A DG12C DG15B EJ17 EJ42 EJ82A EJ82B EJ82C GB43 JG04 JL01 4L047 AA05 AB10 CC14 DA00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 1/03 610 H05K 1/03 610T 610L // C08L 63:00 C08L 63:00 F term (reference) 4F072 AA02 AA07 AB09 AB29 AD23 AH21 AK05 AL12 4F100 AA19 AB17D AB33D AG00A AG00B AG00C AH03 AK53A AK53B AK53C BA03 BA04 BA06 BA07 BA10A BA10C CA02 CA23 DA23A DG12B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガラス繊維同士を樹脂バインダで結着して
構成したガラス繊維不織布において、 ガラス繊維不織布の密度が0.135g/cm3以下であ
り、 樹脂バインダで覆われてできた空隙の個数が、ガラス繊
維不織布の断面長100mm当たり20個以下であること
を特徴とする積層板用ガラス繊維不織布。
1. A glass fiber nonwoven fabric formed by binding glass fibers with a resin binder, wherein the density of the glass fiber nonwoven fabric is 0.135 g / cm 3 or less, and the number of voids formed by the resin binder. A glass fiber nonwoven fabric for a laminate, wherein the number of the glass fiber nonwoven fabric is 20 or less per 100 mm in cross-sectional length of the glass fiber nonwoven fabric.
【請求項2】ガラス繊維同士を樹脂バインダで結着して
構成したガラス繊維不織布において、 ガラス繊維不織布の密度が0.135g/cm3を越える
ものであることを特徴とする積層板用ガラス繊維不織
布。
2. A glass fiber non-woven fabric comprising glass fibers bound with a resin binder, wherein the glass fiber non-woven fabric has a density exceeding 0.135 g / cm 3. Non-woven fabric.
【請求項3】エポキシ樹脂含浸ガラス繊維織布の表面層
とエポキシ樹脂含浸ガラス繊維不織布の中心層とが加熱
加圧成形により一体化されたコンポジット積層板におい
て、前記ガラス繊維不織布が請求項1又は2記載のガラ
ス繊維不織布であることを特徴とする積層板。
3. A composite laminate in which a surface layer of an epoxy resin-impregnated glass fiber woven fabric and a central layer of an epoxy resin-impregnated glass fiber nonwoven fabric are integrated by heat and pressure molding, wherein the glass fiber nonwoven fabric is one of the following. 3. A laminate, which is the glass fiber nonwoven fabric according to 2.
JP2000284603A 2000-09-20 2000-09-20 Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet Pending JP2002088626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284603A JP2002088626A (en) 2000-09-20 2000-09-20 Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284603A JP2002088626A (en) 2000-09-20 2000-09-20 Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet

Publications (1)

Publication Number Publication Date
JP2002088626A true JP2002088626A (en) 2002-03-27

Family

ID=18768786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284603A Pending JP2002088626A (en) 2000-09-20 2000-09-20 Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet

Country Status (1)

Country Link
JP (1) JP2002088626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127251A (en) * 2014-12-26 2016-07-11 京セラ株式会社 Printed-circuit board and method for manufacturing the same
WO2018199604A1 (en) * 2017-04-27 2018-11-01 주식회사 엘지화학 Insulating member, method for manufacturing insulating member, and method for manufacturing cylindrical battery comprising insulating member
KR20180120600A (en) * 2017-04-27 2018-11-06 주식회사 엘지화학 Insulating Member, Manufacturing Method Thereof and Cylindrical Battery Comprising Thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367776A (en) * 1976-11-29 1978-06-16 Shin Kobe Electric Machinery Production of sheet like molding material
JPS63235345A (en) * 1987-03-25 1988-09-30 Shin Kobe Electric Mach Co Ltd Production of laminate
JPH0468034A (en) * 1990-07-10 1992-03-03 Sumitomo Bakelite Co Ltd Preparation of laminate board for printed circuit
JPH04153229A (en) * 1990-04-18 1992-05-26 Shin Kobe Electric Mach Co Ltd Nonwoven glass fiber fabric, preparation thereof, and laminate thereof
JPH05263346A (en) * 1992-03-16 1993-10-12 Japan Vilene Co Ltd Glass wool nonwoven fabric for printed wiring board and its production
JP2000169605A (en) * 1998-12-04 2000-06-20 Risho Kogyo Co Ltd Prepreg sheet for laminated board and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367776A (en) * 1976-11-29 1978-06-16 Shin Kobe Electric Machinery Production of sheet like molding material
JPS63235345A (en) * 1987-03-25 1988-09-30 Shin Kobe Electric Mach Co Ltd Production of laminate
JPH04153229A (en) * 1990-04-18 1992-05-26 Shin Kobe Electric Mach Co Ltd Nonwoven glass fiber fabric, preparation thereof, and laminate thereof
JPH0468034A (en) * 1990-07-10 1992-03-03 Sumitomo Bakelite Co Ltd Preparation of laminate board for printed circuit
JPH05263346A (en) * 1992-03-16 1993-10-12 Japan Vilene Co Ltd Glass wool nonwoven fabric for printed wiring board and its production
JP2000169605A (en) * 1998-12-04 2000-06-20 Risho Kogyo Co Ltd Prepreg sheet for laminated board and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127251A (en) * 2014-12-26 2016-07-11 京セラ株式会社 Printed-circuit board and method for manufacturing the same
WO2018199604A1 (en) * 2017-04-27 2018-11-01 주식회사 엘지화학 Insulating member, method for manufacturing insulating member, and method for manufacturing cylindrical battery comprising insulating member
KR20180120600A (en) * 2017-04-27 2018-11-06 주식회사 엘지화학 Insulating Member, Manufacturing Method Thereof and Cylindrical Battery Comprising Thereof
CN110168793A (en) * 2017-04-27 2019-08-23 株式会社Lg化学 Insulating component, the method for manufacturing the insulating component and manufacture include the method for the cylindrical battery of the insulating component
KR102172059B1 (en) * 2017-04-27 2020-10-30 주식회사 엘지화학 Insulating Member, Manufacturing Method Thereof and Cylindrical Battery Comprising Thereof

Similar Documents

Publication Publication Date Title
JP2002088626A (en) Glass fiber nonwoven fabric for laminated sheet and composite laminated sheet
JP6015303B2 (en) Prepreg, laminated board and printed wiring board
JP3319934B2 (en) Metal foil with resin
JP2003347743A (en) Prepreg, multilayer printed circuit board and method for its manufacture
JP2580801B2 (en) Method for producing flame-retardant laminate and printed wiring board
JP2002088175A (en) Prepreg and laminate
JP4362937B2 (en) Prepreg and laminate
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JPH0356583B2 (en)
JP2003313272A (en) Epoxy resin composition for impregnating organic fiber base material, and prepreg, laminated sheet, and printed- wiring board using the same
JP2003031957A (en) Manufacturing method of multilayer printed wiring board
JP2002265634A (en) Glass fiber nonwoven fabric for electric insulation, composite laminate and printed circuit board
JP2536704B2 (en) Glass fiber non-woven fabric for laminated board, its manufacturing method and laminated board
JP2006316171A (en) Prepreg, laminated plate, and multi-ply laminated plate
JP4005384B2 (en) Epoxy resin composition for impregnating organic fiber substrate and prepreg, laminate and printed wiring board using the same
JP3227874B2 (en) Manufacturing method of laminated board
JPH0294697A (en) Manufacture of multilayer print circuit board
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP2002060590A (en) Epoxy resin composition for imprregnating glass fiber substrate and prepreg, laminated sheet and printed wiring board using the same
JPH07176843A (en) Laminated board for printed circuit
JP2679005B2 (en) Composite copper clad laminate
JP2006328198A (en) Prepreg and laminated plate using the same
JP2004051951A (en) Aramid fiber nonwoven fabric prepreg, and laminated plate and printed-wiring board using it
JPH09293971A (en) Manufacture of multilayer board
JP2000174438A (en) Manufacture of prepreg and manufacture of multilayer printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427