JP2000174438A - Manufacture of prepreg and manufacture of multilayer printed wiring board - Google Patents

Manufacture of prepreg and manufacture of multilayer printed wiring board

Info

Publication number
JP2000174438A
JP2000174438A JP10346332A JP34633298A JP2000174438A JP 2000174438 A JP2000174438 A JP 2000174438A JP 10346332 A JP10346332 A JP 10346332A JP 34633298 A JP34633298 A JP 34633298A JP 2000174438 A JP2000174438 A JP 2000174438A
Authority
JP
Japan
Prior art keywords
prepreg
wiring board
thermosetting resin
printed wiring
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP10346332A
Other languages
Japanese (ja)
Inventor
Masayuki Noda
雅之 野田
Koichi Hiraoka
宏一 平岡
Toru Shimazu
徹 嶋津
Shigeru Kurumaya
茂 車谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10346332A priority Critical patent/JP2000174438A/en
Publication of JP2000174438A publication Critical patent/JP2000174438A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a prepreg suitable for manufacture of a high-density multilayer printed wiring board by improving a dimensional stability of the prepreg, having a sheet-like substrate made of organic fiber such as an aramid fiber and impregnated with thermosetting resin and dried. SOLUTION: During the transfer of a long aramid fiber unwoven cloth, epoxy resin is sequentially impregnated into the cloth and dried to form a prepreg, having a B stage of setting the epoxy resin. The prepreg is cut into a predetermined dimensions and then heated to a temperature of a melting point of the epoxy resin or higher. Major aramid fiber in the unwoven cloth is preferably poly-p-phenylene diphenyl ether terephthal amid fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度多層プリン
ト配線板を製造するのに適したプリプレグの製造法に関
する。
The present invention relates to a method for producing a prepreg suitable for producing a high-density multilayer printed wiring board.

【0002】[0002]

【従来の技術】近年の電子機器の軽薄短小化には、電子
機器を構成する電子部品及びプリント配線板の軽薄短小
化技術が大きく寄与してきた。電子機器の軽薄短小化の
要求は益々強くなっており、高密度実装技術の開発が急
がれている。実装部品を高密度化する代表例としては、
シリコンチップをフェイスダウン実装するCSP(Chip
Size Package)があり、次世代技術として精力的に開
発されている。
2. Description of the Related Art In recent years, technology for reducing the size and thickness of electronic devices has greatly contributed to the technology for reducing the size and size of electronic components and printed wiring boards constituting electronic devices. The demand for lighter, thinner, and smaller electronic devices is increasing, and the development of high-density mounting technology is urgent. As a typical example of increasing the density of mounted components,
CSP (Chip) that mounts a silicon chip face down
Size Package), which is being vigorously developed as a next-generation technology.

【0003】また、高密度実装を実現する上で、プリン
ト配線板の多層による高密度化も重要なポイントであ
る。広く知られている高密度多層プリント配線板は、一
般的なガラスエポキシプリント配線板又は多層プリント
配線板上に絶縁樹脂層を介してプリント配線を順次積み
上げていくビルド・アップ法により製造される(第一の
技術)。前記絶縁樹脂層は、プリント配線板への樹脂の
塗布又は樹脂フィルムの接着により形成される。絶縁樹
脂層を介する配線間の接続は、絶縁樹脂層にレーザ光も
しくは紫外線の照射により微小な電気接続用穴をあけ、
この穴壁に施した銅メッキにて実現される。また、近年
提案された高密度多層プリント配線板は、アラミド繊維
不織布プリプレグで絶縁層を形成することにより製造さ
れる(第二の技術)。まず、前記プリプレグの所定箇所
にレーザ光を照射して微小な電気接続用穴をあけ、この
穴に銅粉末と熱硬化性樹脂を主体とした導電性ペースト
を充填する。そして、前記プリプレグの両面に銅箔を載
置し加熱加圧成形して一体化する。銅箔をエッチングし
て配線加工すると、導電性ペーストが硬化した導体によ
り両面の配線が接続されたプリント配線板となる。さら
に、このプリント配線板に前記導電性ペースト充填プリ
プレグを介して銅箔を載置し加熱加圧成形により一体化
し、銅箔をエッチングして配線加工する。このようにし
てプリント配線を順次積み上げていく(特開平5−17
5650号公報,特開平7−176846号公報)。
In order to realize high-density mounting, it is also important to increase the density of printed wiring boards by using multiple layers. A widely known high-density multilayer printed wiring board is manufactured by a build-up method in which printed wiring is sequentially stacked on a general glass epoxy printed wiring board or a multilayer printed wiring board via an insulating resin layer ( First technology). The insulating resin layer is formed by applying a resin to a printed wiring board or bonding a resin film. For the connection between the wirings via the insulating resin layer, a minute electric connection hole is made by irradiating the insulating resin layer with laser light or ultraviolet light,
This is realized by copper plating applied to the wall of the hole. In addition, recently proposed high-density multilayer printed wiring boards are manufactured by forming an insulating layer with an aramid fiber nonwoven prepreg (second technique). First, a predetermined portion of the prepreg is irradiated with a laser beam to form a minute electrical connection hole, and the hole is filled with a conductive paste mainly composed of a copper powder and a thermosetting resin. Then, a copper foil is placed on both surfaces of the prepreg, and is molded by heating and pressing to be integrated. When wiring is performed by etching the copper foil, a printed wiring board is obtained in which the wiring on both sides is connected by a conductor in which the conductive paste is cured. Further, a copper foil is placed on the printed wiring board via the conductive paste-filled prepreg, integrated by heating and pressing, and the copper foil is etched to perform wiring processing. In this manner, the printed wiring is sequentially stacked (Japanese Patent Laid-Open No. 5-17 / 1990).
5650, JP-A-7-176846).

【0004】上記第二の技術によれば、絶縁樹脂層を介
する配線間の接続が完全なインナービアホール(IVH:in
terstitial Via Hole)によって実現された多層プリン
ト配線板を製造することができ、第一の技術よりプリン
ト配線の一層の高密度化が可能である。なぜなら、導電
性ペーストが硬化した導体は中実であるため、その導体
の直上にさらに次のインナービアホールを形成できるか
らである。
According to the second technique, connection between wirings via an insulating resin layer is completely completed in an inner via hole (IVH: in).
It is possible to manufacture a multilayer printed wiring board realized by terstitial via holes, and it is possible to further increase the density of printed wiring by the first technique. This is because the conductor in which the conductive paste is cured is solid, so that the next inner via hole can be formed immediately above the conductor.

【0005】[0005]

【発明が解決しようとする課題】上記第二の技術におい
ては、プリント配線と位置合せをした電気接続用穴を、
プリプレグの段階でプリプレグの所定箇所にあけてお
く。そして、前記穴に導電性ペーストを充填したプリプ
レグと硬質のプリント配線板を加熱加圧成形により一体
化し、前記プリプレグの熱硬化性樹脂を硬化させて絶縁
層を形成する。従って、上記第二の技術に適用するプリ
プレグには、プリプレグから絶縁層形成に至るまでの段
階の寸法安定性が重要になる。プリプレグから絶縁層を
形成するときの寸法変化が大きいと、導電性ペーストが
硬化した導体が位置ずれし、絶縁層を介する配線間の接
続信頼性が低下するからである。
In the second technique, an electric connection hole aligned with a printed wiring is formed.
In the prepreg stage, it is opened at a predetermined location of the prepreg. Then, the prepreg in which the conductive paste is filled in the hole and the hard printed wiring board are integrated by heating and pressing, and the thermosetting resin of the prepreg is cured to form an insulating layer. Therefore, dimensional stability at the stage from the prepreg to the formation of the insulating layer is important for the prepreg applied to the second technique. If the dimensional change when the insulating layer is formed from the prepreg is large, the conductor in which the conductive paste has been cured is displaced, and the connection reliability between the wirings via the insulating layer is reduced.

【0006】そこで本発明が解決しようとする課題は、
アラミド繊維をはじめとする有機繊維からなるシート状
基材に熱硬化性樹脂を含浸乾燥したプリプレグの寸法安
定性を向上させ、高密度多層プリント配線板の製造に適
したプリプレグとすることである。
Therefore, the problem to be solved by the present invention is as follows:
It is an object of the present invention to improve the dimensional stability of a prepreg obtained by impregnating and drying a thermosetting resin in a sheet-like substrate made of an organic fiber such as an aramid fiber, and to provide a prepreg suitable for manufacturing a high-density multilayer printed wiring board.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るプリプレグの製造法は、有機繊維から
なる長尺のシート状基材を移送しながら、これに順次熱
硬化性樹脂を含浸乾燥して前記熱硬化性樹脂の硬化をB
ステージまで進めたプリプレグとする。そして、所定寸
法に裁断した前記プリプレグを熱硬化性樹脂の融点以上
の温度で加熱することを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, a method for producing a prepreg according to the present invention comprises transferring a long sheet-like base material made of an organic fiber to a thermosetting resin sequentially. Impregnated and dried to cure the thermosetting resin
It is a prepreg advanced to the stage. Then, the prepreg cut into a predetermined size is heated at a temperature equal to or higher than the melting point of the thermosetting resin.

【0008】長尺のシート状基材は一定の張力をかけて
製造され、さらに、この基材に熱硬化性樹脂を含浸乾燥
しプリプレグを製造する過程でも、長尺のシート状基材
には一定の張力がかかっている。有機繊維はガラス繊維
などの無機繊維とは異なり伸縮性があるので、前記のよ
うに基材製造の段階から張力がかかった状態で製造され
たプリプレグの基材には収縮しようとする応力が残って
いる。長尺のプリプレグから所定寸法に裁断したプリプ
レグを、含浸されている熱硬化性樹脂の融点以上で加熱
することにより、前記基材に残っていた応力を解放する
ことができ、成形時の寸法安定性が良好なプリプレグと
なる。熱硬化性樹脂の融点以上で加熱することが重要で
あり、そうでないと熱硬化性樹脂が基材の応力解放の障
害となって良好な結果を得られない。
[0008] A long sheet-like base material is manufactured by applying a certain tension. Further, even in the process of impregnating the base material with a thermosetting resin and drying it to produce a prepreg, the long sheet-like base material is produced. There is constant tension. Since organic fibers have elasticity unlike inorganic fibers such as glass fibers, stress that tends to shrink remains on the prepreg base material that is manufactured under tension from the base manufacturing stage as described above. ing. By heating a prepreg cut to a predetermined size from a long prepreg at a temperature equal to or higher than the melting point of the thermosetting resin impregnated, the stress remaining on the base material can be released, and dimensional stability during molding can be achieved. A prepreg having good properties is obtained. It is important to heat at a temperature higher than the melting point of the thermosetting resin, otherwise the thermosetting resin becomes an obstacle to stress release of the base material, and good results cannot be obtained.

【0009】有機繊維からなるシート状基材のプリプレ
グは、レーザ光照射による穴あけに適した材料として採
用されるようになってきたが、微小穴あけに対してはさ
らに最適化の余地がある。レーザ光照射による穴あけ
は、レーザ光の高エネルギにより照射箇所の樹脂と基材
を焼失させるものであるが、プリプレグの段階で穴あけ
をする場合には照射箇所とその周縁の熱硬化性樹脂が溶
融するので、その極めて限られた範囲においてだけ基材
の応力が解放される。このような狭い範囲における応力
解放が、レーザ光の照射によりプリプレグにあけた穴の
変形に影響していることが判明した。そして、穴の変形
は微小穴であるほど深刻である。
Although a prepreg of a sheet-like substrate made of organic fibers has been adopted as a material suitable for drilling by laser beam irradiation, there is room for further optimization of minute drilling. Drilling by laser beam irradiation burns the resin and the base material at the irradiated location due to the high energy of the laser beam.However, when drilling at the prepreg stage, the thermosetting resin at the irradiated location and its peripheral edge melts. Therefore, the stress of the substrate is released only in a very limited area. It was found that the release of stress in such a narrow range affected the deformation of the hole formed in the prepreg by the irradiation of the laser beam. The deformation of the hole is more serious as the hole is smaller.

【0010】上記のように、本発明に係る方法で製造し
たプリプレグは、基材に残っていた応力が解放されてい
る。従って、このプリプレグにレーザ光を照射して穴を
あけてもその穴の変形が起こりにくく、微小穴も良好に
あけることができる。本発明に係る方法で製造したプリ
プレグを次に記載する多層プリント配線板の製造法に用
いることは、変形のない微小穴あけと寸法安定性の観点
から非常に意義がある。すなわち、プリプレグの所定箇
所にレーザ光を照射して電気接続用穴をあけ、この穴に
導電性ペーストを充填したプリプレグを準備し、プリン
ト配線板上に前記導電性ペースト充填プリプレグを介し
て金属箔を載置し加熱加圧成形により一体化し、前記金
属箔をエッチングして配線加工をする工程を有する多層
プリント配線板の製造法である。
As described above, in the prepreg manufactured by the method according to the present invention, the stress remaining on the substrate is released. Therefore, even if a hole is formed by irradiating the prepreg with a laser beam, the hole hardly deforms, and a fine hole can be formed well. The use of the prepreg manufactured by the method according to the present invention in the method for manufacturing a multilayer printed wiring board described below is very significant from the viewpoint of micro-drilling without deformation and dimensional stability. That is, a predetermined portion of the prepreg is irradiated with a laser beam to make a hole for electrical connection, a prepreg filled with a conductive paste is prepared in the hole, and a metal foil is placed on a printed wiring board through the conductive paste-filled prepreg. This is a method for manufacturing a multilayer printed wiring board, which comprises a step of mounting and integrating by heat and pressure molding, and performing wiring processing by etching the metal foil.

【0011】[0011]

【発明の実施の形態】本発明に係る方法で使用する有機
繊維からなる長尺のシート状基材は、アラミド繊維、ポ
リエステル繊維、ポリフェニレンサルファイド繊維など
耐熱性有機繊維からなる織布や不織布である。長尺のこ
れら織布や不織布を移送しながら、エポキシ樹脂、ポリ
エステル、ポリイミドなどの熱硬化性樹脂を含浸し乾燥
して前記熱硬化性樹脂の硬化をBステージまで進めたプ
リプレグを製造する。そして、所定寸法に裁断したプリ
プレグを熱硬化性樹脂の融点以上の温度で加熱する。加
熱時間は、2〜300秒が適当である。加熱時間が短い
と基材に残っている応力を十分に解放することができな
いし、加熱時間が長いと熱硬化性樹脂の硬化が進みすぎ
るので、加熱時間の長さを適宜調整する。プリプレグ中
の熱硬化性樹脂の硬化が進みすぎると、プリプレグの加
熱加圧成形時に熱硬化性樹脂が十分に流動しないので内
部にボイドが残ることになる。シート状基材は、レーザ
光の照射による穴あけ性の観点から、アラミド繊維基
材、殊にアラミド繊維不織布が好ましい。そして、この
場合、所定寸法に裁断したプリプレグの加熱時間の長さ
は、特に2〜300秒が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The long sheet-like base made of organic fibers used in the method according to the present invention is a woven or non-woven fabric made of heat-resistant organic fibers such as aramid fibers, polyester fibers, and polyphenylene sulfide fibers. . While transferring these long woven or nonwoven fabrics, a thermosetting resin such as epoxy resin, polyester, or polyimide is impregnated and dried to produce a prepreg in which the thermosetting resin has been cured to the B stage. Then, the prepreg cut into a predetermined size is heated at a temperature equal to or higher than the melting point of the thermosetting resin. An appropriate heating time is 2 to 300 seconds. If the heating time is short, the stress remaining on the substrate cannot be sufficiently released, and if the heating time is long, the curing of the thermosetting resin proceeds too much. Therefore, the length of the heating time is appropriately adjusted. If the curing of the thermosetting resin in the prepreg proceeds too much, the thermosetting resin does not flow sufficiently at the time of heating and pressing the prepreg, so that voids remain inside. The sheet-like substrate is preferably an aramid fiber substrate, particularly an aramid fiber nonwoven fabric, from the viewpoint of piercing properties by laser light irradiation. In this case, the length of the heating time of the prepreg cut to a predetermined size is particularly preferably 2 to 300 seconds.

【0012】長尺のアラミド繊維不織布は、例えば、パ
ラ型アラミド繊維チョップを主成分として連続的に抄造
し、繊維同士をバインダで結着することにより製造す
る。繊維同士を結着するバインダとして、熱硬化性樹脂
バインダや軟化温度220℃以上の熱可塑性樹脂を選択
でき、これらを併用してもよい。
[0012] The long nonwoven fabric of aramid fiber is manufactured by, for example, continuously forming a para-aramid fiber chop as a main component and binding the fibers with a binder. As the binder for binding the fibers, a thermosetting resin binder or a thermoplastic resin having a softening temperature of 220 ° C. or higher can be selected, and these may be used in combination.

【0013】熱硬化性樹脂バインダは、抄造した不織布
にこれをスプレーすると繊維同士の交叉点に付着して繊
維同士を結着する。軟化温度220℃以上の熱可塑性樹
脂は、パラ型アラミド繊維チョップと一緒に抄造し、こ
れをパラ型アラミド繊維チョップに熱融着し及び/又は
絡みつかせて繊維同士を結着する。その詳細は、次のと
おりである。すなわち、軟化温度220℃以上の熱可塑
性樹脂は、チョップ、フィブリド、又はパルプの形態か
ら選ばれる少なくとも一つである。チョップは、まっす
ぐな繊維を抄造可能な所定寸法に裁断したものであり、
熱融着や熱軟化による変形で絡みつかせることが可能と
なり、繊維同士を結着する。この操作は、抄造した不織
布を加熱圧縮することにより実施する。フィブリドはフ
ィルム状の樹脂を叩解したものであり、パルプは繊維を
叩解したものである。フィブリドやパルプは、それ自体
で絡みつく能力があり、パラ型アラミド繊維チョップと
一緒に抄造することにより繊維同士を結着することがで
きる。さらに、抄造した不織布を適宜加熱圧縮して、熱
融着や熱軟化による変形で絡みつきを強くすることもで
きる。バインダの補助成分として、パラ型アラミド繊維
パルプを配合してもよい。
When the thermosetting resin binder is sprayed on a paper-made nonwoven fabric, it adheres to the intersection of the fibers and binds the fibers. The thermoplastic resin having a softening temperature of 220 ° C. or more is formed together with the para-type aramid fiber chop, and is thermally fused and / or entangled with the para-type aramid fiber chop to bind the fibers together. The details are as follows. That is, the thermoplastic resin having a softening temperature of 220 ° C. or higher is at least one selected from the form of chops, fibrids, or pulp. The chop is a straight fiber cut into a predetermined size that can be machined,
The fibers can be entangled by deformation due to heat fusion or heat softening, and fibers are bound together. This operation is performed by heating and compressing the formed nonwoven fabric. Fibrids are obtained by beating a resin film, and pulp is obtained by beating fibers. Fibrids and pulp have the ability to entangle themselves, and fibers can be bound together by papermaking with para-type aramid fiber chops. Furthermore, the formed nonwoven fabric can be heated and compressed as appropriate, and the entanglement can be enhanced by deformation due to heat fusion or heat softening. Para-aramid fiber pulp may be blended as an auxiliary component of the binder.

【0014】アラミド繊維不織布の主成分であるパラ型
アラミド繊維チョップは、ポリ−p−フェニレンジフェ
ニルエーテルテレフタルアミド繊維やポリ−p−フェニ
レンテレフタルアミド繊維である。これら繊維の一方用
いるか両者を併用する。ポリ−p−フェニレンジフェニ
ルエーテルテレフタルアミド繊維(具体的には、ポリ−
p−フェニレン−3,4’−ジフェニルエーテルテレフ
タルアミド繊維)は、レーザ光の熱による分解・飛散性
が良いので好ましい繊維であるが、紡糸の際に繊維の強
度を上げるために延伸しており、延伸された繊維は熱を
かけると収縮する。すなわち、寸法安定性が悪いのであ
る。このような繊維を主成分とする不織布を用いてプリ
プレグを製造するに際して、本発明に係る方法を適用す
ると、プリプレグの寸法安定性は極めて顕著になる。
The para-type aramid fiber chop, which is the main component of the aramid fiber nonwoven fabric, is a poly-p-phenylenediphenyl ether terephthalamide fiber or a poly-p-phenylene terephthalamide fiber. One or both of these fibers are used. Poly-p-phenylenediphenyl ether terephthalamide fibers (specifically, poly-
p-phenylene-3,4'-diphenylether terephthalamide fiber) is a preferable fiber because of its good decomposition and scattering properties due to the heat of laser light, but is stretched to increase the strength of the fiber during spinning. The drawn fibers shrink when heated. That is, the dimensional stability is poor. When a method according to the present invention is applied to the production of a prepreg using a nonwoven fabric containing such fibers as a main component, the dimensional stability of the prepreg becomes extremely remarkable.

【0015】所定寸法に裁断したプリプレグの加熱は、
張力のかからない状態で、遠赤外ランプを装着したベル
トコンベア上で実施する。
Heating of the prepreg cut to a predetermined size
The test is performed on a belt conveyor equipped with a far-infrared lamp without tension.

【0016】[0016]

【実施例】実施例1〜4 臭素化エピビス系エポキシ樹脂(東都化成製「YDB−
500EK80」)200g、エピビス系エポキシ樹脂
(油化シェル製「Ep−1001EK75」)43g、
クレゾールノボラック型エポキシ樹脂(東都化成製「Y
DCN−704EK75」)170g、硬化剤としてノ
ボラック型フェノール樹脂(大日本インキ製「TD−2
090EK60」)130g、硬化促進剤として2−エ
チル4−メチルイミダゾール0.5gを均一に溶かし、
フェノール樹脂硬化型エポキシ樹脂ワニスAを調製し
た。ポリ−p−フェニレンジフェニルエーテルテレフタ
ルアミド繊維を主成分とする単位重量70g/m2の不織
布に、ワニスAを縦型塗工機で含浸乾燥し、樹脂含有量
48重量%のプリプレグAを得た。510×340mmの
寸法に裁断した上記プリプレグAを、遠赤外ランプを装
着したベルトコンベア上に張力のかからない状態で載置
し、移送しながら加熱処理した。プリプレグAをそこに
含浸されているエポキシ樹脂の融点以上で加熱する時間
は、ベルトコンベアの移送速度で調整し、プリプレグA
がエポキシ樹脂の融点以上になっている時間を、実施例
ごとに表2に示すように設定した。
EXAMPLES Examples 1-4 Brominated epibis epoxy resins ("YDB-" manufactured by Toto Kasei)
500 EK80 ”) 200 g, Epibis epoxy resin (“ Ep-1001 EK75 ”manufactured by Yuka Shell) 43 g,
Cresol novolak type epoxy resin ("Y" manufactured by Toto Kasei
DCN-704EK75 ”) 170 g, and a novolak-type phenol resin (“ TD-2 ”manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent
090EK60 ”), and uniformly dissolve 0.5 g of 2-ethyl 4-methylimidazole as a curing accelerator,
A phenol resin-curable epoxy resin varnish A was prepared. A varnish A was impregnated and dried with a vertical coating machine on a non-woven fabric having a unit weight of 70 g / m 2 containing poly-p-phenylenediphenyl ether terephthalamide fiber as a main component to obtain a prepreg A having a resin content of 48% by weight. The prepreg A cut to a size of 510 × 340 mm was placed on a belt conveyor equipped with a far-infrared lamp without tension, and was heated while being transferred. The time for heating the prepreg A above the melting point of the epoxy resin impregnated therein is adjusted by the transfer speed of the belt conveyor, and the prepreg A is heated.
Are set as shown in Table 2 for each example.

【0017】加熱処理した各実施例のプリプレグAを、
レーザ光照射による穴あけ機に装着し、表1に示したレ
ーザ光照射条件でプリプレグAの所定箇所に電気接続用
穴をあけた。表1に示したアパーチャ径(200μm)
が、あけるべき所望の穴径である(尚、実際にあけた穴
は200μmより若干小さくなる)。あけた穴径の縦/
横比を測定し、その結果を表2に示した。
The heat-treated prepreg A of each embodiment was
The prepreg A was mounted on a drilling machine by laser light irradiation, and holes for electrical connection were formed at predetermined positions of the prepreg A under the laser light irradiation conditions shown in Table 1. Aperture diameter shown in Table 1 (200 μm)
Is the desired hole diameter to be drilled (the hole actually drilled is slightly smaller than 200 μm). Vertical hole diameter /
The lateral ratio was measured, and the results are shown in Table 2.

【0018】プリプレグAにあけた電気接続用穴に充填
する導電性ペーストとして、球形状ならびにフレーク形
状の銅金属粉末85重量%とビスフェノールA型エポキ
シ樹脂(油化シェルエポキシ製「エピコート828」)
3重量%とグリシジルエステル系エポキシ樹脂(東都化
成製「YD−171」)9重量%とアミンアダクト硬化
剤(味の素製「MY−24」)3重量%とを混合し、三
軸ロールにて混練し調製した。上記導電性ペーストの電
気接続用穴への充填には既存のスクリーン印刷機を用
い、プリプレグ表面からポリウレタンスキージで刷り込
むことにより実施した。前記プリプレグの両面に35μ
m厚銅箔を載置し、これを温度180℃,圧力50kgf
/cm2で60分間加熱加圧成形して両面銅クラッド板を
製造した。公知のエッチング技術を用いて両面銅クラッ
ド板の銅箔を回路加工し、配線基板Aとした。電気接続
用穴に充填した導電性ペーストは前記加熱加圧成形によ
り硬化し導体となり、配線基板Aの両面の回路はこの導
体により接続されている。加熱処理した各実施例のプリ
プレグAの所定箇所に上記と同様に電気接続用穴をあけ
導電性ペーストを充填したプリプレグAを別途用意し、
配線基板Aの両面にこのプリプレグを介して35μm厚
銅箔を載置し、これを温度180℃,圧力50kgf/cm2
で60分間加熱加圧成形して4層シールド板Aを製造し
た。公知のエッチング技術を用いて表面の銅箔を回路加
工し、4層プリント配線基板Aとする。電気接続用穴に
充填した導電性ペーストは前記加熱加圧成形により硬化
し導体となり、4層プリント配線基板Aの第1層と第2
層の回路、第3層と第4層の回路は、それぞれこの導体
により接続されている。
As the conductive paste to be filled in the holes for electrical connection made in the prepreg A, 85% by weight of spherical and flake-shaped copper metal powder and bisphenol A type epoxy resin ("Epicoat 828" made by Yuka Shell Epoxy)
3% by weight, 9% by weight of a glycidyl ester epoxy resin ("YD-171" manufactured by Toto Kasei) and 3% by weight of an amine adduct curing agent ("MY-24" manufactured by Ajinomoto) are mixed and kneaded with a triaxial roll. Prepared. The conductive paste was filled into the holes for electrical connection by using an existing screen printing machine, and by using a polyurethane squeegee to print from the prepreg surface. 35μ on both sides of the prepreg
m thick copper foil is placed, and the temperature is 180 ° C and the pressure is 50kgf.
/ Cm 2 for 60 minutes to produce a double-sided copper clad plate. Using a known etching technique, the copper foil of the double-sided copper clad plate was subjected to circuit processing to obtain a wiring board A. The conductive paste filled in the electrical connection holes is cured by the heat and pressure molding to become a conductor, and the circuits on both surfaces of the wiring board A are connected by the conductor. Prepare a prepreg A filled with a conductive paste by making a hole for electrical connection in the same manner as described above at a predetermined position of the prepreg A of each of the heat-treated examples,
A 35 μm thick copper foil was placed on both sides of the wiring board A via this prepreg, and the temperature was 180 ° C. and the pressure was 50 kgf / cm 2.
To form a four-layer shield plate A. Circuit processing is performed on the copper foil on the surface using a known etching technique to obtain a four-layer printed wiring board A. The conductive paste filled in the holes for electrical connection is cured by the heat and pressure molding to become a conductor, and the first layer and the second layer of the four-layer printed wiring board A are formed.
The circuit of the layer, the circuit of the third layer and the circuit of the fourth layer are respectively connected by this conductor.

【0019】上記各例の4層プリント配線基板Aについ
て、第2層と第3層の回路を接続する導体に対し、第1
層と第2層の回路を接続する導体がどの程度位置ずれし
ているかをX線を用いて測定し、その測定結果を表2に
示した。
In the four-layer printed wiring board A of each of the above examples, the first and second conductors for connecting the circuits of the second and third layers are the
The degree of misalignment of the conductor connecting the layer and the circuit of the second layer was measured using X-rays, and the measurement results are shown in Table 2.

【0020】実施例5〜8 ポリ−p−フェニレンテレフタルアミド繊維を主成分と
する単位重量70g/m2の不織布に、ワニスAを縦型塗
工機で含浸乾燥し、樹脂含有量48重量%のプリプレグ
Bを得た。以下、実施例1と同様に、プリプレグBの加
熱処理、レーザ光照射による電気接続用穴あけ、導電性
ペーストの充填、4層プリント配線基板Bの製造を行な
った。尚、プリプレグBの加熱処理において、プリプレ
グBがエポキシ樹脂の融点以上になっている時間を、実
施例ごとに表3に示すように設定した。レーザ光照射に
よりあけた電気接続用穴径の縦/横比測定結果、導体位
置ずれの測定結果を表3に示した。
Examples 5 to 8 A non-woven fabric having a unit weight of 70 g / m 2 containing poly-p-phenylene terephthalamide fiber as a main component was impregnated with varnish A using a vertical coating machine and dried to obtain a resin content of 48% by weight. Of prepreg B was obtained. Thereafter, in the same manner as in Example 1, heat treatment of prepreg B, drilling of electrical connection by laser beam irradiation, filling of conductive paste, and production of four-layer printed wiring board B were performed. In the heat treatment of the prepreg B, the time during which the prepreg B was at or above the melting point of the epoxy resin was set as shown in Table 3 for each example. Table 3 shows the results of measuring the length / width ratio of the hole diameter for electrical connection drilled by laser light irradiation and the results of measuring the conductor position shift.

【0021】従来例1,比較例1〜2 プリプレグAの加熱処理において、プリプレグAがエポ
キシ樹脂の融点以上になっている時間を、各例ごとに表
4に示すように設定した(従来例1は非加熱)。以下、
実施例1と同様に、レーザ光照射による電気接続用穴あ
け、導電性ペーストの充填、4層プリント配線基板Cの
製造を行なった。レーザ光照射によりあけた電気接続用
穴径の縦/横比測定結果、導体位置ずれの測定結果を表
4に示した。
Conventional Example 1, Comparative Examples 1-2 In the heat treatment of prepreg A, the time during which prepreg A was at or above the melting point of the epoxy resin was set as shown in Table 4 for each example (Conventional Example 1). Is not heated). Less than,
In the same manner as in Example 1, a hole for electric connection was formed by irradiation with a laser beam, a conductive paste was filled, and a four-layer printed wiring board C was manufactured. Table 4 shows the measurement results of the length / width ratio of the hole diameter for electrical connection drilled by laser light irradiation and the measurement result of the conductor position shift.

【0022】従来例2,比較例3〜4 プリプレグBの加熱処理において、プリプレグBがエポ
キシ樹脂の融点以上になっている時間を、各例ごとに表
4に示すように設定した(従来例2は非加熱)。以下、
実施例1と同様に、レーザ光照射による電気接続用穴あ
け、導電性ペーストの充填、4層プリント配線基板Dの
製造を行なった。レーザ光照射によりあけた電気接続用
穴径の縦/横比測定結果、導体位置ずれの測定結果を表
4に示した。
Conventional Examples 2 and Comparative Examples 3 and 4 In the heat treatment of prepreg B, the time during which prepreg B was at or above the melting point of the epoxy resin was set as shown in Table 4 for each example (Conventional Example 2). Is not heated). Less than,
In the same manner as in Example 1, holes for electrical connection were formed by laser light irradiation, filling of a conductive paste was performed, and a four-layer printed wiring board D was manufactured. Table 4 shows the measurement results of the length / width ratio of the hole diameter for electrical connection drilled by laser light irradiation and the measurement result of the conductor position shift.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】表2〜4に示すように、本発明に係る方
法により製造したプリプレグは、寸法安定性が良好であ
るため、層間の回路を接続する導体の位置ずれが小さい
多層プリント配線板の製造に寄与できるものである。特
に、高密度多層プリント配線板の製造に適したものであ
る。また、本発明に係る方法により製造したプリプレグ
は、レーザ光の照射による穴あけで良好な穴を形成でき
る予期しない効果を奏し、特に微小穴の形成に適したも
のである。ポリ−p−フェニレンジフェニルエーテルテ
レフタルアミド繊維を主成分とする不織布を基材とする
プリプレグの製造に本発明に係る方法を適用すると、上
記効果は極めて顕著である。
As shown in Tables 2 to 4, the prepregs manufactured by the method according to the present invention have good dimensional stability, so that the multilayer printed wiring board has a small displacement of the conductor connecting the circuits between the layers. Can contribute to the production of In particular, it is suitable for manufacturing a high-density multilayer printed wiring board. Further, the prepreg manufactured by the method according to the present invention has an unexpected effect that a good hole can be formed by drilling by laser light irradiation, and is particularly suitable for forming a minute hole. When the method according to the present invention is applied to the production of a prepreg based on a non-woven fabric containing poly-p-phenylenediphenyl phenyl ether terephthalamide fibers as a main component, the above-mentioned effects are extremely remarkable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 車谷 茂 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5E346 AA02 AA06 AA12 AA15 AA43 BB01 CC05 CC08 CC09 DD02 DD12 DD32 EE02 EE09 EE13 FF18 GG02 GG15 GG19 GG22 GG28 HH11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeru Kurumaya 2-8-7 Nihonbashi-Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. (reference) 5E346 AA02 AA06 AA12 AA15 AA43 BB01 CC05 CC08 CC09 DD02 DD12 DD32 EE02 EE09 EE13 FF18 GG02 GG15 GG19 GG22 GG28 HH11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】有機繊維からなる長尺のシート状基材に順
次熱硬化性樹脂を含浸乾燥して前記熱硬化性樹脂の硬化
をBステージまで進めたプリプレグとし、所定寸法に裁
断した前記プリプレグを熱硬化性樹脂の融点以上の温度
で加熱することを特徴とするプリプレグの製造法。
1. A prepreg obtained by sequentially impregnating and drying a thermosetting resin into a long sheet-like base material made of an organic fiber and curing the thermosetting resin to a B stage, and cutting the prepreg into predetermined dimensions. Is heated at a temperature equal to or higher than the melting point of the thermosetting resin.
【請求項2】有機繊維からなる長尺のシート状基材がア
ラミド繊維不織布であり、熱硬化性樹脂の融点以上の温
度での加熱時間が2〜300秒である請求項1記載のプ
リプレグの製造法。
2. The prepreg according to claim 1, wherein the long sheet-like base material made of organic fibers is an aramid fiber nonwoven fabric, and the heating time at a temperature higher than the melting point of the thermosetting resin is 2 to 300 seconds. Manufacturing method.
【請求項3】アラミド繊維が、ポリ−p−フェニレンジ
フェニルエーテルテレフタルアミド繊維を主体とするも
のである請求項2記載のプリプレグの製造法。
3. The method for producing a prepreg according to claim 2, wherein the aramid fibers are mainly composed of poly-p-phenylenediphenyl ether terephthalamide fibers.
【請求項4】プリプレグの所定箇所にレーザ光を照射し
て電気接続用穴をあけ、この穴に導電性粉末と熱硬化性
樹脂を主体とした導電性ペーストを充填したプリプレグ
を準備し、プリント配線板上に前記導電性ペースト充填
プリプレグを介して金属箔を載置し加熱加圧成形により
一体化し、前記金属箔をエッチングして配線加工する工
程を有する多層プリント配線板の製造において、 前記プリプレグとして、請求項1〜3のいずれかに記載
の方法により製造されたプリプレグを用いることを特徴
とする多層プリント配線板の製造法。
4. A prepreg in which a predetermined portion of the prepreg is irradiated with a laser beam to form an electrical connection hole, and the hole is filled with a conductive paste mainly composed of a conductive powder and a thermosetting resin is prepared. A method for manufacturing a multilayer printed wiring board, comprising the steps of: placing a metal foil on the wiring board via the conductive paste-filled prepreg, integrating by heat and pressure molding, and etching and wiring the metal foil; A method for manufacturing a multilayer printed wiring board, comprising using a prepreg manufactured by the method according to claim 1.
JP10346332A 1998-12-07 1998-12-07 Manufacture of prepreg and manufacture of multilayer printed wiring board Abandoned JP2000174438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10346332A JP2000174438A (en) 1998-12-07 1998-12-07 Manufacture of prepreg and manufacture of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10346332A JP2000174438A (en) 1998-12-07 1998-12-07 Manufacture of prepreg and manufacture of multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JP2000174438A true JP2000174438A (en) 2000-06-23

Family

ID=18382702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10346332A Abandoned JP2000174438A (en) 1998-12-07 1998-12-07 Manufacture of prepreg and manufacture of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP2000174438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353633A (en) * 2001-05-25 2002-12-06 Shin Kobe Electric Mach Co Ltd Method for manufacturing multi-layer printed wiring board and multi-layer printed wiring board
WO2004103041A1 (en) * 2003-05-19 2004-11-25 Matsushita Electric Industrial Co., Ltd. Circuit formation substrate manufacturing method and circuit formation substrate material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147464A (en) * 1993-09-21 1995-06-06 Matsushita Electric Ind Co Ltd Circuit substrate connecting material and manufacture of multilayer circuit substrate using it
JPH09155863A (en) * 1995-12-08 1997-06-17 Shin Kobe Electric Mach Co Ltd Prepreg producing apparatus
JPH09324060A (en) * 1995-10-16 1997-12-16 Sumitomo Chem Co Ltd Prepreg, process for preparing the same, and substrate for printed circuit and laminate for printed circuit made therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147464A (en) * 1993-09-21 1995-06-06 Matsushita Electric Ind Co Ltd Circuit substrate connecting material and manufacture of multilayer circuit substrate using it
JPH09324060A (en) * 1995-10-16 1997-12-16 Sumitomo Chem Co Ltd Prepreg, process for preparing the same, and substrate for printed circuit and laminate for printed circuit made therefrom
JPH09155863A (en) * 1995-12-08 1997-06-17 Shin Kobe Electric Mach Co Ltd Prepreg producing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353633A (en) * 2001-05-25 2002-12-06 Shin Kobe Electric Mach Co Ltd Method for manufacturing multi-layer printed wiring board and multi-layer printed wiring board
WO2004103041A1 (en) * 2003-05-19 2004-11-25 Matsushita Electric Industrial Co., Ltd. Circuit formation substrate manufacturing method and circuit formation substrate material
US8069557B2 (en) 2003-05-19 2011-12-06 Panasonic Corporation Method of manufacturing circuit forming board

Similar Documents

Publication Publication Date Title
US6799369B2 (en) Printed circuit board and method for producing the same
US6673190B2 (en) Lasable bond-ply materials for high density printed wiring boards
US6108903A (en) Connecting member of a circuit substrate and method of manufacturing multilayer circuit substrates by using the same
JPH07147464A (en) Circuit substrate connecting material and manufacture of multilayer circuit substrate using it
US20040170795A1 (en) Lasable bond-ply materials for high density printed wiring boards
JP3138215B2 (en) Circuit board base material and prepreg and printed circuit board using the same
JP3869559B2 (en) Non-woven fabric for electrical insulation, prepreg and laminate
TW517504B (en) Circuit board and a method of manufacturing the same
JP2000174404A (en) Circuit-board connecting material, its manufacture, and manufacture of multilayer circuit board using the connecting material
EP1030543B1 (en) Non-woven fabric material and prepreg, and circuit board using the same
KR20020061616A (en) Nonwoven fabric for electrical insulation, prepreg and laminate
JP2000174438A (en) Manufacture of prepreg and manufacture of multilayer printed wiring board
JP2001031782A (en) Prepreg and laminate prepared by using the same
JP3004266B1 (en) Wiring board and method of manufacturing the same
JP3961252B2 (en) Non-woven fabric for electrical insulation, prepreg and laminate
JP2000252631A (en) Multilayer printed wiring board and its manufacture
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP2003037362A (en) Method of manufacturing multilayer printed wiring board
JPH09214139A (en) Manufacture of multilayer printed wiring board
JP2533689B2 (en) Method for manufacturing multilayer circuit board
JP2633287B2 (en) Manufacturing method of electric laminate
JPH11163527A (en) Manufacture of multilayer wiring board
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JP2001081214A (en) Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board
JPH11348036A (en) Manufacture of prepreg, and manufacture of laminate using the prepreg

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20041221