JP2001081214A - Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board - Google Patents

Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board

Info

Publication number
JP2001081214A
JP2001081214A JP26147799A JP26147799A JP2001081214A JP 2001081214 A JP2001081214 A JP 2001081214A JP 26147799 A JP26147799 A JP 26147799A JP 26147799 A JP26147799 A JP 26147799A JP 2001081214 A JP2001081214 A JP 2001081214A
Authority
JP
Japan
Prior art keywords
prepreg
epoxy resin
resin
nonwoven fabric
aramid fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26147799A
Other languages
Japanese (ja)
Inventor
Shigeru Kurumaya
茂 車谷
Koichi Hiraoka
宏一 平岡
Masayuki Noda
雅之 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP26147799A priority Critical patent/JP2001081214A/en
Publication of JP2001081214A publication Critical patent/JP2001081214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the adhesion between a nonwoven fabric prepreg made of aramid fibers and a laminate film attached thereto, to increase the prepreg compressibility and to inhibit warpage or twisting in a printed wiring board. SOLUTION: A resin composition for impregnating nonwoven fabric substrates which is prepared by binding aramid fibers together using a resin binder essentially comprises a bifunctional epoxy resin and a trifunctional epoxy resin as epoxy resins and a novolak phenol resin as a hardener. Furthermore, the composition contains a polyfunctional epoxy resin in addition to the epoxy resins which are the essential components. A prepreg is prepared by impregnating a nonwoven fabric substrate made of aramid fibers with this resin composition and drying it. An insulating layer is prepared by heat and pressure molding this prepreg layer. A metal clad laminated board is prepared by monolithically molding this prepreg layer and a metal foil placed on at least one side of the prepreg layer through heat and pressure molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アラミド繊維(芳
香族ポリアミド繊維)不織布基材に含浸保持させるエポ
キシ樹脂組成物に関する。また、本発明は、当該エポキ
シ樹脂組成物を用いたアラミド繊維不織布基材のプリプ
レグ、絶縁層ならびに金属箔張り積層板に関する。これ
らプリプレグ、絶縁層ならびに金属箔張り積層板は、プ
リント配線板の製造に用いられ、絶縁層を介するプリン
ト配線間の接続を、絶縁層に明けた非貫通穴(IVH:
Interstitial Via Hole)において実現した多層プリン
ト配線板を構成するのに適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for impregnating and holding an aramid fiber (aromatic polyamide fiber) nonwoven fabric substrate. The present invention also relates to a prepreg, an insulating layer, and a metal foil-clad laminate of an aramid fiber nonwoven fabric substrate using the epoxy resin composition. These prepregs, insulating layers, and metal foil-clad laminates are used in the manufacture of printed wiring boards, and a connection between printed wirings via an insulating layer is formed in a non-through hole (IVH:
This is suitable for forming a multilayer printed wiring board realized in Interstitial Via Hole).

【0002】[0002]

【従来の技術】近年、電子機器の軽薄短小化が強く求め
られるに伴って、電子機器を構成する電子部品及びプリ
ント配線板に対しても軽薄短小化の要求が強くなってい
る。この要求に応えるために、高密度実装技術の開発が
急がれている。実装部品の高密度化の代表例としては、
シリコンチップをフェイスダウン実装したCSPがあ
り、次世代技術として精力的に開発されている。一方、
高密度実装を実現する上で、プリント配線板の高密度化
も重要なポイントである。高密度プリント配線板として
は、ビルドアップ方式で製造した多層プリント配線板が
知られている。これは、ガラス繊維基材エポキシ樹脂基
板を絶縁層とするプリント配線板(又は多層プリント配
線板)を用い、次のようにして製造する。まず、前記プ
リント配線板上に絶縁層となる樹脂層を重ねて一体化
し、当該樹脂層にレーザ光もしくは紫外線照射により微
小な電気接続用穴をあける。そして、この電気接続用穴
に銅メッキを施し、樹脂層を介してその上下に位置して
いる配線間の接続を行なうものである。
2. Description of the Related Art In recent years, along with a strong demand for lighter and thinner electronic devices, there is a strong demand for electronic components and printed wiring boards that constitute electronic devices. To meet this demand, development of high-density mounting technology is urgent. As a typical example of high density of mounted parts,
There is a CSP in which a silicon chip is mounted face-down, and it is being vigorously developed as a next-generation technology. on the other hand,
To realize high-density packaging, it is also important to increase the density of printed wiring boards. As a high-density printed wiring board, a multilayer printed wiring board manufactured by a build-up method is known. This is manufactured as follows using a printed wiring board (or a multilayer printed wiring board) using a glass fiber base epoxy resin substrate as an insulating layer. First, a resin layer serving as an insulating layer is superposed and integrated on the printed wiring board, and minute electric connection holes are made in the resin layer by irradiating a laser beam or ultraviolet rays. Then, the electrical connection hole is plated with copper, and a connection is made between wirings located above and below the electrical connection hole via a resin layer.

【0003】さらに、上記ビルドアップ方式の技術を発
展させて、アラミド繊維不織布基材にエポキシ樹脂を含
浸保持させたプリプレグを絶縁層に用いる技術が注目さ
れている。この技術は、アラミド繊維不織布基材にエポ
キシ樹脂を含浸乾燥して得たプリプレグの表面にラミネ
ートフィルムを貼り付け、その後、所定箇所にレーザ光
を照射して電気接続用穴をあけ、この穴に銅粒子と液状
熱硬化性樹脂を主体としたペースト状導電材料を充填す
る。そして、ラミネートフィルムを剥がす。このように
して準備したプリプレグを加熱加圧成形し構成した絶縁
層の所定位置にはペースト状導電材料が固化してできた
導体が配置されることになり、この導体によって、絶縁
層を介してその上下に位置しているプリント配線間の接
続をする(特開平5−175650号公報、特開平7−
176846号公報等)。この技術によれば、絶縁層を
介してその上下に位置している配線間の接続を、完全な
IVHによって実現した多層プリント配線板を製造する
ことができ、先に述べたビルドアップ方式による多層プ
リント配線板より一層高密度化が可能である。なぜな
ら、ペースト状導電材料が固化してできた導体の直上に
さらにIVHを形成できるからである。
Further, a technique of using a prepreg in which an aramid fiber non-woven fabric base material is impregnated with an epoxy resin as an insulating layer by developing the above build-up technique has attracted attention. This technology involves laminating a prepreg obtained by impregnating and drying an aramid fiber non-woven fabric base material with an epoxy resin, and then irradiating a predetermined portion with a laser beam to form a hole for electrical connection. A paste-like conductive material mainly composed of copper particles and a liquid thermosetting resin is filled. Then, the laminate film is peeled off. A conductor formed by solidifying the paste-like conductive material is disposed at a predetermined position of the insulating layer formed by heating and pressing the prepreg prepared in this manner, and the conductor is interposed through the insulating layer. A connection is made between the printed wirings located above and below the printed wiring (Japanese Patent Application Laid-Open No. Hei 5-175650, Japanese Patent Application Laid-Open
176846, etc.). According to this technology, it is possible to manufacture a multilayer printed wiring board in which connection between wirings located above and below the insulating layer is realized by complete IVH, and the multilayer by the build-up method described above. Higher density than printed wiring boards is possible. This is because the IVH can be further formed directly on the conductor formed by solidification of the paste-like conductive material.

【0004】[0004]

【発明が解決しようとする課題】ビルドアップ方式を発
展させた上記技術においては、アラミド繊維不織布基材
プリプレグにラミネートフィルムを貼り付けたときの密
着性が悪いと、ペースト状導電材料が、その充填の際
に、プリプレグとラミネートフィルムの界面に滲んでし
まい、隣接するIVH間でショートを起こす等の不具合
の心配がある。また、プリプレグの厚みとその加熱加圧
成形後の厚みの比率関係、つまりIVH内のペースト状
導電材料の圧縮率が、ペースト状導電材料が固化してで
きた導体による絶縁層間の導通の信頼性に大きく影響を
与える。従来、プリプレグ中のエポキシ樹脂の硬化剤に
は、ジシアンジアミドのようなアミン系硬化剤を使用し
ているが、これは硬化速度が速く、プリプレグの穴に充
填したペースト状導電材料が十分に圧縮されないうち
に、プリプレグ中のエポキシ樹脂が硬化してしまい、絶
縁層を介するプリント配線間の導通接続が十分に確保で
きないおそれがあった。さらに、アラミド繊維不織布基
材を使用すると、プリント配線板にそりやねじれが発生
し易い。そのため、絶縁層或いは積層板としてのガラス
転移温度は150℃以上が要求される。
In the above-mentioned technology developed from the build-up method, if the adhesion of the laminated film to the aramid fiber non-woven fabric base material prepreg is poor, the paste-like conductive material is filled with the paste. In such a case, there is a concern that the ink may bleed at the interface between the prepreg and the laminate film and cause a short circuit between adjacent IVHs. The relationship between the thickness of the prepreg and the thickness of the prepreg after heat and pressure molding, that is, the compressibility of the paste-like conductive material in the IVH, depends on the reliability of conduction between the insulating layers due to the conductor formed by solidification of the paste-like conductive material. Have a significant effect. Conventionally, an amine-based curing agent such as dicyandiamide is used as a curing agent for an epoxy resin in a prepreg, but the curing speed is high, and the paste-like conductive material filled in the holes of the prepreg is not sufficiently compressed. Meanwhile, the epoxy resin in the prepreg was cured, and there was a possibility that the conductive connection between the printed wirings via the insulating layer could not be sufficiently secured. Furthermore, when an aramid fiber nonwoven fabric substrate is used, the printed wiring board is likely to be warped or twisted. Therefore, the glass transition temperature of the insulating layer or the laminate is required to be 150 ° C. or higher.

【0005】本発明が解決しようとする第一の課題は、
アラミド繊維不織布基材プリプレグとこれに貼り付けた
ラミネートフィルムとの密着性を高めることである。第
二の課題は、ペースト状導電材料の硬化速度とプリプレ
グの硬化速度を一致させ、プリプレグとペースト状導電
材料の圧縮を十分確保することである。さらに、第三の
課題は、アラミド繊維不織布基材にエポキシ樹脂を含浸
保持させた絶縁層ないしはプリント配線板のそり・ねじ
れを小さくすることである。
[0005] The first problem to be solved by the present invention is:
An object of the present invention is to enhance the adhesiveness between an aramid fiber nonwoven fabric base material prepreg and a laminate film attached thereto. A second problem is to make the curing speed of the paste-like conductive material equal to the curing speed of the prepreg, and sufficiently secure the compression of the prepreg and the paste-like conductive material. Further, a third object is to reduce the warp and twist of an insulating layer or a printed wiring board in which an aramid fiber nonwoven fabric base material is impregnated and held with an epoxy resin.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明は、アラミド繊維不織布基材に含浸保持させる
エポキシ樹脂として、次のような樹脂組成を採用する。
すなわち、必須成分として、エポキシ樹脂は二官能エポ
キシ樹脂と三官能エポキシ樹脂を含有し、硬化剤はノボ
ラック型フェノール樹脂を含有した樹脂組成とする。
In order to solve the above-mentioned problems, the present invention employs the following resin composition as an epoxy resin to be impregnated and held in an aramid fiber nonwoven fabric substrate.
That is, the epoxy resin contains a bifunctional epoxy resin and a trifunctional epoxy resin as essential components, and the curing agent has a resin composition containing a novolak-type phenol resin.

【0007】上記のように、三官能以上のエポキシ樹脂
とノボラック型フェノール樹脂の併用系において、二官
能エポキシ樹脂を含有したエポキシ樹脂組成物とするこ
とにより、これを含浸保持させたアラミド繊維不織布基
材プリプレグの表面が平滑になり、上記第一の課題を解
決することができる。このとき、三官能エポキシ樹脂を
必須成分とし、ノボラック型フェノール樹脂を硬化剤と
して使用することにより、プリプレグ中のエポキシ樹脂
の硬化速度が遅くなる。プリプレグの穴に充填したペー
スト状導電材料の樹脂成分は、プリプレグ中のエポキシ
樹脂がゆっくり硬化する間にプリプレグ内に滲み出す。
その結果、ペースト状導電材料の圧縮が十分になされ、
第二の課題を解決することができる。第二の課題を解決
により、ペースト状導電材料中の導電性粒子(銅粒子)
同士の接触が確保されるので、形成された導体の導通抵
抗が低くなる。さらに、三官能エポキシ樹脂を必須成分
として含有することにより、硬化したエポキシ樹脂は架
橋密度が高くなり、ガラス転移温度が150℃以上にな
る。アラミド繊維不織布基材の絶縁層ないしはプリント
配線板の弾性率が高くなり、そり・ねじれを抑制して第
三の課題を解決することができる。
As described above, in a combined system of a trifunctional or higher functional epoxy resin and a novolak type phenol resin, an epoxy resin composition containing a bifunctional epoxy resin is used to impregnate and retain an aramid fiber nonwoven fabric. The surface of the material prepreg becomes smooth, and the first problem can be solved. At this time, by using a trifunctional epoxy resin as an essential component and using a novolak type phenol resin as a curing agent, the curing speed of the epoxy resin in the prepreg is reduced. The resin component of the paste-like conductive material filled in the holes of the prepreg oozes into the prepreg while the epoxy resin in the prepreg slowly cures.
As a result, the paste-like conductive material is sufficiently compressed,
The second problem can be solved. By solving the second problem, conductive particles (copper particles) in paste-like conductive material
Since the contact between them is ensured, the conduction resistance of the formed conductor is reduced. Further, by containing the trifunctional epoxy resin as an essential component, the cured epoxy resin has a high crosslinking density and a glass transition temperature of 150 ° C. or higher. The elasticity of the insulating layer or the printed wiring board of the aramid fiber nonwoven fabric base material is increased, and the third problem can be solved by suppressing warpage and twisting.

【0008】[0008]

【発明の実施の形態】本発明に係るエポキシ樹脂組成物
は、必須成分として、二官能エポキシ樹脂、三官能エポ
キシ樹脂、硬化剤としてノボラック型フェノール樹脂を
含有し、必要に応じ、これら必須成分に加えて多官能エ
ポキシ樹脂を含有させてもよい。三官能エポキシ樹脂の
一部を多官能エポキシ樹脂に置き換えて配合することは
コスト上有利であり、必要な特性もほぼ維持することが
できる。しかし、多官能エポキシ樹脂の配合を多くし過
ぎると、この樹脂組成物をアラミド繊維不織布に含浸乾
燥したプリプレグの使用可能保存期間が短くなるし、そ
り・ねじれも大きくなる。多官能エポキシ樹脂の配合
は、三官能エポキシ樹脂と多官能エポキシ樹脂の合計重
量100に対して、多官能エポキシ樹脂が70ないし7
5までが望ましい。そして、そり・ねじれを抑制するた
めに、硬化したエポキシ樹脂のガラス転移温度が150
℃以上になる配合とするのがよい。ノボラック型フェノ
ール樹脂は、フェノール、クレゾール、ビスフェノール
A等のフェノール類を原料とするものである。硬化促進
剤は、一般に知られているものを使用すればよい。ま
た、必要に応じて、タルク、水酸化アルミニウム、微粉
末シリカ(アエロジル)等、無機充填材を配合してもよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin composition according to the present invention contains, as essential components, a bifunctional epoxy resin, a trifunctional epoxy resin, and a novolac-type phenol resin as a curing agent. In addition, a polyfunctional epoxy resin may be contained. Substituting a part of the trifunctional epoxy resin with the polyfunctional epoxy resin and blending it is advantageous in terms of cost, and can substantially maintain necessary characteristics. However, if the amount of the polyfunctional epoxy resin is too large, the usable storage period of the prepreg obtained by impregnating the resin composition with an aramid fiber non-woven fabric and drying is shortened, and the warpage and twist are increased. The compounding of the polyfunctional epoxy resin is such that the total weight of the trifunctional epoxy resin and the polyfunctional epoxy resin is 100,
Up to 5 is desirable. In order to suppress warping and twisting, the cured epoxy resin has a glass transition temperature of 150.
It is good to make it the composition which becomes higher than ° C. The novolak-type phenolic resin is made from phenols such as phenol, cresol and bisphenol A as raw materials. A generally known curing accelerator may be used. Further, if necessary, an inorganic filler such as talc, aluminum hydroxide, fine powder silica (Aerosil) may be blended.

【0009】上記エポキシ樹脂組成物をアラミド繊維不
織布に含浸乾燥してプリプレグとする。アラミド繊維不
織布は、パラ系アラミド繊維を主成分とする繊維で構成
したものが好ましい。不織布を構成するために、繊維同
士を結着する樹脂バインダには、エポキシ樹脂のほか、
メタ系アラミド繊維チョップやメタ系アラミドフィルム
のフィブリッド、パラ系アラミド繊維パルプを選択した
り、これらを併用することができる。前記メタ系アラミ
ド繊維チョップ以下に記載した樹脂バインダは、不織布
を抄造するときに混抄して用いる。メタ系アラミド繊維
チョップは不織布のカレンダ処理工程の熱で軟化ないし
溶融してバインダの機能を発揮し、メタ系アラミドフィ
ルムのフィブリッドやパラ系アラミド繊維パルプはそれ
自体に絡み合う性質がありバインダの機能を発揮する。
The epoxy resin composition is impregnated into a nonwoven fabric of aramid fiber and dried to obtain a prepreg. The aramid fiber non-woven fabric is preferably composed of fibers mainly composed of para-aramid fibers. In order to compose a non-woven fabric, the resin binder that binds the fibers includes epoxy resin,
Meta-aramid fiber chops, fibrids of meta-aramid film, and para-aramid fiber pulp can be selected or used in combination. The resin binder described below for the above-mentioned meta-aramid fiber chop is mixed and used when forming a nonwoven fabric. Meta-aramid fiber chops are softened or melted by the heat of the non-woven fabric calendering process and exhibit the function of a binder.The meta-aramid film fibrid and para-aramid fiber pulp have the property of being entangled with the binder itself and have the function of the binder. Demonstrate.

【0010】金属箔張り積層板は、上記プリプレグの層
少なくとも一方の面に金属箔を載置して加熱加圧成形に
より一体化して構成する。また、上記プリプレグの層を
加熱加圧成形した絶縁層を基板とするプリント配線板
は、例えば、次のような工程で製造する。まず、アラミ
ド繊維不織布に上記エポキシ樹脂を含浸乾燥して調製し
たプリプレグ両面にポリエステルフィルムをラミネート
してから、所定位置にレーザ光の照射により貫通穴を明
け、当該穴にペースト状導電材料を充填する。ポリエス
テルフィルムを剥がした後、このプリプレグの両側に金
属箔(銅箔やニッケル箔)を載置し加熱加圧成形により
両面金属箔張り積層板を製造する。このとき、前記加熱
加圧によりペースト状導電材料の樹脂成分を溶融させ圧
縮すると共に硬化させ導体とする。この導体は、前記プ
リプレグが硬化してなる絶縁層を貫通する導体となる。
前記両面金属箔張り積層板の金属箔をエッチング加工し
て所定のプリント配線を形成し、絶縁層を介して配置さ
れているプリント配線間を前記導体により接続した両面
プリント配線板とする。多層プリント配線板の製造は、
上記両面プリント配線板を用いて行なう。或いは、ガラ
ス織布基材エポキシ樹脂プリント配線板(両面又は多層
プリント配線板)等を用いて行なう。これらの両側に、
ペースト状導電材料を充填した上記と同様のプリプレグ
と金属箔を、内側から外側へこの順に載置し加熱加圧成
形により一体化する。そして、両表面の金属箔をエッチ
ング加工して所定のプリント配線を形成する。このよう
にして、プリント配線の層数を増やしていく。
[0010] The metal foil-clad laminate is formed by mounting a metal foil on at least one surface of the prepreg layer and integrally forming it by heating and pressing. In addition, a printed wiring board having an insulating layer formed by heating and pressing the prepreg layer as a substrate is manufactured by, for example, the following process. First, after laminating a polyester film on both sides of a prepreg prepared by impregnating and drying the above-mentioned epoxy resin into an aramid fiber nonwoven fabric, a through hole is formed by irradiating a predetermined position with laser light, and the hole is filled with a paste-like conductive material. . After peeling off the polyester film, a metal foil (copper foil or nickel foil) is placed on both sides of this prepreg, and a double-sided metal foil-clad laminate is produced by heat-press molding. At this time, the resin component of the paste-like conductive material is melted, compressed and hardened by the heating and pressing to form a conductor. This conductor is a conductor that penetrates the insulating layer formed by curing the prepreg.
A predetermined printed wiring is formed by etching the metal foil of the double-sided metal foil-clad laminate, and the printed wiring arranged via an insulating layer is connected to the double-sided printed wiring board by the conductor. The manufacture of multilayer printed wiring boards
This is performed using the double-sided printed wiring board. Alternatively, it is performed using a glass woven fabric base epoxy resin printed wiring board (double-sided or multilayer printed wiring board) or the like. On each of these sides,
A prepreg and a metal foil similar to the above, which are filled with the paste-like conductive material, are placed in this order from the inside to the outside, and integrated by heating and pressing. Then, a predetermined printed wiring is formed by etching the metal foil on both surfaces. In this way, the number of printed wiring layers is increased.

【0011】[0011]

【実施例】以下、本発明に係るエポキシ樹脂組成物と、
当該エポキシ樹脂組成物をアラミド繊維不織布に含浸乾
燥したプリプレグと、このプリプレグを絶縁層とする銅
張り積層板について、実施例と共に従来例、比較例を説
明する。
EXAMPLES Hereinafter, an epoxy resin composition according to the present invention,
A description will be given of a conventional example and a comparative example, together with an example, of a prepreg obtained by impregnating and drying an aramid fiber nonwoven fabric with the epoxy resin composition and a copper-clad laminate using the prepreg as an insulating layer.

【0012】従来例1 (プリプレグの製造)アラミド繊維不織布基材(厚さ1
00μm,単位重量72g/m2)に保持させるエポキ
シ樹脂組成物として、以下の樹脂ワニス(A)を調製し
た。二官能エポキシ樹脂(テトラブロモビスフェノール
A型エポキシ樹脂)83重量部、多官能エポキシ樹脂
(クレゾールノボラック型エポキシ樹脂,東都化成製
「YDCN704」)14重量部、ジシアンジアミド3
重量部、触媒として2−エチル−4−メチルイミダゾー
ル0.2重量部を配合し、固形分65重量%の樹脂ワニ
ス(A)を調製した。アラミド繊維不織布に樹脂ワニス
(A)を含浸乾燥し、樹脂含有量52重量%のプリプレ
グ(A)を得た。 (銅張り積層板の製造)上記プリプレグ(A)1枚の両
面に銅箔(18μm厚)を載置し、温度175℃、圧力
50kgf/cm2で加熱加圧成形し銅張り積層板を得た。
Conventional Example 1 (Preparation of prepreg) Aramid fiber nonwoven fabric base material (thickness 1
The following resin varnish (A) was prepared as an epoxy resin composition to be kept at 00 μm and a unit weight of 72 g / m 2 ). 83 parts by weight of a bifunctional epoxy resin (tetrabromobisphenol A type epoxy resin), 14 parts by weight of a polyfunctional epoxy resin (cresol novolak type epoxy resin, “YDCN704” manufactured by Toto Kasei), dicyandiamide 3
By weight, 0.2 parts by weight of 2-ethyl-4-methylimidazole as a catalyst was blended to prepare a resin varnish (A) having a solid content of 65% by weight. The aramid fiber nonwoven fabric was impregnated with a resin varnish (A) and dried to obtain a prepreg (A) having a resin content of 52% by weight. (Manufacture of copper-clad laminate) A copper foil (18 μm thick) was placed on both sides of one prepreg (A), and heated and pressed at a temperature of 175 ° C and a pressure of 50 kgf / cm 2 to obtain a copper-clad laminate. Was.

【0013】実施例1 二官能エポキシ樹脂(ビスフェノールA型エポキシ樹
脂,油化シェル製「EP−828」)10重量部、三官
能エポキシ樹脂(三井化学製「VG3101」)40重
量部、ノボラック型フェノール樹脂20重量部、テトラ
ブロモビスフェノールA30重量部、触媒として2-エ
チル-4-メチルイミダゾール0.2重量部を配合し、固
形分65重量%の樹脂ワニス(B)を調製した。樹脂ワ
ニス(B)を使用し、そのほかは従来例1と同様にプリ
プレグ及び銅張り積層板を得た。
Example 1 10 parts by weight of a bifunctional epoxy resin (bisphenol A type epoxy resin, "EP-828" manufactured by Yuka Shell), 40 parts by weight of a trifunctional epoxy resin ("VG3101" manufactured by Mitsui Chemicals), novolak type phenol 20 parts by weight of a resin, 30 parts by weight of tetrabromobisphenol A, and 0.2 part by weight of 2-ethyl-4-methylimidazole as a catalyst were blended to prepare a resin varnish (B) having a solid content of 65% by weight. A prepreg and a copper-clad laminate were obtained in the same manner as in Conventional Example 1 except that the resin varnish (B) was used.

【0014】実施例2 二官能エポキシ樹脂(ビスフェノールA型エポキシ樹
脂,油化シェル製「EP−828」)10重量部、三官
能エポキシ樹脂(三井化学製「VG3101」)30重
量部、多官能エポキシ樹脂(クレゾールノボラック型エ
ポキシ樹脂,東都化成製「YDCN704」)10重量
部、ノボラック型フェノール樹脂20重量部、テトラブ
ロモビスフェノールA30重量部、触媒として2-エチ
ル-4-メチルイミダゾール0.2重量部を配合し、固形
分65重量%の樹脂ワニス(C)を調製した。樹脂ワニ
ス(C)を使用し、そのほかは従来例1と同様にプリプ
レグ及び銅張り積層板を得た。
Example 2 10 parts by weight of a bifunctional epoxy resin (bisphenol A type epoxy resin, "EP-828" manufactured by Yuka Shell), 30 parts by weight of a trifunctional epoxy resin ("VG3101" manufactured by Mitsui Chemicals), a polyfunctional epoxy resin 10 parts by weight of a resin (cresol novolak type epoxy resin, "YDCN704" manufactured by Toto Kasei), 20 parts by weight of novolak type phenol resin, 30 parts by weight of tetrabromobisphenol A, and 0.2 parts by weight of 2-ethyl-4-methylimidazole as a catalyst. It was blended to prepare a resin varnish (C) having a solid content of 65% by weight. A prepreg and a copper-clad laminate were obtained in the same manner as in Conventional Example 1 except for using resin varnish (C).

【0015】比較例1 三官能エポキシ樹脂(三井化学製,「VG3101」)
50重量部、ノボラック型フェノール樹脂20重量部、
テトラブロモビスフェノールA30重量部、触媒として
2-エチル-4-メチルイミダゾール0.2重量部を配合
し、固形分65重量%の樹脂ワニス(D)を調製した。
樹脂ワニス(D)を使用し、そのほかは従来例1と同様
にプリプレグ及び銅張り積層板を得た。
Comparative Example 1 Trifunctional epoxy resin (manufactured by Mitsui Chemicals, "VG3101")
50 parts by weight, 20 parts by weight of novolak type phenol resin,
30 parts by weight of tetrabromobisphenol A and 0.2 parts by weight of 2-ethyl-4-methylimidazole as a catalyst were blended to prepare a resin varnish (D) having a solid content of 65% by weight.
A prepreg and a copper-clad laminate were obtained in the same manner as in Conventional Example 1 except for using resin varnish (D).

【0016】比較例2 二官能エポキシ樹脂(ビスフェノールA型エポキシ樹
脂,油化シェル製「EP−828」)10重量部、多官
能エポキシ樹脂(クレゾールノボラック型エポキシ樹
脂,東都化成製「YDCN704」)40重量部、ノボ
ラック型フェノール樹脂20重量部、テトラブロモビス
フェノールA30重量部、触媒として2-エチル-4-メ
チルイミダゾール0.2重量部を配合し、固形分65重
量%の樹脂ワニス(E)を調製した。樹脂ワニス(E)
を使用し、そのほかは従来例1と同様にプリプレグ及び
銅張り積層板を得た。
Comparative Example 2 10 parts by weight of a bifunctional epoxy resin (bisphenol A type epoxy resin, "EP-828" manufactured by Yuka Shell) and 40 polyfunctional epoxy resins (cresol novolak type epoxy resin, "YDCN704" manufactured by Toto Kasei) Parts by weight, 20 parts by weight of novolak type phenol resin, 30 parts by weight of tetrabromobisphenol A, and 0.2 parts by weight of 2-ethyl-4-methylimidazole as a catalyst to prepare a resin varnish (E) having a solid content of 65% by weight. did. Resin varnish (E)
Prepreg and a copper-clad laminate were obtained in the same manner as in Conventional Example 1.

【0017】上記各例の樹脂組成(樹脂固形分100重
量部中の割合)を表1に示す。また、プリプレグの特
性、積層板の特性を評価した結果を表1に併せて示す。
評価方法は次のとおりである。 プリプレグとラミネートフィルムの密着性:プリプレグ
にポリエステルフィルムを重ね、110℃,線圧1kgf
/cmでラミネート。 ○:ラミネート界面に気泡なし △:ラミネート界面に若干気泡あり ×:ラミネート界面に多数気泡あり プリプレグの圧縮率:加熱加圧(175℃,50kgf/c
m2)前後の厚みから次の式にて算出。 圧縮率(%)=(加熱加圧前厚み−加熱加圧後厚み)/加熱
加圧前厚み×100 プリプレグの使用可能保存期間(ライフ):40℃のオ
ーブン中に放置したプリプレグのゲルタイムを測定し、
ゲルタイムが初期値の50%となる放置日数をライフと
する。 絶縁層ガラス転移温度(Tg):熱機械分析装置(TM
A)を使用して測定。 プリント配線板そり:340mm×510mmの試験片をオ
ーブンで230℃−60分間熱処理後、試験片を平らな
面において、その四隅の浮き上がり量の最大値を測定。
Table 1 shows the resin composition (ratio in 100 parts by weight of resin solid content) of each of the above examples. Table 1 also shows the results of evaluating the properties of the prepreg and the properties of the laminate.
The evaluation method is as follows. Adhesion between prepreg and laminated film: polyester film on prepreg, 110 ° C, linear pressure 1kgf
/ Cm laminated. :: No bubbles at the interface of the laminate △: Some bubbles at the interface of the laminate ×: Many bubbles at the interface of the laminate Compressibility of prepreg: Heat and pressure (175 ° C, 50 kgf / c)
m 2 ) Calculated from the thickness before and after using the following formula. Compressibility (%) = (Thickness before heating / pressing-thickness after heating / pressing) / thickness before heating / pressing × 100 Usable storage period (life) of prepreg: Measure gel time of prepreg left in oven at 40 ° C. And
The life is defined as the number of days that the gel time becomes 50% of the initial value. Insulating layer glass transition temperature (Tg): Thermomechanical analyzer (TM
Measured using A). Printed circuit board warpage: A test piece of 340 mm × 510 mm was heat-treated in an oven at 230 ° C. for 60 minutes, and the maximum value of the lift of the four corners of the test piece on a flat surface was measured.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明らかなように、三官能以上のエ
ポキシ樹脂と硬化剤としてノボラック型フェノール樹脂
を併用するとき、二官能エポキシ樹脂の配合により、ラ
ミネートフィルムのプリプレグへの密着性が良好とな
る。このとき、三官能エポキシ樹脂を必須成分とするこ
とにより、初めてプリプレグの圧縮率を大きくし、か
つ、プリプレグのライフも長くすることができる。そし
て、三官能エポキシ樹脂の配合が、プリント配線板のそ
りをより小さくしている。
As is clear from Table 1, when a novolak type phenol resin is used in combination with a trifunctional or higher epoxy resin and a curing agent, the adhesion of the laminated film to the prepreg is improved by blending the bifunctional epoxy resin. . At this time, by using a trifunctional epoxy resin as an essential component, the compression ratio of the prepreg can be increased and the life of the prepreg can be prolonged for the first time. And the combination of the trifunctional epoxy resin makes the warpage of the printed wiring board smaller.

【0020】[0020]

【発明の効果】上述のように、本発明に係るエポキシ樹
脂組成物は、アラミド繊維不織布基材に含浸保持させ
て、プリプレグ、絶縁層、金属箔張り積層板を構成する
ことにより、 (1)ラミネートフィルムのプリプレグへの密着性が良
好となる。 (2)プリプレグの圧縮率が大きくなる。 (3)プリプレグのライフが長くなる。 (4)プリント配線板のそりがより小さくなる。 という特有の効果を発揮する。
As described above, the epoxy resin composition according to the present invention is impregnated and held in an aramid fiber nonwoven fabric substrate to form a prepreg, an insulating layer, and a metal foil-clad laminate. Adhesion of the laminate film to the prepreg is improved. (2) The compression ratio of the prepreg increases. (3) The life of the prepreg is prolonged. (4) The warpage of the printed wiring board becomes smaller. It has a unique effect.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F072 AA02 AA07 AB06 AB29 AD15 AD23 AE01 AG03 AH21 AK02 AK05 AK14 AL13 4J036 AD08 AF08 DB07 DC31 DC41 FA03 FA05 FB07 FB13 JA07 JA08 JA11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F072 AA02 AA07 AB06 AB29 AD15 AD23 AE01 AG03 AH21 AK02 AK05 AK14 AL13 4J036 AD08 AF08 DB07 DC31 DC41 FA03 FA05 FB07 FB13 JA07 JA08 JA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】アラミド繊維同士を樹脂バインダで結着し
てなる不織布基材に含浸保持させるエポキシ樹脂組成物
であって、 必須成分として、エポキシ樹脂は二官能エポキシ樹脂と
三官能エポキシ樹脂を含有し、硬化剤はノボラック型フ
ェノール樹脂を含有することを特徴とするアラミド繊維
不織布含浸用の樹脂組成物。
An epoxy resin composition for impregnating and holding a non-woven fabric substrate formed by binding aramid fibers together with a resin binder, wherein the epoxy resin contains a bifunctional epoxy resin and a trifunctional epoxy resin as essential components. A resin composition for impregnating an aramid fiber nonwoven fabric, wherein the curing agent contains a novolak type phenol resin.
【請求項2】必須成分のエポキシ樹脂に加えて多官能エ
ポキシ樹脂を含有する請求項1記載のアラミド繊維不織
布含浸用の樹脂組成物。
2. The resin composition for impregnating an aramid fiber nonwoven fabric according to claim 1, further comprising a polyfunctional epoxy resin in addition to the epoxy resin as an essential component.
【請求項3】アラミド繊維不織布基材に請求項1又は2
記載の樹脂組成物を含浸乾燥してなるプリプレグ。
3. The method according to claim 1, wherein the aramid fiber nonwoven fabric base material is used.
A prepreg obtained by impregnating and drying the resin composition described above.
【請求項4】請求項3記載のプリプレグの層を加熱加圧
成形してなる絶縁層。
4. An insulating layer formed by heating and pressing the prepreg layer according to claim 3.
【請求項5】請求項3記載のプリプレグの層とその少な
くとも一方の側に載置した金属箔を加熱加圧成形により
一体化してなる金属箔張り積層板。
5. A metal foil-clad laminate obtained by integrating a prepreg layer according to claim 3 and a metal foil placed on at least one side thereof by heating and pressing.
JP26147799A 1999-09-16 1999-09-16 Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board Pending JP2001081214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26147799A JP2001081214A (en) 1999-09-16 1999-09-16 Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26147799A JP2001081214A (en) 1999-09-16 1999-09-16 Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board

Publications (1)

Publication Number Publication Date
JP2001081214A true JP2001081214A (en) 2001-03-27

Family

ID=17362456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26147799A Pending JP2001081214A (en) 1999-09-16 1999-09-16 Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board

Country Status (1)

Country Link
JP (1) JP2001081214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126133A (en) * 2010-12-14 2012-07-05 Shinyoung Co Ltd Multiple bonding material
WO2019203291A1 (en) * 2018-04-20 2019-10-24 三菱瓦斯化学株式会社 Thermosetting composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126133A (en) * 2010-12-14 2012-07-05 Shinyoung Co Ltd Multiple bonding material
WO2019203291A1 (en) * 2018-04-20 2019-10-24 三菱瓦斯化学株式会社 Thermosetting composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JPWO2019203291A1 (en) * 2018-04-20 2021-05-20 三菱瓦斯化学株式会社 Thermosetting compositions, prepregs, laminates, metal foil-clad laminates, printed wiring boards and multilayer printed wiring boards
JP7274105B2 (en) 2018-04-20 2023-05-16 三菱瓦斯化学株式会社 Thermosetting composition, prepreg, laminate, metal foil clad laminate, printed wiring board and multilayer printed wiring board

Similar Documents

Publication Publication Date Title
KR20080009157A (en) Process for producing prepreg with carrier, prepreg with carrier, process for producing thin-type double sided board, thin-type double sided board, and process for producing multilayered printed wiring board
JP3119577B2 (en) Laminated board
JP2003246849A (en) Epoxy resin composition, and prepreg, laminate board and printed wiring board using the same
JP4200250B2 (en) Epoxy resin composition, prepreg, metal foil with resin and laminate
JP4468080B2 (en) Conductive paste composition for multilayer wiring board
JP2692508B2 (en) Manufacturing method of laminated board
JP2001081214A (en) Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board
JP2003342399A (en) Prepreg and laminated plate having inner layer circuit obtained by using this prepreg
JP3818208B2 (en) Prepreg, laminated board and printed wiring board
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP3343443B2 (en) Resin composition and prepreg
JP3077491B2 (en) Manufacturing method of metal-foil-clad laminate and metal foil used therefor
JP2935329B2 (en) Manufacturing method of metal foil clad laminate
JP4005384B2 (en) Epoxy resin composition for impregnating organic fiber substrate and prepreg, laminate and printed wiring board using the same
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JP2002060469A (en) Epoxy resin composition, prepreg using the same, metal- clad laminate, and printed wiring board
JP3823649B2 (en) Prepreg, laminated board and printed wiring board using amide group-containing organic fiber substrate
JP2000239415A (en) Production of electrical insulation prepreg, prepreg and printed-wiring board
JPH06270337A (en) Highly heat-resistant prepreg
JPH05105778A (en) Production of laminated board
JP2001351437A (en) Manufacturing method of prepreg for electric insulation and prepreg
JP2633286B2 (en) Manufacturing method of electric laminate
JPH10190174A (en) Printed wiring board
JPH115276A (en) Laminated plate
JP2000015746A (en) Copper-clad laminate and manufacture thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810