JPH0293309A - Thickness measuring apparatus - Google Patents

Thickness measuring apparatus

Info

Publication number
JPH0293309A
JPH0293309A JP24622088A JP24622088A JPH0293309A JP H0293309 A JPH0293309 A JP H0293309A JP 24622088 A JP24622088 A JP 24622088A JP 24622088 A JP24622088 A JP 24622088A JP H0293309 A JPH0293309 A JP H0293309A
Authority
JP
Japan
Prior art keywords
error
measured
thickness
distance sensor
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24622088A
Other languages
Japanese (ja)
Inventor
Shinkichi Yamada
信吉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24622088A priority Critical patent/JPH0293309A/en
Publication of JPH0293309A publication Critical patent/JPH0293309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a thickness measuring apparatus which can highly accurately measure the distribution of thickness of a test specimen by preliminarily correcting a linearity error with the use of a correcting tool having the same reflection characteristic as said test specimen and having steps each at a predetermined height. CONSTITUTION:A correcting tool 24 is placed on a reference surface 22, and a pulse motor 19 is driven to move a distance sensor 18 to a point A, i.e., where the measuring position i=0. The distance from the original to the correcting tool 24 is input to a controlling computer 20 as an analog amount, and an original error DELTAy is obtained by an original error calculating unit 14. Then, the distance sensor 18 is moved to a point B, when an inclination error alpha1 is obtained by an inclination error calculating unit 15. Next, the sensor is moved to a position C to obtain a linearity error factor beta. After the correcting tool 24 is removed, test specimen is placed on the reference surface 22, and the distance sensor 18 is sequentially moved to the measuring position where i=0-n. By correcting the actually-measured value at respective measuring positions with the errors DELTAy, alpha1 and beta, the thickness of the test specimen can be measured with high accuracy.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば光電式変位計等からなる距11t−
ンサを用いて被測定物体の厚さ分布を高精度に測定する
厚み測定装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to a distance 11t-
The present invention relates to a thickness measuring device that uses a sensor to measure the thickness distribution of an object with high precision.

(従来の技術) 一般に、物体の厚さを測定するには、三角側聞法の原理
に基づき、半導体レーザ等の光ビームを物体に照射し、
その反射光を光位置検出素子で受光して物体までの距離
を測定する光電式変位計からなる距離センサを使用した
方式が採用されている。
(Prior art) Generally, in order to measure the thickness of an object, a light beam such as a semiconductor laser is irradiated onto the object based on the principle of triangulation.
A method is adopted that uses a distance sensor consisting of a photoelectric displacement meter that measures the distance to the object by receiving the reflected light with an optical position detection element.

そして、このような距離センυを用いて被測定物体の厚
さ分布を測定する場合は、測定基準面上に被測定物体を
置き、測定基準面に対して距離センナを平行移動させ、
各移動位置毎に距離センサの原点から被測定物体表面ま
での距離を測定し、これを距離゛センサの原点と測定規
準面間の原点距離から差引くことにより、その厚さ分布
を測定するようにしている。
When measuring the thickness distribution of an object to be measured using such a distance sensor υ, place the object to be measured on the measurement reference plane, move the distance sensor parallel to the measurement reference plane,
The thickness distribution is measured by measuring the distance from the origin of the distance sensor to the surface of the object to be measured for each moving position, and subtracting this from the origin distance between the origin of the distance sensor and the measurement reference plane. I have to.

第6図は、このような厚み測定装置の従来例を示してい
る。同図中、10は制御用計算機、11〜13は同計算
1110のソフトウェアブロックを示しており、11は
アナログ入力厚さ換算部、12はモータ位置制御部、1
3は厚さ測定部である。また、18は距離測定手段とし
ての距離センサ、19は距離センサ19の位置を移動さ
せるパルスモータ、21は同移動用のボールねじ部、2
2は測定時の基準面で、例えば白色セラミック等の材質
で作製されており、距離センサ18の原点距離位置にあ
る。
FIG. 6 shows a conventional example of such a thickness measuring device. In the figure, 10 is a control computer, 11 to 13 are software blocks for the calculation 1110, 11 is an analog input thickness conversion section, 12 is a motor position control section, 1
3 is a thickness measuring section. Further, 18 is a distance sensor as a distance measuring means, 19 is a pulse motor for moving the position of the distance sensor 19, 21 is a ball screw portion for moving the distance sensor 19, and 2
Reference numeral 2 denotes a reference plane during measurement, which is made of a material such as white ceramic, and is located at the origin distance position of the distance sensor 18.

23は被測定物体を示し、A点、B点はそれぞれ測定開
始位置と測定終了位置、文は測定幅範囲であり、被測定
物体23は、この測定幅範囲交をn分割した単位幅から
なる各測定部fli −0〜nでそれぞれ厚みが測定さ
れるようになっている。
23 indicates the object to be measured, point A and point B are the measurement start position and measurement end position, respectively, and the sentence is the measurement width range, and the measurement object 23 consists of a unit width obtained by dividing this measurement width range intersection into n. The thickness is measured at each measuring portion fli -0 to fli-n.

L+   12は距離センサ18の移動軸と、同移動軸
に対応した基準面22の水平軸をそれぞれ示している。
L+ 12 indicates the movement axis of the distance sensor 18 and the horizontal axis of the reference plane 22 corresponding to the movement axis.

そして、被測定物体23の厚さ分布を測定する場合、ま
ず、A点とB点で基準面22に対する距離センサ18の
原点距離及び移動軸L1と水平軸L2が平行になるよう
に平行度の調整が行われた後、測定が開始される。制御
用計算機10では、モータ位置制御部12により、測定
位置i=Q〜n単位でパルスモータ19の回転が制御さ
れ、距離センサ18から被測定物体23の表面までの距
離をアナログ入力して、アナログ入力厚さ換算部11で
厚さに変換され、厚さ測定部13で各測定部!fi=o
〜nの厚ざが測定される。
When measuring the thickness distribution of the object to be measured 23, first, the origin distance of the distance sensor 18 with respect to the reference plane 22 at points A and B and the parallelism are adjusted so that the moving axis L1 and the horizontal axis L2 are parallel to each other. After the adjustments are made, measurements begin. In the control computer 10, the rotation of the pulse motor 19 is controlled by the motor position control unit 12 in units of measurement positions i=Q to n, and the distance from the distance sensor 18 to the surface of the object to be measured 23 is input in analog form. The analog input thickness conversion section 11 converts it into thickness, and the thickness measurement section 13 converts it into thickness! fi=o
A thickness of ~n is measured.

(発明が解決しようとする課題〉 距離センサを基準面に対して平行移動させるようにした
厚み測定装置では、各測定位訝によって距離センサの原
点と基準面間の距離が変化しないように、A点とB点の
2位置で機械的に微調整する必要があるが、機械的に調
整したのみでは、高精度の測定結果を得ることは困難で
あった。また、光電式の距離センサでは、基準面の材質
と被測定物体の材質が異なるとその反射特性の違いによ
り、第3図を用いて後述するように、その物体表面の高
さ、即ち測定厚さに依存したリニアリティ誤差が生じ、
これが測定精度に影響してしまう。
(Problem to be Solved by the Invention) In a thickness measuring device in which a distance sensor is moved parallel to a reference plane, A It is necessary to make fine mechanical adjustments at two positions, point and B, but it is difficult to obtain highly accurate measurement results with only mechanical adjustment.In addition, with photoelectric distance sensors, If the material of the reference surface and the material to be measured are different, the difference in reflection characteristics will cause a linearity error that depends on the height of the object surface, that is, the measurement thickness, as will be explained later using FIG.
This affects measurement accuracy.

そして、上記の機械的微調整およびリニアリティ誤差に
起因する複合誤差は、特に厚さが薄く、幅の広い物体を
測定する場合は無視できないものとなっていた。
The compound error caused by the mechanical fine adjustment and linearity error cannot be ignored, especially when measuring a thin and wide object.

この発明は上記事情に基づいてなされたもので、機械的
調整及びリニアリティ誤差に起因する複合誤差を補正し
て高精度の厚み測定を行うことのできる厚み測定装置を
提供することを目的とする。
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a thickness measuring device that can perform highly accurate thickness measurement by correcting complex errors caused by mechanical adjustment and linearity errors.

[発明の構成] (課題を解決するための手段) この発明は上記課題を解決するために、光学的に距離を
測定する光学的距離測定手段を基準面に対して平行移動
させ、該基準面上の被測定物体の厚さ分布を測定する厚
み測定装置であって、前記被測定物体と同一の反射特性
を有し且つ各段の高さが所定の高さからなる段差を有す
る補正治具を用いて前記光学的距離測定手段と前記基準
面間の機械的誤差及び前記被測定物体の反射特性に起因
して生じるリニアリティ誤差を予め求める誤差演算手段
と、前記被測定物体の厚さ分布の実測定値に前記誤差演
客)手段で求めた各誤差を補正する補正処理手段とを有
することを要旨とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention moves an optical distance measuring means for optically measuring a distance in parallel to a reference plane, and A correction jig for measuring the thickness distribution of an object to be measured above, the correction jig having steps having the same reflection characteristics as the object to be measured and each step having a predetermined height. error calculating means for calculating in advance a linearity error caused by a mechanical error between the optical distance measuring means and the reference surface and a reflection characteristic of the object to be measured using the method; The gist of the present invention is to include a correction processing means for correcting each error obtained by the error correction means to the actual measured value.

(作用) 上記構成において、光学的距離測定手段と基準面間の礫
械的誤差及び被測定物体の反射特性に起因して生じるリ
ニアリティ誤差が予め求められ、被測定物の厚さ分布の
実測定値に上記の各誤差が補正されて高精度の厚み測定
がなされる。
(Function) In the above configuration, the linearity error caused by the mechanical error between the optical distance measuring means and the reference surface and the reflection characteristics of the object to be measured is determined in advance, and the actual measured value of the thickness distribution of the object to be measured is calculated in advance. Each of the above-mentioned errors is corrected to obtain a highly accurate thickness measurement.

(実施例) 以下、この発明の実施例を第1図ないし第3図に基づい
て説明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.

なお、第1図において前記第6図における機器及び部材
等と同一ないし均等のものは、前記と同一符号を以って
示し、重複した説明を省略する。
In FIG. 1, the same or equivalent components as those in FIG. 6 are designated by the same reference numerals, and redundant explanation will be omitted.

まず、厚み測定装置の構成を説明すると、この実施例で
は、−制御用計算機20に、原点誤差計算部14、傾斜
誤差計算部15及びリニアリティ誤差計算部16からな
る誤差演算手段としての誤差演算部30と、この誤差演
算部30で予め求められた各誤差に基づいて実測定値を
補正する補正処理手段としての厚さ測定補正値計算部1
7とが備えられている。
First, the configuration of the thickness measuring device will be explained. In this embodiment, - the control calculator 20 includes an error calculation section as an error calculation means consisting of an origin error calculation section 14, an inclination error calculation section 15, and a linearity error calculation section 16; 30, and a thickness measurement correction value calculation unit 1 as a correction processing means for correcting the actual measurement value based on each error determined in advance by the error calculation unit 30.
7 is provided.

24は補正治具であり被測定物体と同一の反射特性を有
し且つ距離センサ18の測定範囲内で2段階の高さV+
q’i’2からなる段差を有し、その長さは測定幅範囲
吏以上の寸法形状jを有している。
24 is a correction jig which has the same reflection characteristics as the object to be measured and has two heights V+ within the measurement range of the distance sensor 18.
It has a step consisting of q'i'2, and its length has a size and shape j that is longer than the measurement width range.

そして、誤差演算部30により、上記の補正冶具24を
用いて、原点誤差、傾斜誤差等の距離センサ18と基準
面22間の機械的誤差及び被測定物体の反射特性に起因
して生じるリニアリティ誤差の各誤差が予め求められる
ようになっている。
Then, the error calculation unit 30 uses the correction jig 24 to calculate mechanical errors between the distance sensor 18 and the reference plane 22, such as origin errors and tilt errors, and linearity errors caused by reflection characteristics of the object to be measured. Each error can be determined in advance.

A点、B点及び0点は、原点誤差、傾斜誤差及びリニア
リティ誤差を求める場合の補正治具24に対する各測定
位置を示している。
Point A, point B, and point 0 indicate respective measurement positions with respect to the correction jig 24 when determining the origin error, inclination error, and linearity error.

次に、補正治具24を用いて原点誤差Δy1傾斜誤差α
、リニアリティ誤差率β及びこれらの誤差に基づいて補
正値$1を求める原理を第2図を用いて説明する。
Next, using the correction jig 24, the origin error Δy1 inclination error α
, the linearity error rate β and the principle of determining the correction value $1 based on these errors will be explained using FIG.

いま、上記A点、B点及び0点における補正治具24の
各厚さく高さ)の測定値を、それぞれDA、DBlCC
とする。
Now, the measured values of the thickness and height of the correction jig 24 at the points A, B and 0 are respectively DA and DBlCC.
shall be.

まず、第2図(A)は、距離センサ18の原点誤差Δy
を求める場合を示している。原点誤差Δyは、補正治具
24上、どの位置でも同一誤差となり、A点の測定値D
Aと補正治具24の1段目の高さylを用いて次式で求
められる。
First, FIG. 2(A) shows the origin error Δy of the distance sensor 18.
This shows the case where you want to find . The origin error Δy is the same error at any position on the correction jig 24, and the measured value D at point A
A and the height yl of the first stage of the correction jig 24 are used to find the following equation.

Δy=D^−y1           ・・・(1)
24aは、このときの補正治具24の仮想位置を示して
いる。
Δy=D^-y1...(1)
24a indicates the virtual position of the correction jig 24 at this time.

第2図(B)は、傾斜誤差α1を求める場合を示してい
る。傾斜誤差α1は、A点、B点間の両側定値[)A 
、 [)Bの差をn分割し、各測定位置iの値を乗じれ
ば、次式で示されるような各測定位置iに対応した値が
求められる。
FIG. 2(B) shows the case where the slope error α1 is determined. The slope error α1 is a constant value on both sides between points A and B [)A
, [) By dividing the difference between B by n and multiplying by the value of each measurement position i, a value corresponding to each measurement position i as shown in the following equation can be obtained.

α+ = (DB −DA ) ・i/n     −
(2)24bは、このときの補正治具24の仮想位置を
示している。
α+ = (DB - DA) ・i/n -
(2) 24b indicates the virtual position of the correction jig 24 at this time.

第2図(C)は、リニアリティ誤差率βを求める場合を
示している。
FIG. 2(C) shows the case where the linearity error rate β is determined.

リニアリティ誤差βは、第3図の特性線で示すように、
材質の差によって反射特性が異なるので違った値を示す
が、測定厚さ範囲に対しては略直線性を示すとみなすこ
とができる。そこで、補正治具24における1段目の高
さyl及びその測定値DBと2段目の高さyl及びその
測定値OAとを用い、さらに直線的比例誤差により次の
2つの式が得られる。
The linearity error β is, as shown by the characteristic line in Figure 3,
Although the reflection characteristics differ depending on the material, different values will be shown, but it can be considered that it shows approximately linearity over the measurement thickness range. Therefore, the following two equations can be obtained by using the height yl of the first stage and its measured value DB and the height yl of the second stage and its measured value OA in the correction jig 24, and further by a linear proportional error. .

DB=β・yl            ・・・(3)
DC=β・(Vl +”)/2 )       ・・
・(4〉ここで、上記(4)式から(3)式を引くと、
次式が得られて比例誤差、即ちリニアリティ誤差率βが
求められる。
DB=β・yl...(3)
DC=β・(Vl+”)/2)...
・(4>Here, if we subtract equation (3) from equation (4) above, we get
The following equation is obtained and the proportional error, that is, the linearity error rate β is determined.

β= (Da−DB)/V2        ・・・(
5)24Gは、このときの補正治具24の仮想位置を示
している。上記(5)式では、前述の原点誤差Δyは無
関係であり、また傾斜誤差α1もB点、C点間の測定値
へ吏が測定幅範囲更に対して十分短かければ無視するこ
とができる。
β= (Da-DB)/V2...(
5) 24G indicates the virtual position of the correction jig 24 at this time. In the above equation (5), the origin error Δy mentioned above is irrelevant, and the slope error α1 can also be ignored if the measurement value between points B and C is sufficiently short in the measurement width range.

このようにして、原点誤差Δy、傾斜誤差αI及びリニ
アリティ誤差率βを事前に求めておき、ある測定位置i
の実測定値D1から原点誤差Δy及び傾斜誤差α1を引
いた値をリニアリティ誤差率βで除すと、次式で示され
るような補正値Sが求められる。
In this way, the origin error Δy, the inclination error αI, and the linearity error rate β are obtained in advance, and the
By subtracting the origin error Δy and the slope error α1 from the actual measured value D1 and dividing the value by the linearity error rate β, a correction value S as shown in the following equation is obtained.

S+=(実測定値−(原点誤差+傾斜誤差))/リニア
リティ誤差率 = (D+ −(Δy十αl))/β ・・・(6)な
お、上記(6)式中、(Δy+α1)を測定位置iのテ
ーブルとして事前に3!粋してお()ば、上記補正値S
1の演算は、より一層容易になる。
S+ = (actual measurement value - (origin error + tilt error)) / linearity error rate = (D + - (Δy + αl)) / β ... (6) In the above formula (6), (Δy + α1) is measured. 3 in advance as a table at position i! If you choose (), the above correction value S
1 becomes even easier.

次いで、上述の原理に基づいて被測定物体の厚み分布を
測定する方法を述べる。
Next, a method for measuring the thickness distribution of an object to be measured based on the above-mentioned principle will be described.

まず、基準面22上に補正治具24を置く。そして制御
用計算機20ではモータ位置制御部12によりパルスモ
ータ19を駆動し、A点、即ち測定位置i−〇まで距離
センサ18を移動し、その原点から補正治具24までの
距離をアノログ量として入力する。このアナログ入力値
をアナログ入ツノ厚さ換算部11で厚さ測定値DAに換
算した後、原点誤差計算部14で前記(1)式を演算し
て原点誤差Δyを求めておく。
First, the correction jig 24 is placed on the reference plane 22. Then, in the control computer 20, the motor position control unit 12 drives the pulse motor 19, moves the distance sensor 18 to point A, that is, the measurement position i-〇, and calculates the distance from the origin to the correction jig 24 as an analog quantity. input. After this analog input value is converted into a thickness measurement value DA by the analog horn thickness conversion section 11, the origin error calculation section 14 calculates the equation (1) above to obtain the origin error Δy.

次に、モータ位置i、IJ 111部12により距離セ
ンサ18をB点、即ち測定位置i=nまで移動し、傾斜
誤差計算部15で、測定値DBと先にA点で求めた測定
W1DAから前記(2)式をa算して傾斜誤差α1を求
める。
Next, the motor position i, IJ 111 unit 12 moves the distance sensor 18 to point B, that is, the measurement position i=n, and the inclination error calculation unit 15 calculates the measured value DB and the measurement W1DA obtained earlier at point A. Calculate the equation (2) by a to obtain the slope error α1.

次いで、補正治具24の2段目の位置C点まで距離セン
サ18を移動し、その測定値DCと先にB点で求めた測
定値DBから前記(5)式を演算してリニアリティ誤差
率βを求める。
Next, the distance sensor 18 is moved to the second stage position C point of the correction jig 24, and the linearity error rate is calculated by calculating the equation (5) from the measured value DC and the measured value DB previously obtained at point B. Find β.

以上の処理により、原点誤差Δy、傾斜誤差α1の各誤
差及びリニアリティ誤差率βを事前に求めておく。
Through the above processing, the origin error Δy, the tilt error α1, and the linearity error rate β are obtained in advance.

次に、補正治具24を撤去後、基準面22上に被測定物
体を置き、モータ位置制御部12により測定位ff1i
=o〜nまで距離センサ18を順次移動し、逐次、該当
測定位置の実測定1inD+から前記(6)式を用いて
補正値S1を求める。この補正値S1が求める厚さの最
終値である。
Next, after removing the correction jig 24, the object to be measured is placed on the reference plane 22, and the motor position control unit 12 moves the object to be measured at the measurement position ff1i.
The distance sensor 18 is sequentially moved from =o to n, and the correction value S1 is sequentially determined from the actual measurement 1inD+ of the corresponding measurement position using the above equation (6). This correction value S1 is the final value of the thickness to be determined.

このように、この実施例では補正治具24を用いて事前
に各誤差△y、α1及びリニアリティ誤差率βを容易に
求めることができ、従来例のように距離センVと基準面
間の原点微調整や別途に被測定物体の反射特性による誤
差補正処理を行う必要のない厚み測定位置を実現するこ
とができる。
In this way, in this embodiment, each error Δy, α1, and linearity error rate β can be easily determined in advance using the correction jig 24, and the origin between the distance sensor V and the reference plane can be easily determined in advance as in the conventional example. It is possible to realize a thickness measurement position that does not require fine adjustment or separate error correction processing based on the reflection characteristics of the object to be measured.

また、上述の実施例では、被測定物体の厚さ分布を、距
離センサを移動して測定する方式としたが、これと逆に
距離センサを固定して基準面を移動する方式としてもよ
い。
Further, in the above-described embodiment, the thickness distribution of the object to be measured is measured by moving the distance sensor, but a method may be used in which the distance sensor is fixed and the reference plane is moved.

次いで、第5図及び第6図には、この発明の応用例を示
す。この応用例は厚さ分布を平面的に多数測定する場合
を示している。
Next, FIGS. 5 and 6 show examples of application of the present invention. This application example shows a case where thickness distribution is measured in multiple planes.

なお、第4図は前記第1図における距離センサ等の部分
の右側面図に対応している。
Note that FIG. 4 corresponds to the right side view of the distance sensor and other parts in FIG. 1.

第4図及び第5図中、jは奥行き方向の測定位置を示し
m分割されている。交1は奥行き方向移動距離、θ1は
奥行き方向のセンサ移動軸と基準面22の傾斜を示して
いる。この応用例では、被測定物体23aは補正治具2
4上に搭載した条件で測定している。
In FIGS. 4 and 5, j indicates the measurement position in the depth direction, which is divided into m. Intersection 1 indicates the moving distance in the depth direction, and θ1 indicates the inclination of the sensor moving axis in the depth direction and the reference plane 22. In this application example, the object to be measured 23a is the correction jig 2.
Measurements were made under the conditions mounted on 4.

そして、被測定物体23aの厚さ分布を奥行き方向にも
測定する場合、奥行き方向にも傾斜誤差があるため、奥
行き方向の測定位置jごとに、測定位置i=Qとnの測
定値から原点誤差、傾斜誤差を求めて実測定値を補正す
る方式とする。但し、このように被測定物体23aを補
正治具24上に直接搭載して測定する場合の最終補正値
は、前記(δ)式で求めた値から補正治具24の1段目
の高さylを引くことが必要である。
When measuring the thickness distribution of the object to be measured 23a also in the depth direction, since there is an inclination error in the depth direction, for each measurement position j in the depth direction, the origin is determined from the measured values at measurement positions i=Q and n. The method is to calculate the error and slope error and correct the actual measured value. However, when measuring the object to be measured 23a directly mounted on the correction jig 24 in this way, the final correction value is determined by calculating the height of the first stage of the correction jig 24 from the value obtained by the above formula (δ). It is necessary to subtract yl.

[発明の効果] 以上説明したように、この発明によれば、誤差演算手段
により、光学的距離測定手段と基準面間の機械的誤差及
び被測定物体の反射特性に起因して生じるリニアリティ
誤差を予め求め、次いで、補正処理手段で被測定物体の
実測定値に上記の各誤差を補正するようにしたので、光
学的距離測定手段と基準面間の機械的微調整及びリニア
リティ誤差に起因する複合誤差が補正されて高精度の厚
み測定を容易に行うことができる。
[Effects of the Invention] As explained above, according to the present invention, the linearity error caused by the mechanical error between the optical distance measuring means and the reference surface and the reflection characteristics of the object to be measured is calculated by the error calculation means. Since the above-mentioned errors are calculated in advance and then corrected to the actual measured value of the object by the correction processing means, complex errors caused by fine mechanical adjustment and linearity errors between the optical distance measuring means and the reference surface are eliminated. is corrected, making it easy to perform highly accurate thickness measurements.

したがって、この発明に係る厚み測定装置は、半粘体の
材料や、粉、板など特に厚さが薄く広い幅を持つ物体の
厚さ分布を測定する場合に大なる効果が得られる。
Therefore, the thickness measuring device according to the present invention is highly effective when measuring the thickness distribution of particularly thin and wide objects such as semi-viscous materials, powders, and plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明に係る厚み測定装置の実
施例を示すもので、第1図は全体構成を示す構成図、第
2図は原点誤差、傾斜誤差及びリニアリティ誤差を求め
る原理を説明するための図、第3図は物体のリニアリテ
ィ特性例を示す特性図、第4図及び第5図は同上実施例
の応用例を示すもので、第4図は距離センサ等部分の構
成図、第5図は平面図、第6図は従来の厚み測定装置の
構成図である。 14:原点誤差ム1算部、 15:傾斜誤差計算部、 16:リニアリテイ誤差計樟部、 17:厚さ測定補正値計n部(補正処理手段)、18:
距離センサ(光学的距離測定手段)、22:基準面、 
 24:補正治具、 30:誤差演算部(誤差演算手段)。
Figures 1 to 3 show an embodiment of the thickness measuring device according to the present invention. Figure 1 is a block diagram showing the overall configuration, and Figure 2 shows the principle for determining the origin error, inclination error, and linearity error. Figure 3 is a characteristic diagram showing an example of the linearity characteristic of an object, Figures 4 and 5 are diagrams showing an application example of the above embodiment, and Figure 4 is a configuration diagram of the distance sensor etc. , FIG. 5 is a plan view, and FIG. 6 is a configuration diagram of a conventional thickness measuring device. 14: Origin error calculation section, 15: Incline error calculation section, 16: Linearity error meter section, 17: Thickness measurement correction value meter n section (correction processing means), 18:
Distance sensor (optical distance measuring means), 22: reference plane,
24: Correction jig; 30: Error calculation unit (error calculation means).

Claims (1)

【特許請求の範囲】 光学的に距離を測定する光学的距離測定手段を基準面に
対して平行移動させ、該基準面上の被測定物体の厚さ分
布を測定する厚み測定装置であって、 前記被測定物体と同一の反射特性を有し且つ各段の高さ
が所定の高さからなる段差を有する補正治具を用いて前
記光学的距離測定手段と前記基準面間の機械的誤差及び
前記被測定物体の反射特性に起因して生じるリニアリテ
ィ誤差を予め求める誤差演算手段と、前記被測定物体の
厚さ分布の実測定値に前記誤差演算手段で求めた各誤差
を補正する補正処理手段とを有することを特徴とする厚
み測定装置。
[Scope of Claims] A thickness measuring device that measures the thickness distribution of an object to be measured on the reference surface by moving an optical distance measuring means for optically measuring distance in parallel to a reference surface, comprising: The mechanical error between the optical distance measuring means and the reference surface is corrected by using a correction jig having steps having the same reflection characteristics as the object to be measured and each step having a predetermined height. an error calculation means for calculating in advance a linearity error caused by the reflection characteristics of the object to be measured; and a correction processing means for correcting each error calculated by the error calculation means to the actual measured value of the thickness distribution of the object to be measured. A thickness measuring device characterized by having:
JP24622088A 1988-09-30 1988-09-30 Thickness measuring apparatus Pending JPH0293309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24622088A JPH0293309A (en) 1988-09-30 1988-09-30 Thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24622088A JPH0293309A (en) 1988-09-30 1988-09-30 Thickness measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0293309A true JPH0293309A (en) 1990-04-04

Family

ID=17145300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24622088A Pending JPH0293309A (en) 1988-09-30 1988-09-30 Thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0293309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069985A1 (en) * 2005-12-14 2007-06-21 Aktiebolaget Skf Method for generating a relation between an output signal of a distance gauge and a distance between the distance gauge and a measuring surface of a mechanical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069985A1 (en) * 2005-12-14 2007-06-21 Aktiebolaget Skf Method for generating a relation between an output signal of a distance gauge and a distance between the distance gauge and a measuring surface of a mechanical element

Similar Documents

Publication Publication Date Title
EP1596160A1 (en) Method of inspecting workpieces on a measuring machine
US7376261B2 (en) Surface scan measuring device and method of forming compensation table for scanning probe
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
CN111457942B (en) Plane height-fixing calibration device
CN111854587B (en) Guide rail five-degree-of-freedom motion error online measurement device and method
JPH0293309A (en) Thickness measuring apparatus
JPH0123041B2 (en)
JPH11190616A (en) Surface shape measuring device
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
JPH0933244A (en) Shape measuring method
JPH063115A (en) Measuring equipment of height of sample
JP2841732B2 (en) Height measurement method using laser light
JP3029572B2 (en) Method for measuring cross-sectional contour shape of object to be measured and method for measuring three-dimensional shape
JP2556945B2 (en) Thickness measuring device
US20230184541A1 (en) Three-dimensional measurement system and calibration method thereof
KR100380133B1 (en) Method for compensating error according to intensity of rays reflected on subject in optical sensor
JPH08226815A (en) Surface condition distortion measuring device
JPS62105002A (en) High-precision measuring method for center position of light
JPH02226007A (en) Thickness measuring apparatus
JP3526724B2 (en) Error correction method in shape measuring device
JPH08304020A (en) Movement-accuracy measuring apparatus
Hermann et al. Form and length measuring equipments and gauges for the manufacturing industry
JPH0476410A (en) Optical type configuration measuring device
JPH04319614A (en) Measuring apparatus for thickness of thin plate
JPH07260450A (en) Shape measuring device