JPH04319614A - Measuring apparatus for thickness of thin plate - Google Patents

Measuring apparatus for thickness of thin plate

Info

Publication number
JPH04319614A
JPH04319614A JP8828991A JP8828991A JPH04319614A JP H04319614 A JPH04319614 A JP H04319614A JP 8828991 A JP8828991 A JP 8828991A JP 8828991 A JP8828991 A JP 8828991A JP H04319614 A JPH04319614 A JP H04319614A
Authority
JP
Japan
Prior art keywords
detector
thin plate
plane
distance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8828991A
Other languages
Japanese (ja)
Inventor
Yutaka Okumoto
奥本 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP8828991A priority Critical patent/JPH04319614A/en
Publication of JPH04319614A publication Critical patent/JPH04319614A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the thickness of a thin plate without being affected by the precision of a moving device such as an X-Y table which changes relative positions of a detector such as a displacement meter and a measuring stage, and to obtain a measuring apparatus of the thickness of the thin plate which is convenient and inexpensive and has high measuring precision. CONSTITUTION:A measuring stage 1 and a reference plate 2 are made opposite and parallel to each other and held by a holding metal fitting 7, and the holding metal fitting 7 is made to be movable by a moving device 8. A detector couple formed by putting a first detector 3 and a second detector 4 in one body is disposed between the measuring stage 1 and the reference plate 2. Distances to the flat surface 1A of the measuring stage 1 and to a thin plate 10 are measured by the first detector 3 and a distance to a reference plane 2A is measured by the second detector 4. The measured distance to the flat surface 1A of the measuring stage and the measured distance to the reference plane 2A at this time are added up. The measured distance to the thin plate 10 and the measured distance to the reference plane 2A at this time are added up. The thickness is determined from a difference between two addition values thus obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄い板状の物体の厚さ
を精密に計測する技術に係わり、特にシリコンウエハー
のような平板をサブミクロンの精度で計測するのに適し
た薄板の厚さ測定装置に関する。
[Industrial Application Field] The present invention relates to a technique for precisely measuring the thickness of a thin plate-shaped object, and in particular, the thickness of a thin plate suitable for measuring a flat plate such as a silicon wafer with submicron precision. This invention relates to a measuring device.

【0002】0002

【従来の技術】従来、シリコンウエハーのような平板の
厚さを精密に計測するために多くの方法が用いられてい
る。第1の方法は、光の干渉を利用する方法であり、フ
ィゾー干渉計やマイケルソン干渉計が用いられている。 第2の方法は、一般的な距離計により測定する方法であ
る。
2. Description of the Related Art Conventionally, many methods have been used to precisely measure the thickness of a flat plate such as a silicon wafer. The first method uses optical interference, and uses a Fizeau interferometer or a Michelson interferometer. The second method is to measure using a general distance meter.

【0003】第2の方法の一つに、静電容量の変化を利
用する方法がある。これは、非接触の容量センサーの2
つの電極間に交流をかけて、シリコンウエハーの表面に
接近させて静電容量を計測することにより容量センサー
からシリコンウエハー表面までの距離を測定するもので
ある。これによりシリコンウエハーの表面の凹凸を測定
することができる。また、非接で距離を測定する方法と
しては、レーザー変位計を用いるものもある。
One of the second methods is to utilize changes in capacitance. This is a non-contact capacitive sensor.
The distance from the capacitance sensor to the silicon wafer surface is measured by applying an alternating current between the two electrodes and measuring the capacitance while approaching the surface of the silicon wafer. This makes it possible to measure the irregularities on the surface of the silicon wafer. Furthermore, as a method for measuring distance non-tangentially, there is also a method using a laser displacement meter.

【0004】ここで、第1の方法によれば、測定点の走
査の必要もなくシリコンウエハーの全平面を同時に計測
することができ、測定精度が高くかつ計測時間も短くて
すむ。特にマイケルソン干渉計の光源としてレーザー光
を用いると、安定で、かつ極めて正確な計測が可能であ
り、0.01ミクロン以上の精度を有するなど、精度上
は理想的な方法である。しかしながら、このような装置
は高価で容積も大きく、自動検査などの機械に組み込む
には適していない。
According to the first method, the entire plane of the silicon wafer can be measured simultaneously without the need to scan measurement points, resulting in high measurement accuracy and short measurement time. In particular, when a laser beam is used as a light source for a Michelson interferometer, stable and extremely accurate measurement is possible, and the method has an accuracy of 0.01 micron or more, making it an ideal method in terms of accuracy. However, such devices are expensive and bulky, and are not suitable for being incorporated into machines such as automatic inspections.

【0005】第2の方法は、シリコンウエハーの表面上
の一点毎にしか測定できないので、平面全体を計測する
には表面上を走査しなければならないが、極めて簡便か
つ安価であり、機械に組み込むのにも適している。なお
、レーザー変位計などの検出器自体の精度は、例えばシ
リコンウエハーのように1ミクロン程度の誤差を計測す
るには充分であり、現在0.03ミクロン程度のものが
市販されている。
[0005] The second method can only measure one point on the surface of a silicon wafer, so the surface must be scanned to measure the entire plane, but it is extremely simple and inexpensive, and can be incorporated into a machine. Also suitable for Note that the precision of the detector itself, such as a laser displacement meter, is sufficient to measure an error of about 1 micron, such as in the case of a silicon wafer, and one with an error of about 0.03 micron is currently on the market.

【0006】しかしながら、平面全体を走査するための
機械部品、すなわち、検出器または被測定物を一定の平
面に沿って移動させるような機械部品を、検出器の精度
に匹敵する精度で加工することは極めて困難である。ま
た、一定の平面を維持するためには機械要素を大きくし
て剛性を保たなければならず、装置全体が大掛かりにな
る。すなわち、検出器は小型かつ安価であっても、装置
全体としては大型、かつ高価のものになってしまう。
However, it is difficult to process a mechanical part for scanning an entire plane, that is, a mechanical part for moving a detector or an object to be measured along a fixed plane, with an accuracy comparable to that of the detector. is extremely difficult. Furthermore, in order to maintain a constant plane, the mechanical elements must be made large to maintain rigidity, making the entire device bulky. That is, even if the detector is small and inexpensive, the entire device becomes large and expensive.

【0007】ここで、平面全体を走査する機械部品の精
度に係わる要素には二種類あり、第一は走査する平面と
理想的平面の誤差、第二はその繰り返し精度である。こ
の両者を0.1ミクロン程度の度さに維持しようとすれ
ば、大型かつ高価なものになってしまう。
There are two types of factors related to the accuracy of mechanical parts that scan the entire plane: the first is the error between the scanning plane and the ideal plane, and the second is the repeatability. If an attempt is made to maintain both of these to a degree of about 0.1 micron, it will become large and expensive.

【0008】このため、従来よりいろいろな工夫がなさ
れている。通常行われている方法は、図5のように検出
器101および検出器102をC字型をした保持具10
4に取り付け、検出器101および検出器102から被
測定板103までの距離を測定し、この測定値を一定の
値からの差し引いて被測定板103の厚さを求める方法
である。なお、この計測値は一点の厚さであり保持具1
04をXYテーブルのような走査手段105の上に取り
付けて平面全体を走査するような方法である。
[0008] For this reason, various efforts have been made in the past. A commonly used method is to hold the detector 101 and the detector 102 in a C-shaped holder 10 as shown in FIG.
4, the distance from the detectors 101 and 102 to the plate 103 to be measured is measured, and this measured value is subtracted from a constant value to determine the thickness of the plate 103 to be measured. Note that this measurement value is the thickness of one point, and is the thickness of holder 1.
04 on a scanning means 105 such as an XY table and scans the entire plane.

【0009】この方法によれば、その繰り返し誤差、す
なわち走査手段のガタに由来する検出器101,102
と被測定物体との距離の変動による計測誤差は相殺され
、検出器101,102の精度において被測定板103
の厚さ計測が可能で、走査手段105の誤差の影響を全
く受けない良い方法である。
According to this method, the repeatability error, that is, the detectors 101 and 102 due to backlash of the scanning means
Measurement errors due to variations in the distance between the object and the object to be measured are canceled out, and the accuracy of the detectors 101 and 102
This is a good method that is completely unaffected by errors in the scanning means 105.

【0010】しかしながら、平面を走査して平面全体の
平面精度を計測をする場合には、走査手段105の運動
と理想的平面との誤差をそのまま計測値の誤差とする欠
点がある。
However, when measuring the plane accuracy of the entire plane by scanning the plane, there is a drawback that the error between the movement of the scanning means 105 and the ideal plane directly becomes an error in the measured value.

【0011】なお、市販されているXYテーブルのよう
な簡便な装置を使用しようとすれば、最近の精密なXY
テーブルでも両者の誤差は1ミクロン程度の精度であり
、通常の機械部品としては充分な精度であるが、例えば
シリコンウエハーの厚さを計測する場合のように0.1
ミクロン以上の測定精度を要求される場合には、そのま
までは使用できない。
[0011] If you want to use a simple device such as a commercially available XY table, the latest precision
Even on a table, the accuracy between the two is about 1 micron, which is sufficient accuracy for normal mechanical parts, but it is difficult to measure the thickness of silicon wafers by 0.1 microns.
If measurement accuracy of microns or higher is required, it cannot be used as is.

【0012】0012

【発明が解決しようとする課題】本発明は、レーザー変
位計などの検出器を走査する走査手段のガタに由来する
繰り返し精度のみならず、その運動の理想的平面からの
誤差が計測値に影響を与えないようにし、安価で低い精
度の走査手段を用いても測定値がそれにより影響を受け
ないような、簡便、安価、かつ高い測定精度を持った薄
板の厚さ測定装置を提供することにある。
[Problems to be Solved by the Invention] The present invention addresses not only the repeatability caused by the backlash of the scanning means that scans a detector such as a laser displacement meter, but also the errors from the ideal plane of its movement that affect the measured values. To provide a simple, inexpensive, and high-accuracy thin plate thickness measuring device that does not give a thin plate thickness and does not affect the measured value even if an inexpensive and low-accuracy scanning means is used. It is in.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めになした本発明の薄板の厚さ測定装置は、被測定物で
ある薄板を保持する第1平面と該第1平面にほぼ平行に
対向する第2平面とによって構成される1対の平面対と
、上記第1平面および薄板までの距離をそれぞれ計測す
る第1検出器と上記第2平面までの距離を計測する第2
検出器とを一体にして構成された検出器対と、上記平面
対と上記検出器対との相対位置を該平面対の平面と略平
行な方向に変化させるための移動手段と、上記第1検出
器および第2検出器の計測距離に基づいて前記薄板の厚
さを演算する演算手段とを備え、上記演算手段により、
上記第1検出器による第1面までの計測距離と薄板まで
の計測距離との差を、該第1平面の計測時と該薄板の計
測時とにおける前記第2検出器による第2平面までの各
計測距離の差によって補正することにより、上記薄板の
厚さを演算するようにしたことを特徴とする。
[Means for Solving the Problems] The thin plate thickness measuring device of the present invention, which has been made to solve the above problems, has a first plane that holds a thin plate as an object to be measured, and a plane that is substantially parallel to the first plane. a pair of planes constituted by a second plane facing the plane, a first detector that measures the distance to the first plane and the thin plate, and a second detector that measures the distance to the second plane, respectively;
a detector pair integrally configured with a detector; a moving means for changing the relative position of the plane pair and the detector pair in a direction substantially parallel to the plane of the plane pair; a calculation means for calculating the thickness of the thin plate based on the measured distance of the detector and the second detector;
The difference between the measured distance to the first surface by the first detector and the measured distance to the thin plate is the difference between the measured distance to the second plane by the second detector when measuring the first plane and when measuring the thin plate. The present invention is characterized in that the thickness of the thin plate is calculated by correcting the difference between each measured distance.

【0014】[0014]

【作用】本発明の薄板の厚さ測定装置において、被測定
物である薄板の厚さは、平面対の第1平面に薄板を保持
しないときの第1検出器と第2検出による各計測距離、
および第1平面に薄板を保持したときの第1検出器と第
2検出による各計測距離によって演算される。ここで、
平面対と検出器対との相対位置が移動手段によって変化
され、上記のように薄板を保持しないときと保持したと
きとで平面対と検出器対とに位置ずれが生じていても、
この位置ずれの量は、第1検出器側の計測距離と第2検
出器側の計測距離とで互いに相殺するようになる。した
がって、第1検出器による第1面までの計測距離と薄板
までの計測距離との差を、第1平面の計測時と薄板の計
測時とにおける第2検出器による第2平面までの各計測
距離の差によって補正して、薄板の厚さを演算すると、
移動手段による誤差が厚さの演算値に影響しない。
[Operation] In the thin plate thickness measuring device of the present invention, the thickness of the thin plate as the object to be measured is determined by the distance measured by the first detector and the second detection when the thin plate is not held on the first plane of the pair of planes. ,
And, it is calculated by each distance measured by the first detector and the second detection when the thin plate is held on the first plane. here,
Even if the relative positions of the pair of planes and the pair of detectors are changed by the moving means, and a positional shift occurs between the pair of planes and the pair of detectors between when the thin plate is not held and when the thin plate is held as described above,
The amount of this positional shift is such that the measured distance on the first detector side and the measured distance on the second detector side cancel each other out. Therefore, the difference between the measured distance to the first surface by the first detector and the measured distance to the thin plate is calculated for each measurement to the second plane by the second detector when measuring the first plane and when measuring the thin plate. Calculating the thickness of the thin plate by correcting it based on the difference in distance, we get:
Errors caused by the moving means do not affect the calculated thickness.

【0015】[0015]

【実施例】図1は本発明実施例の薄板の厚さ測定装置の
正面図であり、1は第1平面としての計測台面1Aが平
面に仕上げられた計測台、2は第2平面としての参照面
2Aが平面に仕上げられた参照板、3は検出部を計測台
面1A側に向けた第1検出器、4は検出部を参照面2A
側に向けた第2検出器である。
[Embodiment] FIG. 1 is a front view of a thin plate thickness measuring device according to an embodiment of the present invention, in which 1 is a measuring table whose first plane is a measuring table surface 1A finished as a flat surface, and 2 is a measuring table whose surface 1A is a flat surface as a second plane. A reference plate with a flat reference surface 2A, 3 a first detector with a detection part facing the measurement table surface 1A, and 4 a reference plate with a detection part facing the reference surface 2A.
A second detector facing towards the side.

【0016】計測台1の計測台平面1Aには多数の細孔
が開けられており、図示しない吸引装置によってこの細
孔に発生する負圧により、被測定物である薄板10が保
持される。第1検出器3および第2検出器4としてはレ
ーザー式距離計が用いられており、第1検出器3はこの
第1検出器3の所定の位置から計測台面1Aおよび薄板
10までの距離を計測する。また、第2検出器4はこの
第2検出器4の所定の位置から参照面2Aまでの距離を
計測する。なお、この種のレーザー式距離計は最近進歩
が著しく、概ね0.05ミクロン程度の精度を有し、シ
リコンウエハーの面精度検査などにも適用でき、かつ簡
便で安価のものとなっている。
A large number of pores are opened in the measurement table plane 1A of the measurement table 1, and a thin plate 10, which is an object to be measured, is held by negative pressure generated in the pores by a suction device (not shown). A laser distance meter is used as the first detector 3 and the second detector 4, and the first detector 3 measures the distance from a predetermined position of the first detector 3 to the measurement table surface 1A and the thin plate 10. measure. Further, the second detector 4 measures the distance from a predetermined position of the second detector 4 to the reference surface 2A. Note that this type of laser distance meter has recently made remarkable progress, has an accuracy of about 0.05 microns, can be applied to surface accuracy inspection of silicon wafers, and has become simple and inexpensive.

【0017】計測台1と参照板2は計測台面1Aと参照
面2Aとが互いに略平行に対面するように「コ」の字型
の保持金具7で保持され、これによって計測台面1Aと
参照面2Aとの相対位置が一定に保たれている。また、
保持金具7はXYテーブルの如き移動装置8の上に配設
されており、保持金具7は図の矢印Pの方向と図面に垂
直な方向にそれぞれ独立に移動でき、土台9に対して保
持金具7の相対位置を変更できるようになっている。一
方、第1検出器3と第2検出器4は垂直板5の下端と上
端にそれぞれ固定され、垂直板5はアーム6によって土
台9に固定されている。
The measuring table 1 and the reference plate 2 are held by a U-shaped holding fitting 7 such that the measuring table surface 1A and the reference surface 2A face each other substantially parallel to each other. The relative position with 2A is kept constant. Also,
The holding fitting 7 is arranged on a moving device 8 such as an XY table, and the holding fitting 7 can be moved independently in the direction of arrow P in the figure and in the direction perpendicular to the drawing, and the holding fitting 7 can be moved with respect to the base 9. The relative position of 7 can be changed. On the other hand, the first detector 3 and the second detector 4 are fixed to the lower and upper ends of a vertical plate 5, respectively, and the vertical plate 5 is fixed to a base 9 by an arm 6.

【0018】そして、移動装置8により保持金具7が移
動されると、計測台1に薄板10が配設されていないと
きは、第1検出器3は計測台平面1Aとの距離の変化を
出力し、第2検出器4は参照面2Aとの距離の変化を出
力する。また、計測台1に薄板10が配設されていると
きには、第1検出器3は薄板10との距離の変化を出力
する。
When the holding fitting 7 is moved by the moving device 8, if the thin plate 10 is not placed on the measuring table 1, the first detector 3 outputs a change in the distance from the measuring table plane 1A. However, the second detector 4 outputs the change in distance to the reference surface 2A. Further, when the thin plate 10 is disposed on the measurement table 1, the first detector 3 outputs a change in the distance from the thin plate 10.

【0019】図2は実施例の厚さ測定装置の演算処理部
のブロック図である。切替器11と切替器12は同期信
号発生器15により同時に開閉し、切替器13と切替器
14は同様に同期信号発生器15により同時に開閉する
FIG. 2 is a block diagram of the arithmetic processing section of the thickness measuring device according to the embodiment. The switch 11 and the switch 12 are opened and closed simultaneously by the synchronization signal generator 15, and the switch 13 and the switch 14 are similarly opened and closed simultaneously by the synchronization signal generator 15.

【0020】先ず、計測台1の計測台面1Aに薄板10
を置かないとき、切替器11,12を閉状態にして切替
器13,14を開状態にする。これにより、第1検出器
3の出力は切替器11を経由して第1の加算器16に導
かれ、また、第2検出器4の出力は切替器12を経由し
て同じく第1の加算器16に導かれる。
First, a thin plate 10 is placed on the measurement table surface 1A of the measurement table 1.
When the switch is not placed, the switches 11 and 12 are closed and the switches 13 and 14 are opened. As a result, the output of the first detector 3 is guided to the first adder 16 via the switch 11, and the output of the second detector 4 is also guided to the first adder 16 via the switch 12. Guided to vessel 16.

【0021】そして、第1の加算器16は入力される二
の信号を加算してその加算出力を第1の記憶器18に送
る。したがって、第1の記憶器18は、図3に示したよ
うに計測台平面1Aと第1検出器3との距離aと、参照
平面2Aと第2検出器4との距離bの和(a+b)を保
持する。
The first adder 16 adds the two input signals and sends the added output to the first memory 18. Therefore, as shown in FIG. 3, the first memory 18 stores the sum (a+b ) to hold.

【0022】次に、計測台平面1Aに被測定物である薄
板10を置き、切替器11,12を開状態にして切替器
13,14を閉状態にすると、第1検出器3の出力と第
2検出器4の出力が第2の加算器17に導かれ、第2の
加算器17は入力される二の信号を加算してその加算出
力を第2の記憶器19に送る。したがって、第2の記憶
器19は、図4に示したように、薄板10と第1検出器
3との距離cと、参照平面2Aと第2検出器4との距離
b’ の和(c+b’ )を保持する。
Next, when the thin plate 10 as the object to be measured is placed on the measuring table plane 1A and the switches 11 and 12 are opened and the switches 13 and 14 are closed, the output of the first detector 3 and The output of the second detector 4 is led to the second adder 17, which adds the two input signals and sends the added output to the second memory 19. Therefore, as shown in FIG. 4, the second memory 19 stores the sum (c+b ' ) is retained.

【0023】次に、第1の記憶器18の出力(a+b)
と第2の記憶器19の出力(c+b’ )を減算器20
に導き、この減算器20によって第1の記憶器18の値
から第2の記憶器19の値を減算し、次式(1)で表さ
れる減算出力xを薄板10の厚さの計測値として得る。 x=(a+b)−(c+b’ )    ……(1)
Next, the output (a+b) of the first memory 18
and the output (c+b') of the second memory 19 is subtracted by the subtracter 20.
The subtracter 20 subtracts the value of the second memory 19 from the value of the first memory 18, and the subtraction output x expressed by the following equation (1) is calculated as the measured value of the thickness of the thin plate 10. get as. x=(a+b)-(c+b')...(1)


0024】すなわち、第1の記憶器18に記憶されてい
る値は計測台平面1Aと参照平面2A間の距離Aから第
1検出器3と第2検出器4との間の距離Dを差し引いた
ものであり、また、第2の記憶器19に記憶されている
値は薄板10と参照平面2A間の距離Bから第1検出器
3と第2検出器4との間の距離Dを差し引いたものであ
るので、減算器20の減算出力xは薄板10の厚さを示
す。
[
That is, the value stored in the first memory 18 is obtained by subtracting the distance D between the first detector 3 and the second detector 4 from the distance A between the measuring table plane 1A and the reference plane 2A. , and the value stored in the second memory 19 is obtained by subtracting the distance D between the first detector 3 and the second detector 4 from the distance B between the thin plate 10 and the reference plane 2A. Therefore, the subtraction output x of the subtractor 20 indicates the thickness of the thin plate 10.

【0025】上記の構成によれば、図1において移動装
置8の機械的誤差のために保持金具7が理想的平面から
離れて運動し、計測台平面1Aおよび参照平面2Aと、
各検出器3,4とが、上下方向に誤差をもって移動され
ても、減算器20の出力はこの誤差に全く影響を受ける
ことがなく、薄板10の正確な厚さを計測することがで
きる。
According to the above configuration, in FIG. 1, the holding fitting 7 moves away from the ideal plane due to the mechanical error of the moving device 8, and the measuring table plane 1A and the reference plane 2A,
Even if the detectors 3 and 4 are moved vertically with an error, the output of the subtractor 20 is not affected by this error at all, and the thickness of the thin plate 10 can be measured accurately.

【0026】例えば、計測台面1Aに薄板10を置かな
いとき(図3)と薄板10を置いたとき(図4)とで計
測台平面1Aと第1検出器3との距離a,a’がそれぞ
れ等しければ、薄板10の厚さはa−cで得られるが、
図3の状態と図4の状態とでは計測時点が異なり、例え
ば、図3の計測時から図4の計測時に至るまでに移動装
置8の駆動によって計測台平面1Aと参照平面2Aが各
検出器3,4の位置から外されたとすると、上記の異な
る時点での第1検出器3と計測台平面1Aとの各距離a
,a’ は等しくなるとは限らない。
For example, the distances a and a' between the measurement table surface 1A and the first detector 3 are different when the thin plate 10 is not placed on the measurement table surface 1A (FIG. 3) and when the thin plate 10 is placed on the measurement table surface 1A (FIG. 4). If they are equal, the thickness of the thin plate 10 is obtained by a-c, but
The measurement time points are different between the state in FIG. 3 and the state in FIG. 4. For example, from the time of measurement in FIG. 3 to the time of measurement in FIG. If it is removed from positions 3 and 4, each distance a between the first detector 3 and the measurement table plane 1A at the different times mentioned above.
, a' are not necessarily equal.

【0027】しかし、計測台平面1Aと参照平面2Aと
の間隔Aおよび第1検出器3と第2検出器4との間隔D
はともに一定値であるので、例えばa’ >aとすると
、この距離の差(a’ −a)は第2検出器4と参照平
面2Aとの各距離b,b’ の距離の差となって現れ、
距離b’ が距離bより(a’ −a)だけ小さくなる
。すなわち、 a’ −a=b−b’ =δ  ……(2)となる。ま
た、この状態で薄板10の実際の厚さXは次式(3)で
表される。 X=a−(c−δ)  ……(3)
However, the distance A between the measuring table plane 1A and the reference plane 2A and the distance D between the first detector 3 and the second detector 4
are both constant values, so for example, if a'> a, this distance difference (a' - a) becomes the difference between the distances b and b' between the second detector 4 and the reference plane 2A. appeared,
Distance b' becomes smaller than distance b by (a' - a). That is, a'-a=b-b'=δ...(2). Further, in this state, the actual thickness X of the thin plate 10 is expressed by the following equation (3). X=a-(c-δ)...(3)

【0028】これに対し、減算器20の減算出力xは前
傾の式(1)で表されるので、 となり、この減算出力xは実際の厚さXと等しくなる。
On the other hand, since the subtraction output x of the subtractor 20 is expressed by the forward tilt equation (1), the subtraction output x becomes equal to the actual thickness X.

【0029】すなわち、計測台平面1Aまでの距離aの
計測時と薄板10までの距離cの計測時とにおける位置
ずれが、第2検出器4による参照平面2Aまでの計測距
離b,b’ に基づいて補正される。
That is, the positional deviation between the measurement of the distance a to the measuring table plane 1A and the measurement of the distance c to the thin plate 10 becomes the measurement distance b, b' by the second detector 4 to the reference plane 2A. Corrected based on

【0030】なお、現在のシリコンウエハーの精度は1
ミクロン以内であって、それを計測する装置には0.1
ミクロン以内の望ましくは0.05ミクロン程度の精度
が望まれる。最近のレーザー式の検出器の精度向上はめ
ざましく、具体的にはキーエンス社が製造販売するLD
2510の如き検出器では0.05ミクロン、アンリツ
社が製造販売するKL130Aの如き検出器では0.0
1ミクロンの精度を有しており、充分に実用に耐える。
[0030]The current accuracy of silicon wafers is 1
It is within microns, and the equipment that measures it is 0.1
Precision within microns, preferably around 0.05 microns, is desired. The accuracy of recent laser detectors has improved dramatically, specifically the LD manufactured and sold by Keyence.
0.05 micron for a detector such as the 2510, and 0.0 micron for a detector such as the KL130A manufactured and sold by Anritsu.
It has an accuracy of 1 micron, which is sufficient for practical use.

【0031】これに対し、現在の機械加工の技術では、
最も精度の高いXYテーブルにおいても、ガタに由来す
る繰り返し精度はおよそ1ミクロンであり、また、運動
の理想的平面からの誤差も1ミクロン程の誤差は避けら
れない。
[0031] On the other hand, with the current machining technology,
Even with the most accurate XY table, the repeatability due to backlash is approximately 1 micron, and an error of about 1 micron from the ideal plane of motion is unavoidable.

【0032】しかしながら、上記のように本発明を適用
することにより、上記のような検出器とXYテーブルを
組み合わせて精度の高い厚さ測定を行うことができる。
However, by applying the present invention as described above, it is possible to perform highly accurate thickness measurement by combining the detector as described above and the XY table.

【0033】[0033]

【発明の効果】以上説明したように本発明の薄板の厚さ
測定装置によれば、ほぼ平行に対向する第1平面と第2
平面とによって平面対を構成するとともに、この第1平
面および第1平面に保持される薄板までの距離をそれぞ
れ計測する第1検出器と第2平面までの距離を計測する
第2検出器とを一体にして検出器対を構成し、第1検出
器による第1面までの計測距離と薄板までの計測距離と
の差を、第1平面の計測時と薄板の計測時とにおける第
2平面までの各計測距離の差によって補正することによ
り薄板の厚さを演算するようにしたので、XYテーブル
などの移動手段で平面対と検出器対の相対位置を変化さ
せるとき機械的なガタや運動の理想的平面からの誤差が
あっても、この誤差の影響を無くして薄板の厚さを計測
することができる。したがって、安価で低い精度の走査
手段を用いても測定値がそれにより影響を受けないよう
な、簡便、安価、かつ高い測定精度を持った薄板の厚さ
測定装置を得ることができる。
Effects of the Invention As explained above, according to the thin plate thickness measuring device of the present invention, the first plane and the second plane are substantially parallel to each other.
a first detector that measures the distance to the first plane and the thin plate held on the first plane, and a second detector that measures the distance to the second plane, respectively. They form a pair of detectors, and the difference between the distance measured by the first detector to the first surface and the measured distance to the thin plate is measured to the second plane when measuring the first plane and when measuring the thin plate. The thickness of the thin plate is calculated by correcting the difference between the measured distances of Even if there is an error from the ideal plane, the thickness of the thin plate can be measured without the influence of this error. Therefore, it is possible to obtain a simple, inexpensive, and highly accurate thin plate thickness measuring device in which the measured value is not affected even if an inexpensive and low-accuracy scanning means is used.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明実施例の薄板の厚さ測定装置を示す図で
ある。
FIG. 1 is a diagram showing a thin plate thickness measuring device according to an embodiment of the present invention.

【図2】本発明実施例における演算処理部のブロック図
である。
FIG. 2 is a block diagram of an arithmetic processing unit in an embodiment of the present invention.

【図3】本発明実施例における計測台平面と参照平面と
の計測状態を示す図である。
FIG. 3 is a diagram showing a measurement state between a measurement table plane and a reference plane in an embodiment of the present invention.

【図4】本発明実施例における薄板と参照平面との計測
状態を示す図である。
FIG. 4 is a diagram showing a measurement state of a thin plate and a reference plane in an embodiment of the present invention.

【図5】従来の厚さ測定方法の一例を示す図である。FIG. 5 is a diagram showing an example of a conventional thickness measurement method.

【符号の説明】 1A  計測台平面(第1平面) 2A  参照平面(第2平面) 3    第1検出器 4    第2検出器 8    移動装置[Explanation of symbols] 1A Measurement table plane (first plane) 2A Reference plane (second plane) 3 First detector 4 Second detector 8. Mobile device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  被測定物である薄板を保持する第1平
面と該第1平面にほぼ平行に対向する第2平面とによっ
て構成される1対の平面対と、上記第1平面および薄板
までの距離をそれぞれ計測する第1検出器と上記第2平
面までの距離を計測する第2検出器とを一体にして構成
された検出器対と、上記平面対と上記検出器対との相対
位置を該平面対の平面と略平行な方向に変化させるため
の移動手段と、上記第1検出器および第2検出器の計測
距離に基づいて前記薄板の厚さを演算する演算手段と、
を備え、上記演算手段により、上記第1検出器による第
1面までの計測距離と薄板までの計測距離との差を、該
第1平面の計測時と該薄板の計測時とにおける前記第2
検出器による第2平面までの各計測距離の差によって補
正することにより、上記薄板の厚さを演算するようにし
たことを特徴とする薄板の厚さ測定装置。
1. A pair of planes constituted by a first plane holding a thin plate as an object to be measured and a second plane facing substantially parallel to the first plane; a pair of detectors configured by integrating a first detector that measures the distance to the second plane and a second detector that measures the distance to the second plane; and a relative position between the pair of planes and the pair of detectors. a moving means for changing the thickness of the thin plate in a direction substantially parallel to the plane of the pair of planes; a calculating means for calculating the thickness of the thin plate based on the measured distances of the first detector and the second detector;
The calculation means calculates the difference between the distance measured by the first detector to the first surface and the distance measured to the thin plate by the second detector when measuring the first plane and when measuring the thin plate.
A thickness measuring device for a thin plate, characterized in that the thickness of the thin plate is calculated by correcting the difference in distance measured by a detector to a second plane.
【請求項2】  前記薄板を保持していないときの前記
第1検出器による第1平面までの距離と前記第2検出器
による第2平面までの距離の和を記憶する第1記憶手段
と、前記薄板を保持しているときの上記第1検出器によ
る薄板までの距離と上記第2検出器による第2平面まで
の距離の和を記憶する第2記憶手段と、を備え、上記第
1記憶手段の演算結果と上記第2記憶手段の演算結果と
の差に基づいて上記薄板の厚さを演算するようにしたこ
とを特徴とする請求項1記載の薄板の厚さ測定装置。
2. first storage means for storing the sum of the distance to the first plane determined by the first detector and the distance to the second plane determined by the second detector when the thin plate is not held; a second storage means for storing the sum of the distance to the thin plate measured by the first detector and the distance to the second plane measured by the second detector when holding the thin plate; 2. The thin plate thickness measuring device according to claim 1, wherein the thickness of said thin plate is calculated based on the difference between the calculation result of said means and the calculation result of said second storage means.
JP8828991A 1991-04-19 1991-04-19 Measuring apparatus for thickness of thin plate Withdrawn JPH04319614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8828991A JPH04319614A (en) 1991-04-19 1991-04-19 Measuring apparatus for thickness of thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8828991A JPH04319614A (en) 1991-04-19 1991-04-19 Measuring apparatus for thickness of thin plate

Publications (1)

Publication Number Publication Date
JPH04319614A true JPH04319614A (en) 1992-11-10

Family

ID=13938753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8828991A Withdrawn JPH04319614A (en) 1991-04-19 1991-04-19 Measuring apparatus for thickness of thin plate

Country Status (1)

Country Link
JP (1) JPH04319614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321932A (en) * 2003-04-24 2004-11-18 Shibaura Mechatronics Corp Coater for adhesive and coating method for adhesive
WO2014185008A1 (en) * 2013-05-16 2014-11-20 信越半導体株式会社 Method for double-sided polishing of wafer, and double-sided-polishing system
JP2017194373A (en) * 2016-04-21 2017-10-26 ファナック株式会社 Thickness measurement device and thickness measurement method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321932A (en) * 2003-04-24 2004-11-18 Shibaura Mechatronics Corp Coater for adhesive and coating method for adhesive
JP4601914B2 (en) * 2003-04-24 2010-12-22 芝浦メカトロニクス株式会社 Adhesive coating apparatus and adhesive coating method
WO2014185008A1 (en) * 2013-05-16 2014-11-20 信越半導体株式会社 Method for double-sided polishing of wafer, and double-sided-polishing system
JP2014223704A (en) * 2013-05-16 2014-12-04 信越半導体株式会社 Double-sided polishing method of wafer and double-sided polishing system
JP2017194373A (en) * 2016-04-21 2017-10-26 ファナック株式会社 Thickness measurement device and thickness measurement method
CN107305118A (en) * 2016-04-21 2017-10-31 发那科株式会社 Measurer for thickness and method for measuring thickness
US10151578B2 (en) 2016-04-21 2018-12-11 Fanuc Corporation Thickness measurement device and thickness measurement method
DE102017107925B4 (en) 2016-04-21 2020-06-25 Fanuc Corporation Thickness measuring device and thickness measuring method

Similar Documents

Publication Publication Date Title
US7227647B2 (en) Method for measuring surface properties and co-ordinate measuring device
US4875177A (en) Datuming of analogue measurement probes
Takatsuji et al. The first measurement of a three-dimensional coordinate by use of a laser tracking interferometer system based on trilateration
JPH0814484B2 (en) Pattern position measuring device
JP3404318B2 (en) Surface shape measurement method
Fluegge et al. Status of the nanometer comparator at PTB
US6351313B1 (en) Device for detecting the position of two bodies
GB2170005A (en) Interferometric multicoordinate measuring device
JPH04319614A (en) Measuring apparatus for thickness of thin plate
JP5290038B2 (en) Measuring apparatus and measuring method
JPH0280909A (en) Measuring machine for contour shape such as surface roughness
JP2000081329A (en) Shape measurement method and device
JPH0123041B2 (en)
US3779647A (en) Interferometric device for indicating displacement along one dimension during motion along another dimension
Eom et al. A precision length measuring system for a variety of linear artefacts
JP3913519B2 (en) Straightness measurement method by scanning gap detection
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method
JP3633863B2 (en) Autonomous determination method of systematic error of surface profile measurement system using calibration object
JP2003254747A (en) Straightness measurement method
JPH11281306A (en) Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data
JP3638120B2 (en) Method for determining systematic error of surface shape measuring system and surface shape measuring device
EP2754992A1 (en) Optical profilometer
JP3265318B2 (en) Contour shape measurement data correction method and contour shape measurement machine
TW202405368A (en) Position detection system using laser light interferometry
JPH02198307A (en) Non-contact type surface-shape measuring apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711