JPH07260450A - Shape measuring device - Google Patents

Shape measuring device

Info

Publication number
JPH07260450A
JPH07260450A JP4726494A JP4726494A JPH07260450A JP H07260450 A JPH07260450 A JP H07260450A JP 4726494 A JP4726494 A JP 4726494A JP 4726494 A JP4726494 A JP 4726494A JP H07260450 A JPH07260450 A JP H07260450A
Authority
JP
Japan
Prior art keywords
angle
data
shape
points
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4726494A
Other languages
Japanese (ja)
Inventor
Satoshi Kiyono
慧 清野
I Ko
偉 高
Eiki Okuyama
栄樹 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOU ISAMU
Toyoda Koki KK
Original Assignee
KOU ISAMU
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOU ISAMU, Toyoda Koki KK filed Critical KOU ISAMU
Priority to JP4726494A priority Critical patent/JPH07260450A/en
Publication of JPH07260450A publication Critical patent/JPH07260450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure the shape with high precision by regulation the zero point of an angle detecting means autonomously only by means of data processing during the measurement. CONSTITUTION: A shape measuring device is provided with a sensor head 14 by which angles to an object 15 to be measured are detected at the same time in two points separated from each other by a predetermined distance (d), moving means 12, 13 which relatively moves the object 15 to be measured and the sensor head 14 in the parallel direction mutually for detecting an angle between two points in each of a plurality of positions in the object 15 to be measured, and a microcomputer 20 finding a shape of the object 15 to be measured from the angle data of the two points outputted from the sensor head 14 in each of the plural positions, and the microcomputer 29 finds values obtained by dividing an angle data difference between the two points by the predetermined distance (d) in the plural positions, and these values ane subjected to second order numerical integration so as to find shape data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、形状測定装置に関し、
さらに詳しくは、被測定物の接線角検出用プローブに相
当する2本の光ビームのゼロ点調整(放物線誤差)をデ
ータ処理だけで自律的に行うことができる形状測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring device,
More specifically, the present invention relates to a shape measuring device capable of autonomously performing zero point adjustment (parabolic error) of two light beams corresponding to a tangential angle detection probe of an object to be measured by only data processing.

【0002】[0002]

【従来の技術】走査型の形状測定装置として、差動レー
ザオートコリメーション法を用いたものが知られてい
る。この形状測定装置において、2本の変位計出力の差
を2階積分することにより、走査中の移動誤差の高さ方
向、すなわちz方向の並進変位とピッチングの両方の影
響を形状から分離して取除くことができる。また、この
形状測定装置においては、複数のセンサ(光ビーム)の
ゼロ点調整誤差により、その形状測定結果に放物線誤
差、すなわち一方の光ビームを基準とする他方の光ビー
ムのゼロ点誤差(角度差)が測定距離の2乗に比例する
誤差成分がもたらされるという問題を有している。
2. Description of the Related Art As a scanning type profile measuring device, one using a differential laser autocollimation method is known. In this shape measuring apparatus, the influence of both translational displacement and pitching in the height direction of the movement error during scanning, that is, the z direction, is separated from the shape by integrating the difference between the outputs of the two displacement gauges. Can be removed. Also, in this shape measuring device, due to the zero point adjustment error of the plurality of sensors (light beams), the shape measurement result has a parabolic error, that is, the zero point error (angle of the other light beam with respect to one light beam as a reference). There is a problem in that an error component which is proportional to the square of the measured distance is introduced.

【0003】そこで、従来においては、例えば基準とな
る平面鏡を2本の光ビームで走査することにより、その
形状を測定し、両ビームによるセンサの出力差から角度
差を求めて、ゼロ点の不整をハード的またはソフト的に
調整していた。
Therefore, in the prior art, for example, the reference plane mirror is scanned with two light beams to measure the shape, and the angular difference is obtained from the output difference of the sensors by both beams, and the zero point is irregular. Was adjusted in terms of hardware or software.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような従来のゼロ点調整方法では、完全な平面鏡が存在
しないため、基準となる平面鏡の平坦度が、例えば変位
としてλ/20のレベルであっても、角度として見ると
大きい場合が多く、形状測定におけるゼロ点誤差の影響
は依然として大きくなるという問題がある。
However, in the above-described conventional zero-point adjusting method, since there is no perfect plane mirror, the flatness of the reference plane mirror is, for example, a displacement of λ / 20 level. However, when viewed as an angle, it is often large, and there is a problem that the influence of the zero point error in shape measurement is still large.

【0005】本発明は、上記のような従来の問題を解決
したものであり、その目的とするところは、被測定物に
対する接線角を2点で同時に検出する角度検出手段のゼ
ロ点調整を測定中のデータ処理だけで自律的に行い、高
精度の形状測定を可能にした形状測定装置を提供するこ
とにある。
The present invention solves the above-mentioned conventional problems, and an object thereof is to measure the zero point adjustment of an angle detecting means for simultaneously detecting the tangent angle to the object to be measured at two points. It is an object of the present invention to provide a shape measuring device capable of performing highly accurate shape measurement by autonomously performing only the middle data processing.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、互いに所定距離離れた2点で被測
定物に対する角度を同時に検出する角度検出手段と、前
記被測定物の複数箇所で2点の角度を検出すべく前記被
測定物と前記角度検出手段とを互いに平行な方向に相対
移動させる移動手段と、前記複数箇所で前記角度検出手
段から出力される2点の角度データから被測定物の形状
を求める演算手段とを有する形状測定装置であって、前
記演算手段は、前記2点の角度データの差を前記所定距
離で除算した値を複数箇所分求め、これらの値を2階数
値積分して形状データを求める機能を備えるものであ
る。
In order to achieve the above object, the invention of claim 1 is an angle detecting means for simultaneously detecting an angle with respect to an object to be measured at two points separated from each other by a predetermined distance, and the object to be measured. Moving means for relatively moving the object to be measured and the angle detecting means in a direction parallel to each other so as to detect angles at two points at a plurality of points, and angles of two points output from the angle detecting means at the plurality of points. A shape measuring device having a calculation means for calculating the shape of an object to be measured from data, wherein the calculation means obtains a value obtained by dividing the difference between the angle data of the two points by the predetermined distance for a plurality of points, It has a function to obtain shape data by numerically integrating the values by the second order.

【0007】請求項2の発明は、互いに所定距離dだけ
離れた2点で被測定物に対する角度を同時に検出する角
度検出手段と、前記被測定物の複数箇所で2点の角度を
検出すべく前記被測定物と前記角度検出手段とを互いに
平行な方向に相対移動させる移動手段と、前記複数箇所
で前記角度検出手段から出力される2点の角度データか
ら被測定物の形状を求める演算手段とを有する形状測定
装置であって、前記演算手段は、前記2点の角度データ
の差を前記所定距離dで除算した値を複数箇所分求め、
これらの値を2階数値積分することにより測定範囲0か
らLまでの第1の形状データと測定範囲dからL+dま
での第2の形状データをそれぞれ求め、さらに前記一方
の角度データを1階数値積分した第3の形状データと前
記他方の角度データを1階数値積分した第4の形状デー
タをそれぞれ求め、前記第2の形状データと前記第1の
形状データの差の和と前記第4の形状データと前記第3
の形状データの差の和から前記角度検出手段のドリフト
による2点間の角度差を求める機能を備えるものであ
る。
According to a second aspect of the present invention, there is provided an angle detecting means for simultaneously detecting angles with respect to the object to be measured at two points which are separated from each other by a predetermined distance d, and to detect the angles of the two points at a plurality of points of the object to be measured. Moving means for relatively moving the object to be measured and the angle detecting means in a direction parallel to each other, and calculating means for obtaining the shape of the object to be measured from angle data of two points output from the angle detecting means at the plurality of locations. A shape measuring apparatus having: and the calculating means obtains a value obtained by dividing the difference between the angle data of the two points by the predetermined distance d for a plurality of locations,
The first shape data from the measurement range 0 to L and the second shape data from the measurement range d to L + d are respectively obtained by numerically integrating these values by the second order, and the one angle data is further calculated as the first order numerical value. Fourth shape data obtained by first-order numerical integration of the integrated third shape data and the other angle data is obtained, and the sum of the difference between the second shape data and the first shape data and the fourth shape data are obtained. Shape data and the third
It has a function of obtaining the angle difference between two points due to the drift of the angle detecting means from the sum of the difference of the shape data.

【0008】請求項3の発明は、互いに所定距離dだけ
離れた2点で被測定物に対する角度を同時に検出する角
度検出手段と、前記被測定物の複数箇所で2点の角度を
検出すべく前記被測定物と前記角度検出手段とを互いに
平行な方向に相対移動させる移動手段と、前記複数箇所
で前記角度検出手段から出力される2点の角度データか
ら被測定物の形状を求める演算手段とを有する形状測定
装置であって、前記演算手段は、前記2点の角度データ
の差を前記所定距離dで除算した値を複数箇所分求め、
これらの値を2階数値積分することにより測定距離0か
らLまでの第1の形状データと測定範囲dからL+dま
での第2の形状データをそれぞれ求め、さらに前記一方
の角度データを1階数値積分した第3の形状データと前
記他方の角度データを1階数値積分した第4の形状デー
タをそれぞれ求め、前記第2の形状データと前記第1の
形状データの差の和と前記第4の形状データと前記第3
の形状データの差の和から前記角度検出手段のドリフト
による2点間の角度差を求め、この2点間の角度差から
放物線誤差を求め、前記第1の形状データから前記放物
線誤差を差し引くことにより真の形状データを求める機
能を備えるものである。
According to a third aspect of the present invention, there is provided an angle detecting means for simultaneously detecting angles with respect to the object to be measured at two points which are separated from each other by a predetermined distance d, and to detect the angles of the two points at a plurality of points of the object to be measured. Moving means for relatively moving the object to be measured and the angle detecting means in a direction parallel to each other, and calculating means for obtaining the shape of the object to be measured from angle data of two points output from the angle detecting means at the plurality of locations. A shape measuring apparatus having: and the calculating means obtains a value obtained by dividing the difference between the angle data of the two points by the predetermined distance d for a plurality of locations,
The first shape data from the measurement distance 0 to L and the second shape data from the measurement range d to L + d are respectively obtained by numerically integrating these values with the second order numerical value, and further, the one angle data is the first-order numerical value. Fourth shape data obtained by first-order numerical integration of the integrated third shape data and the other angle data is obtained, and the sum of the difference between the second shape data and the first shape data and the fourth shape data are obtained. Shape data and the third
From the sum of the difference of the shape data, the angle difference between the two points due to the drift of the angle detecting means, the parabolic error is calculated from the angle difference between the two points, and the parabolic error is subtracted from the first shape data. Is provided with a function of obtaining true shape data.

【0009】請求項4の発明は、前記演算手段は、前記
他方の角度データから請求項2で求めた2点間の角度差
を差し引いて第1の角度データを求め、この角度データ
と前記一方の角度データとの差を前記所定距離dで除算
した値を複数箇所求め、これらの値を1階数値積分して
走査誤差を求め、さらに前記一方の角度データから前記
走査誤差を差し引くことにより第2の角度データを求
め、この第2の角度データを1階数値積分することによ
り真の形状データを求める機能を備えたものである。
According to a fourth aspect of the present invention, the calculating means obtains the first angle data by subtracting the angle difference between the two points obtained in the second aspect from the other angle data, and the angle data and the one The value obtained by dividing the difference from the angle data of 1 by the predetermined distance d is obtained at a plurality of points, the values are first-order numerically integrated to obtain the scanning error, and the scanning error is further subtracted from the one angle data to obtain the first error. It is provided with a function of obtaining the true shape data by obtaining the second angle data and performing the first-order numerical integration of the second angle data.

【0010】[0010]

【作用】本発明においては、請求項1の構成により、演
算手段は2点の角度データの差を前記所定距離で除算し
た値を複数箇所分求め、これらの値を2階数値積分して
形状データを求めるものであるから、2点間の角度差α
の影響のない高精度の形状測定が可能になる。
In the present invention, according to the structure of claim 1, the calculating means obtains a value obtained by dividing the difference between the angle data of two points by the predetermined distance for a plurality of places, and secondarily numerically integrates these values to obtain the shape. Since the data is obtained, the angle difference α between the two points
It enables highly accurate shape measurement without the influence of.

【0011】また、本発明は、請求項2の構成により、
演算手段は、前記第2の形状データと前記第1の形状デ
ータの差の和と前記第4の形状データと前記第3の形状
データの差の和から前記角度検出手段のドリフトによる
2点間の角度差αを求め、この角度差αで補正すること
で角度差αの影響を受けない正しい形状を求めることが
できる。
Further, according to the present invention, by the constitution of claim 2,
The calculating means calculates the sum of the differences between the second shape data and the first shape data and the difference between the fourth shape data and the third shape data to obtain a difference between the two points due to the drift of the angle detecting means. By obtaining the angle difference α of and correcting with this angle difference α, it is possible to obtain the correct shape that is not affected by the angle difference α.

【0012】またさらに、本発明は請求項3の構成によ
り、演算手段は、前記第2の形状データと前記第1の形
状データの差の和と前記第4の形状データと前記第3の
形状データの差の和から前記角度検出手段のドリフトに
よる2点間の角度差を求め、この2点間の角度差から放
物線誤差を求め、前記第1の形状データから前記放物線
誤差を差し引くことにより真の形状データを求める構成
になっているから、ゼロ点調整をデータ処理だけで自律
的に行い得るとともに、高精度の形状測定が可能にな
る。
Still further, according to the present invention, according to the configuration of claim 3, the calculation means includes the sum of the differences between the second shape data and the first shape data, the fourth shape data and the third shape. The difference between the two points due to the drift of the angle detecting means is obtained from the sum of the differences of the data, the parabolic error is obtained from the difference between the two points, and the parabolic error is subtracted from the first shape data to obtain the true value. Since it is configured to obtain the shape data of, the zero point adjustment can be autonomously performed only by data processing, and highly accurate shape measurement can be performed.

【0013】また、本発明は、請求項4の構成により、
演算手段は、第1の角度データと一方の角度データとの
差を所定距離dで除算した値を複数箇所求め、これらの
値を1階数値積分して走査誤差を求めた後、この走査誤
差を一方の角度データから差し引いて第2の角度データ
を求め、この第2の角度データを1階数値積分すること
により真の形状データを求めるから、ゼロ点調整をデー
タ処理だけで自律的に行い得るとともに、高精度の形状
測定が可能になる。
Further, according to the present invention, in accordance with the constitution of claim 4,
The calculation means obtains a value obtained by dividing the difference between the first angle data and one angle data by a predetermined distance d at a plurality of positions, first-order numerically integrates these values to obtain a scanning error, and then the scanning error. Is subtracted from one of the angle data to obtain the second angle data, and the true shape data is obtained by first-order numerical integration of the second angle data. Therefore, zero point adjustment is autonomously performed only by data processing. It is possible to obtain the shape measurement with high accuracy.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明を適用した試料(被測定物)の形状
測定に使用される走査系(移動系)および処理系の概略
図、図2は本発明を説明するための原理図であり、差動
オートコリメーション法による真直度測定の例を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a scanning system (moving system) and a processing system used for shape measurement of a sample (measurement object) to which the present invention is applied, and FIG. 2 is a principle diagram for explaining the present invention. An example of straightness measurement by the dynamic autocollimation method is shown.

【0015】図1において、10は基台、11は基台1
0にその長手方向に沿い移動可能に設けたテーブルであ
り、このテーブル11は送りねじ12と該送りねじ12
を回転するモータ13により基台10の長手方向に移動
できる構成になっている。テーブル11には、半導体レ
ーザおよび光学系からなるセンサヘッド14が固定され
ている。センサヘッド14から出射する2本の光ビーム
14a,14bは被測定物(平面鏡試料)15に照射さ
れる。被測定物15は、テーブル11と平行な方向に移
動する手動のX軸ステージ16に固定される。
In FIG. 1, 10 is a base and 11 is a base 1.
0 is a table provided so as to be movable in the longitudinal direction thereof. The table 11 includes a feed screw 12 and the feed screw 12.
A motor 13 that rotates the base 10 can move in the longitudinal direction of the base 10. A sensor head 14 including a semiconductor laser and an optical system is fixed to the table 11. The two light beams 14a and 14b emitted from the sensor head 14 are applied to the object to be measured (plane mirror sample) 15. The DUT 15 is fixed to a manual X-axis stage 16 that moves in a direction parallel to the table 11.

【0016】17はテーブル11およびX軸ステージ1
6の変位を検出する変位計、18は被測定物15の表面
から反射される光ビームの反射角度(被測定物15のビ
ームスポット点の接線角に相当)を測定する測定回路で
あり、この測定回路18から出力される角度信号および
前記変位計17から出力される位置信号はA/Dコンバ
ータ19によりディジタル量に変換された後、マイクロ
コンピュータ20に出力される。このマイクロコンピュ
ータ20は、被測定物15の形状演算および光ビームの
ゼロ点調整処理を行う。
Reference numeral 17 is a table 11 and an X-axis stage 1.
A displacement gauge for detecting the displacement of 6 and a measuring circuit 18 for measuring the reflection angle of the light beam reflected from the surface of the object to be measured 15 (corresponding to the tangent angle of the beam spot point of the object to be measured 15). The angle signal output from the measuring circuit 18 and the position signal output from the displacement meter 17 are converted into digital values by the A / D converter 19 and then output to the microcomputer 20. The microcomputer 20 calculates the shape of the DUT 15 and adjusts the zero point of the light beam.

【0017】上記構成の走査/処理系において、モータ
13を駆動することにより、テーブル11を含むセンサ
ヘッド14をX軸方向に測定範囲x=0からx=Lまで
移動させ、測定回路18からA/Dコンバータ19を通
してマイクロコンピュータ20に入力される2本の光ビ
ームに対応する各角度データをサンプリング間隔毎に取
り込み、マイクロコンピュータ20に内蔵したメモリに
記憶する。
In the scanning / processing system having the above structure, the motor 13 is driven to move the sensor head 14 including the table 11 in the X-axis direction from the measuring range x = 0 to x = L, and the measuring circuit 18 to A The angle data corresponding to the two light beams input to the microcomputer 20 through the / D converter 19 is fetched at each sampling interval and stored in the memory built in the microcomputer 20.

【0018】マイクロコンピュータ20では、2本の光
ビームに対応する各角度データを1階積分し、この両積
分値の測定範囲での平均値の差δと後述する値Δf1
求め、これから光ビーム14aを基準とした光ビーム1
4aと14bの角度差αを求める。そして、この角度差
αを使用して角度差αのない、即ち光ビーム14a,1
4bのゼロ点不整を補正した真の形状データを求める。
In the microcomputer 20, each angle data corresponding to two light beams is first-order integrated, a difference δ between the average values of both integrated values in the measurement range and a value Δf 1 which will be described later are obtained, and the light is calculated from this difference. Light beam 1 based on beam 14a
An angle difference α between 4a and 14b is obtained. Then, using this angle difference α, there is no angle difference α, that is, the light beams 14a, 1
The true shape data in which the zero point irregularity of 4b is corrected is obtained.

【0019】次に、図2に示す原理図を参照して形状測
定の処理について説明する。図2において、被測定物1
5に対してX軸方向に移動するセンサヘッド14は、レ
ーザビームに相当する2本のプローブ14a,14bを
備える。この各プローブ14a,14bは、これから出
射するレーザビームを被測定物15の表面に照射し、被
測定物15の表面で反射されるレーザビームを取り込む
ことにより、レーザビーム照射点の接線角に相当する角
度を検出し、この角度データから得た形状の1階の微係
数の差を基にプローブのゼロ点不整の影響を受けない形
状データを求める。
Next, the process of shape measurement will be described with reference to the principle diagram shown in FIG. In FIG. 2, the DUT 1
The sensor head 14 that moves in the X-axis direction with respect to 5 includes two probes 14a and 14b corresponding to a laser beam. Each of the probes 14a and 14b irradiates the surface of the DUT 15 with the laser beam emitted from the probe 14a and captures the laser beam reflected by the surface of the DUT 15, thereby obtaining a tangential angle of the laser beam irradiation point. The angle to be detected is detected, and the shape data that is not affected by the zero point imbalance of the probe is obtained based on the difference between the first-order differential coefficients of the shape obtained from this angle data.

【0020】図2中、C0 はセンサヘッド14の代表点
であり、ここでは、プローブ14aの位置Aに取る。ま
た、Lは基本測定長、dはプローブ14aと14bの距
離、φz(x)はセンサヘッド14の並進誤差、φp(x)
はセンサヘッド14のピッチングである。さらに、f
(x)は測定すべき被測定物15の形状である。このと
き、各プローブ14a,14bの出力ma′(x),
b′(x)は次式で与えられる。
In FIG. 2, C 0 is a representative point of the sensor head 14, and here, it is taken at the position A of the probe 14a. Further, L is the basic measurement length, d is the distance between the probes 14a and 14b, φ z (x) is the translation error of the sensor head 14, φ p (x)
Is pitching of the sensor head 14. Furthermore, f
(X) is the shape of the DUT 15 to be measured. In this case, each probe 14a, 14b output m a of '(x),
m b ′ (x) is given by the following equation.

【0021】 ma′(x)=f′(x)+φp(x)・・・・・・・・・・・・・・・(1) mb′(x)=f′(x+d)+φp(x)+α ・・・・・・・・・・(2) ここで、αはプローブ14aの位置Aを基準にしたプロ
ーブ14bの位置Bのゼロ点の狂いであり、未知の量で
ある。ただし、角度測定においては、並進誤差φz(x)
の影響を受けないため、上記(1),(2)式中には並
進誤差φz(x)は表われない。上記(1),(2)式で
示すプローブ14a,14bの差動出力 m″(x)は次
式で与えられる。
[0021] m a '(x) = f ' (x) + φ p (x) ··············· (1) m b '(x) = f' (x + d) + Φ p (x) + α (2) where α is the deviation of the zero point at the position B of the probe 14b with respect to the position A of the probe 14a, and is an unknown amount. is there. However, in angle measurement, translation error φ z (x)
Therefore, the translation error φ z (x) cannot be expressed in the above equations (1) and (2). The differential output m ″ (x) of the probes 14a and 14b shown in the above equations (1) and (2) is given by the following equation.

【0022】 m″(x)={mb′(x)−ma′(x)}/d・・・・・・・・・・(3) この(3)式は、プローブ14a,14bの角度データ
の差をプローブ間距離dで除した値である。上記m″
(x)に2階の数値積分を施すと、走査誤差(並進誤差と
ピッチング)の影響を受けない形状データf1(x)を求
めることができる。f1(x)は次式のようになる。
M ″ (x) = {m b ′ (x) −m a ′ (x)} / d (3) This equation (3) is used for the probes 14a and 14b. It is a value obtained by dividing the difference in the angle data of 2 by the inter-probe distance d.
By performing the second-order numerical integration on (x), it is possible to obtain the shape data f 1 (x) that is not affected by the scanning error (translation error and pitching). f 1 (x) is given by the following equation.

【0023】 f1(x)=f(x)+α(x−L/2)2 /2d・・・・・・・・・(4) 但しx=0〜Lである。得られた形状f1(x)中には、
放物線誤差(ゼロ点誤差)が含まれている。なお、厳密
には、式(4)のf(x)には、差分によって求めた
m″(x)を微分値として扱ったための誤差と、数値積
分の誤差が含まれるが、後述するように角度差αの計算
精度にはほとんど影響しない。
F 1 (x) = f (x) + α (x−L / 2) 2 / 2d ... (4) However, x = 0 to L. In the obtained shape f 1 (x),
Includes parabolic error (zero point error). Strictly speaking, f (x) in the equation (4) includes an error caused by treating m ″ (x) obtained by the difference as a differential value and an error caused by numerical integration. It has almost no effect on the calculation accuracy of the angle difference α.

【0024】上記角度差αを求めるために、以下に述べ
る処理を行う。まず、式(1),(2)で示したプロー
ブ14a,14bの出力を、それぞれ1階積分する。 ma(x)=f(x)+φp(x)・・・・・・・・・・・・・・・・・(5) mb(x)=f(x+d)+φp(x)+αd・・・・・・・・・・・・(6) 得られたma(x)とmb(x)のx=0〜(L−d)の範
囲での平均値の差をδとする。
In order to obtain the angle difference α, the following processing is performed. First, the outputs of the probes 14a and 14b represented by the equations (1) and (2) are integrated by the first order. m a (x) = f ( x) + φ p (x) ················· (5) m b (x) = f (x + d) + φ p (x) + αd ············ (6) the difference between the average value in the range of the obtained m a (x) and x = 0 to a m b (x) (L- d) δ And

【0025】ここで、差δの和を取る範囲を〔 〕で示
すと、測定範囲Lでのデータ数NL,プローブ間でのデー
タ数をNd のときのδは次式で与えられる。 δ=Δf−α(L+d)/2 ・・・・・・・・・・・・・・・・・(7) なお、式(7)におけるΔfは次式で与えられる。 Δf={f〔L−d,L〕−f〔0,d〕}/(NL −Nd)・・・(8)
Here, when the range of the sum of the differences δ is shown by [], δ when the number of data N L in the measurement range L and the number of data between probes is N d is given by the following equation. δ = Δf−α (L + d) / 2 (7) Note that Δf in the equation (7) is given by the following equation. Delta] f = {f [L-d, L] -f [0, d]} / (N L -N d) ··· (8)

【0026】このΔfが分かればαが求まる。ここで、
式(4)のf1(x)を式(8)に代入して計算した結果
をΔf1 とすると、 Δf1 =Δf ・・・・・・・・・・・・・・・・・・・・・・・・(9) となり、Δf1 にはαの影響が含まれないことが分か
る。Δf1 とδを使ってαを次式により求めることがで
きる。 α=2(Δf1 −δ)/L−d ・・・・・・・・・・・・・・・・(10)
If this Δf is known, α can be obtained. here,
Substituting f 1 (x) of equation (4) into equation (8) and letting Δf 1 be the result of calculation, Δf 1 = Δf. (9), and it can be seen that Δf 1 does not include the influence of α. Using Δf 1 and δ, α can be calculated by the following equation. α = 2 (Δf 1 −δ) / L−d (10)

【0027】求めたαで補正すれば、式(4)からαの
影響を受けない正しい形状 f(x)のデータがx=0〜
Lの範囲で求まる。また、これから正しいf′(x)のデ
ータが求まり、式(1)また式(2)を用いてピッチン
グφp(x)が分かる。さらに式(1)のmb′(x)を積
分することによりf(x)のデータがx=d〜L+dの範
囲で求まる。
If corrected with the obtained α, the data of the correct shape f (x) which is not affected by α from the equation (4) is x = 0 to 0.
It can be obtained in the range of L. Further, the correct f ′ (x) data is obtained from this, and the pitching φ p (x) can be known using the equations (1) and (2). Further, by integrating m b ′ (x) of the equation (1), the data of f (x) can be obtained within the range of x = d to L + d.

【0028】一方、mb′(x)からαを引いた角度デー
タ(測定データ)mb′(x)を作成すると、式(2)
は、 mb′(x)=f′(x+d)+φp(x) ・・・・・・・・・・・・・(11) となる。ここで、x=x+dとすると、式(1)は、 ma′(x+d)=f′(x+d)+φp(x+d)・・・・・・・・・(12) となる。式 (11) と式(12)から、 ma′(x+d)−mb′(x)=φp(x+d)−φ
p(x)、 即ち、{ma′(x+d)−mb′(x)}/d={φp(x
+d)−φp)x)}/d(=φp′(x))となり、ma
(x)と mb′(x)角度データからφp′(x)のデータ
が求まる。これを積分してφp(x)のデータが求まる。
そして、φp(x)のデータを式(1)に代入して、f′
(x)のデータが求まる。これから正しいf(x)のデー
タがx=d〜L+dの範囲で求まる。φp (x)のデー
タとαを式(2)に代入して、f′(x+d)のデータ
が求まる。従って、両方のf(x)から、x=0〜L+
dの範囲のf(x)が求まる。
On the other hand, creating a m b 'angle data minus α from (x) (measurement data) m b' (x), Formula (2)
Becomes m b ′ (x) = f ′ (x + d) + φ p (x) (11). Here, when x = x + d, equation (1) is, m a '(x + d ) = f' become (x + d) + φ p (x + d) ········· (12). Equation (11) from equation (12), m a '( x + d) -m b' (x) = φ p (x + d) -φ
p (x), i.e., {m a '(x + d) -m b' (x)} / d = {φ p (x
+ D) -φ p ) x)} / d (= φ p ′ (x)), and ma a
The data of φ p ′ (x) can be obtained from the (x) and m b ′ (x) angle data. By integrating this, the data of φ p (x) can be obtained.
Then, by substituting the data of φ p (x) into the equation (1), f ′
The data of (x) is obtained. From this, correct data of f (x) can be obtained in the range of x = d to L + d. By substituting the data of φ p (x) and α into the equation (2), the data of f ′ (x + d) is obtained. Therefore, from both f (x), x = 0 to L +
f (x) in the range of d is obtained.

【0029】上記のような本実施例においては、走査の
際の並進とピッチングの走査誤差成分を除去するソフト
ウェアデータムにおいて、2本のプローブのゼロ点の違
いを基準試料を全く用いずに計算処理だけで決定するこ
とができる。これによって、メトロロジーフレームなど
の外部基準を用いなくとも、実際の機器上で真直度など
の形状を高精度に測定することができる。
In the present embodiment as described above, in the software datum for removing the scanning error components of translation and pitching during scanning, the difference between the zero points of the two probes is calculated without using the reference sample. Can only be determined. As a result, the shape such as straightness can be measured with high accuracy on an actual device without using an external reference such as a metrology frame.

【0030】また、測定中の実際の角度差αが算出でき
るため、センサの熱変位等の2本のプローブのゼロ点の
違いの経時変化の影響が平均化されることにより減少
し、2本のプローブのゼロ点の違いを校正するための予
備測定をする必要ががなくなるため、測定時間も短縮で
きる。
Further, since the actual angle difference α during the measurement can be calculated, the influence of the time-dependent change of the difference between the zero points of the two probes such as the thermal displacement of the sensor is reduced by averaging, and the two points are reduced. Since it is not necessary to make a preliminary measurement for calibrating the difference between the zero points of the probe, the measurement time can be shortened.

【0031】なお、上記実施例においては、差動オート
コリメーション法を用いたが、本発明は上記に限定され
るものではなく、3点法及び混合法による形状測定にも
適用可能である。ここで、混合法は被測定物に対する変
位を出力するもので、その出力値の2回の差分演算は、
上記実施例における差動出力m″(x)に相当し、変位
の出力値の1回の差分演算は上記実施例におけるプロー
ブの出力ma′(x),mb′(x)に相当する。
Although the differential autocollimation method is used in the above embodiment, the present invention is not limited to the above, and can be applied to shape measurement by the three-point method and the mixing method. Here, the mixing method outputs the displacement with respect to the measured object, and the difference calculation of the output values twice is
This corresponds to the differential output m ″ (x) in the above embodiment, and one difference calculation of the displacement output value corresponds to the output m a ′ (x), m b ′ (x) of the probe in the above embodiment. .

【0032】[0032]

【発明の効果】以上説明したように、本発明の請求項1
によれば、演算手段は2点の角度データの差を前記所定
距離で除算した値を複数箇所分求め、これらの値を2階
数値積分して形状データを求めるものであるから、2点
間の角度差αの影響のない高精度の形状測定が可能にな
る。
As described above, according to the first aspect of the present invention.
According to the calculation means, the difference between the angle data of two points is divided by the predetermined distance to obtain a plurality of values, and these values are secondarily numerically integrated to obtain the shape data. It is possible to perform highly accurate shape measurement without being affected by the angle difference α.

【0033】また、本発明の請求項2によれば、演算手
段は、前記第2の形状データと前記第1の形状データの
差の和と前記第4の形状データと前記第3の形状データ
の差の和から前記角度検出手段のドリフトによる2点間
の角度差αを求め、この角度差αで補正することで角度
差αの影響を受けない正しい形状を求めることができ
る。
Further, according to a second aspect of the present invention, the calculation means includes a sum of differences between the second shape data and the first shape data, the fourth shape data and the third shape data. By calculating the angle difference α between the two points due to the drift of the angle detecting means from the sum of the differences and correcting with this angle difference α, a correct shape that is not affected by the angle difference α can be obtained.

【0034】またさらに、本発明の請求項3によれば、
演算手段は、前記第2の形状データと前記第1の形状デ
ータの差の和と前記第4の形状データと前記第3の形状
データの差の和から前記角度検出手段のドリフトによる
2点間の角度差を求め、この2点間の角度差から放物線
誤差を求め、前記第1の形状データから前記放物線誤差
を差し引くことにより真の形状データを求める構成にな
っているから、ゼロ点調整をデータ処理だけで自律的に
行い得るとともに、高精度の形状測定が可能になる。
Furthermore, according to claim 3 of the present invention,
The calculating means calculates the sum of the differences between the second shape data and the first shape data and the difference between the fourth shape data and the third shape data to obtain a difference between the two points due to the drift of the angle detecting means. Is calculated, the parabolic error is calculated from the angular difference between the two points, and the true shape data is calculated by subtracting the parabolic error from the first shape data. It can be performed autonomously only by data processing, and highly accurate shape measurement becomes possible.

【0035】また、本発明の請求項4によれば、演算手
段は、第1の角度データと一方の角度データとの差を所
定距離dで除算した値を複数箇所求め、これらの値を1
階数値積分して走査誤差を求めた後、この走査誤差を一
方の角度データから差し引いて第2の角度データを求
め、この第2の角度データを1階数値積分することによ
り真の形状データを求めるから、ゼロ点調整をデータ処
理だけで自律的に行い得るとともに、高精度の形状測定
が可能になる。
According to a fourth aspect of the present invention, the calculating means obtains a plurality of values obtained by dividing the difference between the first angle data and one angle data by the predetermined distance d, and calculates these values as 1
After obtaining the scanning error by numerically integrating the first order, this scanning error is subtracted from one of the angle data to obtain the second angle data, and the second-order angle data is first-order numerically integrated to obtain the true shape data. Since it is obtained, zero point adjustment can be autonomously performed only by data processing, and highly accurate shape measurement becomes possible.

【0036】よって、本発明においては、角度検出手段
の所定距離離間した複数におけるゼロ点の違いを、基準
を全く用いずに測定中のデータ処理だけで自律的に決定
することができる。これに伴いメトロロジーフレームな
どの外部基準を用いることなく、実際の機器上で被測定
物の形状を高精度に測定することができ、測定時間も短
縮できるという効果がある。
Therefore, in the present invention, the difference between the zero points of the plurality of angle detecting means which are separated by the predetermined distance can be autonomously determined only by the data processing during the measurement without using any reference. Accordingly, the shape of the object to be measured can be measured with high accuracy on an actual device without using an external reference such as a metrology frame, and the measurement time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した被測定物の形状測定に使用さ
れる走査系及び処理系の概略構成図である。
FIG. 1 is a schematic configuration diagram of a scanning system and a processing system used for measuring the shape of an object to be measured to which the present invention is applied.

【図2】本発明を説明するための原理図である。FIG. 2 is a principle diagram for explaining the present invention.

【符号の説明】[Explanation of symbols]

11 テーブル 12 送りねじ(移動手段) 13 モータ(移動手段) 14 センサヘッド(角度検出手段) 14a,14b 光ビーム(レーザビーム、プローブ) 15 被測定物 18 測定回路 19 A/Dコンバータ 20 マイクロコンピュータ(演算手段) 11 table 12 feed screw (moving means) 13 motor (moving means) 14 sensor head (angle detecting means) 14a, 14b light beam (laser beam, probe) 15 object to be measured 18 measuring circuit 19 A / D converter 20 microcomputer ( (Calculation means)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月22日[Submission date] March 22, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

───────────────────────────────────────────────────── フロントページの続き (71)出願人 594046961 奥山 栄樹 秋田県秋田市手形字中台59番地57号 (72)発明者 清野 慧 宮城県仙台市青葉区片平一丁目2−35− 403 (72)発明者 高 偉 中華人民共和国四川省重慶市大渡口区馬王 新村9幢7号 (72)発明者 奥山 栄樹 秋田県秋田市手形字中台59番地57号 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 594046961 Okiyama Eiki 59-59 Nakadai, Akita-shi, Akita-shi, Akita (72) Inventor Kei Kei 2-35-403, Katahira, Aoba-ku, Sendai-shi, Miyagi (72) ) The inventor, Gao Wei, No.7, Mao-Shin-mura, Daoukou-gu, Chongqing, Sichuan Province, China (72) Inventor, Eiki Okuyama 59-57, Nakadai, Akita, Akita, Japan

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 互いに所定距離離れた2点で被測定物に
対する角度を同時に検出する角度検出手段と、前記被測
定物の複数箇所で2点の角度を検出すべく前記被測定物
と前記角度検出手段とを互いに平行な方向に相対移動さ
せる移動手段と、前記複数箇所で前記角度検出手段から
出力される2点の角度データから被測定物の形状を求め
る演算手段とを有する形状測定装置であって、前記演算
手段は、前記2点の角度データの差を前記所定距離で除
算した値を複数箇所分求め、これらの値を2階数値積分
して形状データを求める機能を備えることを特徴とする
形状測定装置。
1. An angle detecting means for simultaneously detecting angles with respect to an object to be measured at two points separated from each other by a predetermined distance, and the object to be measured and the angle for detecting angles at two points at a plurality of points of the object to be measured. A shape measuring device having a moving means for relatively moving the detecting means in a direction parallel to each other, and a calculating means for obtaining the shape of the object to be measured from angle data of two points output from the angle detecting means at the plurality of locations. The calculation means has a function of calculating a value obtained by dividing the difference between the angle data of the two points by the predetermined distance for a plurality of positions, and numerically integrating the values to obtain the shape data. Shape measuring device.
【請求項2】 互いに所定距離dだけ離れた2点で被測
定物に対する角度を同時に検出する角度検出手段と、前
記被測定物の複数箇所で2点の角度を検出すべく前記被
測定物と前記角度検出手段とを互いに平行な方向に相対
移動させる移動手段と、前記複数箇所で前記角度検出手
段から出力される2点の角度データから被測定物の形状
を求める演算手段とを有する形状測定装置であって、前
記演算手段は、前記2点の角度データの差を前記所定距
離dで除算した値を複数箇所分求め、これらの値を2階
数値積分することにより測定範囲0からLまでの第1の
形状データと測定範囲dからL+dまでの第2の形状デ
ータをそれぞれ求め、さらに前記一方の角度データを1
階数値積分した第3の形状データと前記他方の角度デー
タを1階数値積分した第4の形状データをそれぞれ求
め、前記第2の形状データと前記第1の形状データの差
の和と前記第4の形状データと前記第3の形状データの
差の和から前記角度検出手段のドリフトによる2点間の
角度差を求める機能を備えることを特徴とする形状測定
装置。
2. An angle detecting means for simultaneously detecting angles with respect to an object to be measured at two points separated from each other by a predetermined distance d, and the object to be measured so as to detect angles at two points at a plurality of points of the object to be measured. Shape measurement having moving means for relatively moving the angle detecting means in a direction parallel to each other, and calculating means for obtaining the shape of the object to be measured from angle data of two points output from the angle detecting means at the plurality of locations. In the device, the calculating means obtains a value obtained by dividing a difference between the angle data of the two points by the predetermined distance d for a plurality of places, and performs a second-order numerical integration of these values to measure ranges from 0 to L. And the second shape data from the measurement range d to L + d are obtained.
Third shape data obtained by numerically integrating the floor and fourth shape data obtained by numerically integrating the other angle data by the first floor are respectively obtained, and the sum of the difference between the second shape data and the first shape data and the first shape data are obtained. 4. A shape measuring device having a function of obtaining an angle difference between two points due to a drift of the angle detecting means from a sum of differences between the shape data No. 4 and the third shape data.
【請求項3】 互いに所定距離dだけ離れた2点で被測
定物に対する角度を同時に検出する角度検出手段と、前
記被測定物の複数箇所で2点の角度を検出すべく前記被
測定物と前記角度検出手段とを互いに平行な方向に相対
移動させる移動手段と、前記複数箇所で前記角度検出手
段から出力される2点の角度データから被測定物の形状
を求める演算手段とを有する形状測定装置であって、前
記演算手段は、前記2点の角度データの差を前記所定距
離dで除算した値を複数箇所分求め、これらの値を2階
数値積分することにより測定距離0からLまでの第1の
形状データと測定範囲dからL+dまでの第2の形状デ
ータをそれぞれ求め、さらに前記一方の角度データを1
階数値積分した第3の形状データと前記他方の角度デー
タを1階数値積分した第4の形状データをそれぞれ求
め、前記第2の形状データと前記第1の形状データの差
の和と前記第4の形状データと前記第3の形状データの
差の和から前記角度検出手段のドリフトによる2点間の
角度差を求め、この2点間の角度差から放物線誤差を求
め、前記第1の形状データから前記放物線誤差を差し引
くことにより真の形状データを求める機能を備えること
を特徴とする形状測定装置。
3. An angle detecting means for simultaneously detecting angles with respect to an object to be measured at two points separated from each other by a predetermined distance d, and the object to be measured so as to detect angles at two points at a plurality of points of the object to be measured. Shape measurement having moving means for relatively moving the angle detecting means in a direction parallel to each other, and calculating means for obtaining the shape of the object to be measured from angle data of two points output from the angle detecting means at the plurality of locations. In the device, the calculating means obtains a value obtained by dividing the difference between the angle data of the two points by the predetermined distance d for a plurality of places, and numerically integrates these values from the measurement distance 0 to L. And the second shape data from the measurement range d to L + d are obtained.
Third shape data obtained by numerically integrating the floor and fourth shape data obtained by numerically integrating the other angle data by the first order are respectively obtained, and the sum of the difference between the second shape data and the first shape data and the first shape data are obtained. From the sum of the difference between the shape data of No. 4 and the third shape data, the angle difference between the two points due to the drift of the angle detecting means is obtained, and the parabolic error is obtained from the angle difference between the two points, and the first shape is obtained. A shape measuring apparatus having a function of obtaining true shape data by subtracting the parabolic error from the data.
【請求項4】 前記演算手段は、前記他方の角度データ
から請求項2または請求項3で求めた2点間の角度差を
差し引いて第1の角度データを求め、この角度データと
前記一方の角度データとの差を前記所定距離dで除算し
た値を複数箇所求め、これらの値を1階数値積分して走
査誤差を求め、さらに前記一方の角度データから前記走
査誤差を差し引くことにより第2の角度データを求め、
この第2の角度データを1階数値積分することにより真
の形状データを求める機能を備えたことを特徴とする請
求項2記載の形状測定装置。
4. The calculating means obtains first angle data by subtracting the angle difference between the two points obtained in claim 2 or 3 from the other angle data, and obtains this angle data and the one of the one. A value obtained by dividing the difference from the angle data by the predetermined distance d is obtained at a plurality of points, a first-order numerical integration of these values is performed to obtain a scanning error, and the scanning error is subtracted from the one angle data to obtain a second value. Angle data of
3. The shape measuring device according to claim 2, further comprising a function of obtaining true shape data by first-order numerically integrating the second angle data.
JP4726494A 1994-03-17 1994-03-17 Shape measuring device Pending JPH07260450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4726494A JPH07260450A (en) 1994-03-17 1994-03-17 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4726494A JPH07260450A (en) 1994-03-17 1994-03-17 Shape measuring device

Publications (1)

Publication Number Publication Date
JPH07260450A true JPH07260450A (en) 1995-10-13

Family

ID=12770442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4726494A Pending JPH07260450A (en) 1994-03-17 1994-03-17 Shape measuring device

Country Status (1)

Country Link
JP (1) JPH07260450A (en)

Similar Documents

Publication Publication Date Title
US7131207B2 (en) Workpiece inspection method
EP1596160A1 (en) Method of inspecting workpieces on a measuring machine
US10371511B2 (en) Device and method for geometrically measuring an object
JPS61502486A (en) Method and apparatus for precision SEM measurements
US7385214B2 (en) System and method for correcting systematic error of, and calibrating for, tilt angle of surface topology sensor head having plurality of distance sensors
JP6203502B2 (en) Structure and method for positioning a machining tool relative to a workpiece
JP2000081329A (en) Shape measurement method and device
JP5290038B2 (en) Measuring apparatus and measuring method
KR100937477B1 (en) A Coordinate Measuring Machine Using A Reference Plate
CN114396929B (en) Method for detecting form and position tolerance of diaphragm hole of laser gyro cavity
JPH07260450A (en) Shape measuring device
JP2003254747A (en) Straightness measurement method
JP2001165629A (en) Shape measuring device and shape measuring method
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
JPH0439522Y2 (en)
JP3633863B2 (en) Autonomous determination method of systematic error of surface profile measurement system using calibration object
JP2014132252A (en) Measurement method, measurement device and article fabrication method
JP2001227929A (en) Angle measuring method and apparatus
JP2003232625A (en) Method of measuring straightness
RU2767709C1 (en) Comparator for checking plane-parallel gauge blocks
JP3192461B2 (en) Optical measuring device
JPH11281306A (en) Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data
JP3265318B2 (en) Contour shape measurement data correction method and contour shape measurement machine
Landman et al. A flexible industrial system for automated three-dimensional inspection
JPH10332350A (en) Shape measuring method using interferometer