JPH0476410A - Optical type configuration measuring device - Google Patents

Optical type configuration measuring device

Info

Publication number
JPH0476410A
JPH0476410A JP19163690A JP19163690A JPH0476410A JP H0476410 A JPH0476410 A JP H0476410A JP 19163690 A JP19163690 A JP 19163690A JP 19163690 A JP19163690 A JP 19163690A JP H0476410 A JPH0476410 A JP H0476410A
Authority
JP
Japan
Prior art keywords
measured
shape
axis direction
optical sensor
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19163690A
Other languages
Japanese (ja)
Inventor
Hideyuki Takechi
武知 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19163690A priority Critical patent/JPH0476410A/en
Publication of JPH0476410A publication Critical patent/JPH0476410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the configuration of a body to be measured by providing plural marks, detectable with an optical sensor, on the given center axis of the body to be measured, and calculating the center axis of the body to be measured from measured data when a configuration is measured. CONSTITUTION:Optical sensors 1 (1a and 1b) are moved in a X axis direction in the upper and lower sides of a body 5 to be measured with a movement mechanism 2, a distance variation between the sensors 1 and the body 5 to be measured is measured at fixed intervals in the X axis direction with the sensors 1, and measured data are operated in first operation parts 7a and 7b. At that time, when the sensors 1 reach on plural marks 12 provided on the body 5 to be measured, the thickness part of the marks 12 is added to a distance variation part between the sensors 1 and the body 5 to be measured, and the positions of the marks 12 are confirmed from the variation part. When measuring in the X axis direction is finished, the sensors 1 are moved by a fixed value in a Y axis direction with a movement mechanism 3, and the X axis direction is measured again. Thus the measuring is made over the whole surfaces of the body 5 to be measured, then measured data are operated in a second operation part 11A, and the configuration of the body 5 to be measured is calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光センサを用いて非接触式で被測定体の形
状を測定する光学式形状測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical shape measuring device that non-contactly measures the shape of an object using an optical sensor.

[従来の技IfX] 従来、この種の技術としては、例えば、工業技術社発行
「実例にみるプロセスセンサの使い方」1981・計測
・別冊(第280頁)記載のレーザ方式変位計がある。
[Conventional Technique IfX] Conventionally, as this type of technique, there is, for example, a laser displacement meter described in "How to Use Process Sensors in Practical Examples" published by Kogyo Gijutsu Sha, 1981, Measurement, Separate Volume (page 280).

これを第3図により説明する。This will be explained with reference to FIG.

第3図は従来装置を示す概略構成図であり、この第3図
に示すように、従来装置は、光センサ1と、この光セン
サ1に配線6を介して接続されたデイスプレィユニット
(第1演算部)7と、光センサ1を被測定体5の上下面
(第3図には上面側の構成のみ図示している)に平行な
X軸、Y軸方向に移動させるための移動機構2,3と、
デイスプレィユニット7に配線8を介して接続される演
算部(第2演算部)11とをそなえて構成されている。
FIG. 3 is a schematic configuration diagram showing a conventional device. As shown in FIG. 1 calculation unit) 7 and a movement mechanism for moving the optical sensor 1 in the X-axis and Y-axis directions parallel to the upper and lower surfaces of the object to be measured 5 (only the configuration on the upper surface side is shown in FIG. 3). 2, 3 and
The display unit 7 is configured to include a calculation section (second calculation section) 11 connected to the display unit 7 via a wiring 8.

次に動作について説明する。光センサ1に対して、形状
の測定対象である被測定体5が第3図に示すように位置
する場合、光センサ1からレーザ光15が被測定体5に
照射され、その反射光16が光センサ1によって検出さ
れる。
Next, the operation will be explained. When the object to be measured 5 whose shape is to be measured is positioned with respect to the optical sensor 1 as shown in FIG. It is detected by the optical sensor 1.

光センサ1が検出する反射光16の検出点は、光センサ
1と被測定体5との距離によって変化するため、その変
化量を、光センサ1が電気信号に変換し、デイスプレィ
ユニット7が光センサ1と被測定体5との距離Laとし
て検出する。
Since the detection point of the reflected light 16 detected by the optical sensor 1 changes depending on the distance between the optical sensor 1 and the object to be measured 5, the optical sensor 1 converts the amount of change into an electrical signal, and the display unit 7 converts the amount of change into an electrical signal. The distance La between the optical sensor 1 and the object to be measured 5 is detected.

そして、光センサ1を、移動機構2,3によって被測定
体5の上下面に対し平行なX軸、Y軸方向に移動させな
がら測定を行なうことにより、被測定体5の表面形状の
変化がそのまま光センサ1と被測定体5との間の距離変
動となって表れ、距離変動データに基づいて演算部11
で被測定体5の形状が算出される。
Then, by performing measurement while moving the optical sensor 1 in the X-axis and Y-axis directions parallel to the upper and lower surfaces of the object to be measured 5 using the moving mechanisms 2 and 3, changes in the surface shape of the object to be measured 5 can be prevented. This appears as a distance fluctuation between the optical sensor 1 and the object to be measured 5, and the calculation unit 11 calculates the distance fluctuation based on the distance fluctuation data.
The shape of the object to be measured 5 is calculated.

[発明が解決しようとする課題] しかしながら、光センサ1を被測定体5の上下面に平行
なX軸、Y軸方向に移動させる移動機構2.3の中心軸
方向は光センサ1の移動方向に固定されており、被測定
体5の設置時点で測定装置の中心軸方向と被測定体5の
中心軸方向とにずれが生じた場合には、移動機構2,3
による測定軸方向が被測定体5の軸方向として測定され
、ひいては被測定体5の形状測定誤差となって表れると
いう課題があった。
[Problems to be Solved by the Invention] However, the direction of the central axis of the moving mechanism 2.3 that moves the optical sensor 1 in the X-axis and Y-axis directions parallel to the upper and lower surfaces of the object to be measured 5 is in the direction of movement of the optical sensor 1. If there is a deviation between the center axis direction of the measuring device and the center axis direction of the object to be measured 5 when the object to be measured 5 is installed, the moving mechanisms 2 and 3
The measurement axis direction is measured as the axial direction of the object to be measured 5, and this results in an error in measuring the shape of the object to be measured.

特に、被測定体5が大きくその形状が中心軸方向につい
て対称でないことにより、測定装置の測定軸方向だけで
は被測定体5の中心軸方向を特定できず、このような場
合、測定データ(デイスプレィユニット7からの演算結
果)に基づいて被測定体5の形状を演算部11にて算出
すると、測定装置の中心軸と被測定体5の中心軸方向の
ずれにより、どうしても、形状誤差や寸法算出誤差など
形状算出誤差が発生してしまう。
In particular, because the object to be measured 5 is large and its shape is not symmetrical with respect to the central axis direction, the direction of the central axis of the object to be measured 5 cannot be determined only by the measurement axis direction of the measuring device. When the shape of the object to be measured 5 is calculated by the calculation section 11 based on the calculation result from the spray unit 7, shape errors and dimension errors are inevitably caused due to the misalignment between the central axis of the measuring device and the central axis of the object to be measured 5. Shape calculation errors such as calculation errors occur.

この発明は上記のような課題を解消するためになされた
もので、被測定体の中心軸と移動機構の軸方向とを厳密
に一致させなくても、形状算出時の軸ずれ補正により、
被測定体全面にわたり高精度の形状測定を行なえるよう
にした、光学式形状測定装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and even if the central axis of the object to be measured and the axial direction of the moving mechanism do not strictly match, it is possible to correct the axis deviation during shape calculation.
An object of the present invention is to obtain an optical shape measuring device that can perform highly accurate shape measurement over the entire surface of a measured object.

[課題を解決するための手段] この発明に係る光学式形状測定装置は、■被測定体の形
状測定時には、被測定体の所定中心軸方向上に光センサ
にて検出可能な目印を複数個配置し、■第2演算部にて
被測定体の形状を換算する際には、複数個の目印の中心
を結ぶ線を被測定体の所定中心軸方向として、被測定体
の形状を、第1演算部からの変位量に基づいて算出する
ものである。
[Means for Solving the Problems] The optical shape measuring device according to the present invention includes: (1) When measuring the shape of an object to be measured, a plurality of marks that can be detected by an optical sensor are placed on a predetermined central axis direction of the object to be measured; ■When converting the shape of the object to be measured in the second calculation section, the shape of the object to be measured is calculated using the line connecting the centers of the plurality of marks as the predetermined central axis direction of the object to be measured. This is calculated based on the amount of displacement from one calculation unit.

[作   用コ この発明における光学式形状測定装置では、被測定体の
所定中心軸方向上に光センサにて検出可能な目印を複数
個配置し、被測定体の形状測定時には目印を含む形状測
定を実施し、第1演算部にて得られた形状データに基づ
いて目印の中心点を算出し、各目印の中心点を結んで得
られた線を被測定体の中心軸として、被測定体の形状が
、第1演算部からの変位量に基づいて算出される。これ
により、被測定体の中心軸と移動機構の軸方向とを厳密
に一致させなくても、そのずれによる誤差を形状算出時
に補正することができる。
[Function] In the optical shape measuring device of the present invention, a plurality of marks that can be detected by an optical sensor are arranged on a predetermined central axis direction of the object to be measured, and when measuring the shape of the object to be measured, the shape measurement including the marks is performed. The center points of the landmarks are calculated based on the shape data obtained by the first calculation unit, and the line obtained by connecting the center points of each landmark is set as the central axis of the object to be measured. The shape of is calculated based on the amount of displacement from the first calculation section. As a result, even if the central axis of the object to be measured and the axial direction of the moving mechanism are not exactly aligned, errors caused by the deviation can be corrected when calculating the shape.

[発明の実施例] 以下、この発明の一実施例を図について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第1,2図において、la、lbは被測定体5の両面に
それぞれレーザ光を照射しその反射光の入射位置を検出
する上下一対の光センサで、各光センサla、lbは、
コ字形の支持機構4の先端部に上下方向から相互に対向
して配置され、支持機構4を介して移動機構2,3によ
りそれぞれX軸方向、Y軸方向へ被測定体5に対して移
動されるようになっている。
In FIGS. 1 and 2, la and lb are a pair of upper and lower optical sensors that respectively irradiate laser beams onto both surfaces of the object to be measured 5 and detect the incident position of the reflected light.
They are arranged at the tip of a U-shaped support mechanism 4 facing each other from above and below, and are moved relative to the object to be measured 5 in the X-axis direction and Y-axis direction by the movement mechanisms 2 and 3 via the support mechanism 4, respectively. It is now possible to do so.

また、各光センサla、lbは、それぞれ、配g6a、
6bを介して第1演算部7a、7bに接続されるととも
に、各第1演算部7a、7bおよび移動機構2,3は、
配線8a、8b等を介して第2演算部11Aに接続され
ている。
In addition, each optical sensor la, lb is arranged g6a,
6b to the first calculation units 7a, 7b, and each of the first calculation units 7a, 7b and the moving mechanisms 2, 3,
It is connected to the second arithmetic unit 11A via wires 8a, 8b, etc.

ここで、第1演算部7a、7bは、それぞれ、光センサ
la、lbが検出した反射光の入射位置と既知の基準検
出点との間の変位量を演算するものであり、第2演算部
11Aは、各第1演算部7a、7bにより演算された変
位量を、後述する手順で被測定体5の形状に換算するも
のである。
Here, the first calculation units 7a and 7b calculate the amount of displacement between the incident position of the reflected light detected by the optical sensors la and lb and a known reference detection point, respectively, and the second calculation unit 11A converts the displacement amount calculated by each of the first calculation units 7a and 7b into the shape of the object to be measured 5 using a procedure described later.

そして、第1,2図において、12は被測定体5の形状
を測定する際の形状データにおける被測定体5の所定中
心軸方向が明確となるように被測定体5の所定中心軸方
向上に配置される目印で、この目印12は、光センサl
a、lbにより検出が可能な高さ方向に厚さのある円柱
形状のものであり、本実施例では、2個配置されている
。また、13は被測定体5を支持するための透明ガラス
、14は本実施例の形状測定装置全体を支持するための
支持架台である。
In FIGS. 1 and 2, reference numeral 12 indicates a predetermined central axis direction of the measured object 5 so that the predetermined central axis direction of the measured object 5 in the shape data when measuring the shape of the measured object 5 is clear. This mark 12 is located at the optical sensor l.
They have a cylindrical shape with a thickness in the height direction that can be detected by a and lb, and in this embodiment, two are arranged. Further, 13 is a transparent glass for supporting the object to be measured 5, and 14 is a support frame for supporting the entire shape measuring apparatus of this embodiment.

上述の構成により、形状測定時には、まず、光センサl
a、lbが移動機構2により被測定体5の上下において
X軸方向へ移動され、光センサ1a、lbにより、各光
センサla、lbと被測定体5との間の距離変動がX軸
方向に一定間隔で計測され、その計測データは第1演算
部7a、7bにて演算される。
With the above configuration, when measuring the shape, first the optical sensor l
a and lb are moved in the X-axis direction above and below the object to be measured 5 by the moving mechanism 2, and the optical sensors 1a and lb change the distance between each optical sensor la and lb and the object to be measured 5 in the X-axis direction. It is measured at regular intervals, and the measured data is calculated by the first calculation sections 7a and 7b.

このとき、被測定体5上に固定設置された目印12上に
光センサla、lbが到達した場合には、光センサla
、lbと被測定体5との間の距離変動分に目印12の厚
さ分が加算されることになり、その変動分から目印12
の位置が確認される。
At this time, if the optical sensors la and lb reach the mark 12 fixedly installed on the object to be measured 5, the optical sensor la
The thickness of the mark 12 is added to the distance variation between , lb and the object to be measured 5, and the thickness of the mark 12 is calculated from the variation.
The position of is confirmed.

X軸方向の測定が終了すれば、光センサla。When the measurement in the X-axis direction is completed, the optical sensor la.

1bは、移動機構3によりY軸方向に一定値だけ移動さ
れた後、光センサla、lbは、前述と同様に、再度、
移動機構2によりX軸方向に移動される。
After 1b is moved by a certain value in the Y-axis direction by the moving mechanism 3, the optical sensors la and lb are moved again as described above.
It is moved by the moving mechanism 2 in the X-axis direction.

このような動作繰り返すことにより、被測定体5の全面
にわたり測定を行なった後、第1演算部7a、7bによ
り得られた測定データは第2演算部11Aに格納される
。この際、測定データ上では、被測定体5の中心軸はX
軸に平行な軸として仮に入力されている。
By repeating such operations, measurements are taken over the entire surface of the object to be measured 5, and then the measurement data obtained by the first calculation units 7a and 7b is stored in the second calculation unit 11A. At this time, on the measurement data, the central axis of the measured object 5 is
It is tentatively input as an axis parallel to the axis.

ついで、第2演算部11Aにおいて、各部分の形状測定
データをもとに被測定体5の上下全面の形状を算出する
が、このときに、被測定体5上に設置された目印12の
位置を距離変動分から確認し、その中心位置を結んだ軸
方向をこの被測定体医5の中心軸として形状算出を行な
う。これにより、測定装置が入力していた測定装置の仮
の中心軸方向とのずれが算出され、形状測定データが補
正されることになる。
Next, in the second calculation unit 11A, the shape of the upper and lower surfaces of the object to be measured 5 is calculated based on the shape measurement data of each part. At this time, the position of the mark 12 installed on the object to be measured 5 is calculated. is confirmed from the distance variation, and the shape is calculated using the axial direction connecting the center positions as the center axis of the measured object doctor 5. As a result, the deviation from the tentative central axis direction of the measuring device that has been input by the measuring device is calculated, and the shape measurement data is corrected.

このように、本実施例の装置によれば、被測定体5の形
状測定において、測定装置の中心軸方向に被測定体5の
中心軸を厳密に合わせることを行なわなくても、形状算
出時に、被測定体S上に配置した目印12の位置から被
測定体5の所定中心軸方向を求めることで、測定装置の
軸方向と被測定体5の軸方向とを合致させる補正演算が
可能になり、測定装置の中心軸と被測定体5との軸ずれ
により発生する形状測定誤差を除去することができ、被
測定体5の形状を極めて高精度で測定することが可能に
なる。
As described above, according to the apparatus of the present embodiment, when measuring the shape of the object to be measured 5, the central axis of the object to be measured 5 does not have to be precisely aligned with the central axis direction of the measuring device, and the shape can be calculated easily. By determining the predetermined central axis direction of the object to be measured 5 from the position of the mark 12 placed on the object to be measured S, it is possible to perform a correction calculation to match the axial direction of the measuring device with the axial direction of the object to be measured 5. Therefore, shape measurement errors caused by misalignment between the central axis of the measuring device and the object to be measured 5 can be removed, and the shape of the object to be measured 5 can be measured with extremely high accuracy.

[発明の効果コ 以上のように、この発明によれば、被測定体の形状測定
に際して、測定データがら被測定体の中心軸を算出する
ため、形状測定データから測定装置がもつ測定中心軸方
向との中心軸ずれを除去することができ、被測定体の形
状を精度よく測定できる効果がある。
[Effects of the Invention] As described above, according to the present invention, in order to calculate the center axis of the object to be measured from the measurement data when measuring the shape of the object to be measured, the direction of the measurement center axis of the measuring device is calculated from the shape measurement data. This has the effect of allowing the shape of the object to be measured to be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光学式形状測定装置
を示す概略構成図、第2図は上記実施例装置の要部を拡
大して示す斜視図、第3図は従来装置を示す概略構成図
である。 図において、la、lb−光センサ、2,3移動機構、
7 a’、 7 b−第1演算部、11A−第2演算部
、12−目印。 なお、図中、同一の符号は同一、又は相当部分を示して
いる。
FIG. 1 is a schematic configuration diagram showing an optical shape measuring device according to an embodiment of the present invention, FIG. 2 is a perspective view showing an enlarged main part of the device of the above embodiment, and FIG. 3 is a schematic diagram showing a conventional device. FIG. In the figure, la, lb - optical sensor, 2, 3 movement mechanism,
7 a', 7 b-first calculation section, 11A-second calculation section, 12-mark. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 被測定体にレーザ光を照射しその反射光の入射位置を検
出する光センサと、該光センサが検出した反射光の入射
位置と既知の基準検出点との間の変位量を演算すべく前
記光センサに接続された第1演算部と、該第1演算部に
より演算された変位量を前記被測定体の形状に換算する
第2演算部と、前記光センサを前記被測定体に対して移
動させる移動機構とをそなえてなる光学式形状測定装置
において、 前記被測定体の形状測定時には、前記被測定体の所定中
心軸方向上に前記光センサにて検出可能な目印を複数個
配置し、 前記第2演算部にて前記被測定体の形状を換算する際に
は、前記複数個の目印の中心を結ぶ線を前記被測定体の
所定中心軸方向として、前記被測定体の形状を、前記第
1演算部からの変位量に基づいて算出することを特徴と
する光学式形状測定装置。
[Scope of Claims] An optical sensor that irradiates a measured object with a laser beam and detects the incident position of the reflected light, and a displacement between the incident position of the reflected light detected by the optical sensor and a known reference detection point. a first calculation section connected to the optical sensor to calculate the amount; a second calculation section that converts the displacement amount calculated by the first calculation section into the shape of the object to be measured; In an optical shape measuring device comprising a moving mechanism for moving relative to the object to be measured, when measuring the shape of the object to be measured, there is a part that can be detected by the optical sensor along a predetermined central axis direction of the object to be measured. When arranging a plurality of marks and converting the shape of the object to be measured in the second calculation section, a line connecting the centers of the plurality of marks is set as a predetermined central axis direction of the object to be measured. An optical shape measuring device, characterized in that the shape of the object to be measured is calculated based on the amount of displacement from the first calculation section.
JP19163690A 1990-07-17 1990-07-17 Optical type configuration measuring device Pending JPH0476410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19163690A JPH0476410A (en) 1990-07-17 1990-07-17 Optical type configuration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19163690A JPH0476410A (en) 1990-07-17 1990-07-17 Optical type configuration measuring device

Publications (1)

Publication Number Publication Date
JPH0476410A true JPH0476410A (en) 1992-03-11

Family

ID=16277954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19163690A Pending JPH0476410A (en) 1990-07-17 1990-07-17 Optical type configuration measuring device

Country Status (1)

Country Link
JP (1) JPH0476410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128729A (en) * 2006-11-17 2008-06-05 Aisin Seiki Co Ltd Shape measuring device
JP2015102466A (en) * 2013-11-26 2015-06-04 セントラル硝子株式会社 Curved plate shape inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128729A (en) * 2006-11-17 2008-06-05 Aisin Seiki Co Ltd Shape measuring device
JP2015102466A (en) * 2013-11-26 2015-06-04 セントラル硝子株式会社 Curved plate shape inspection device

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
JP2764103B2 (en) Method of using analog measuring probe and positioning device
JP2000230818A (en) Method and instrument for noncontact measurement of wheel alignment characteristic
CN100549614C (en) Be used to detect the device of the locus of the balladeur train that can on coordinate axis, move
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
JP3400393B2 (en) Laser interference device
EP0305438A1 (en) Combined scale and interferometer.
US5456020A (en) Method and sensor for the determination of the position of a position-control element relative to a reference body
JP5290038B2 (en) Measuring apparatus and measuring method
JP2878769B2 (en) Method for determining the position of a reference point of a scanning device relative to an incremental scale, and a reference point shaper
JP2000081329A (en) Shape measurement method and device
JPH0476410A (en) Optical type configuration measuring device
KR100937477B1 (en) A Coordinate Measuring Machine Using A Reference Plate
JPH0123041B2 (en)
JPH0213810A (en) Linear encoder and linear scale
JPH01221605A (en) Thickness measuring instrument
JPH0439522Y2 (en)
JPH0663760B2 (en) Three-dimensional measuring method and measuring device
JPH02302606A (en) Thickness measuring apparatus
JP3265318B2 (en) Contour shape measurement data correction method and contour shape measurement machine
JP2506730Y2 (en) Distance between press dies
JPH0428686A (en) Installation error measuring device for elevator guide rail
GB2159941A (en) Coordinate measuring machine
JPH02134505A (en) Thickness measuring apparatus
JPH0332963Y2 (en)