JPH0283958A - Discrete chip cooler - Google Patents

Discrete chip cooler

Info

Publication number
JPH0283958A
JPH0283958A JP63235003A JP23500388A JPH0283958A JP H0283958 A JPH0283958 A JP H0283958A JP 63235003 A JP63235003 A JP 63235003A JP 23500388 A JP23500388 A JP 23500388A JP H0283958 A JPH0283958 A JP H0283958A
Authority
JP
Japan
Prior art keywords
chip
supplied
cool
board
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63235003A
Other languages
Japanese (ja)
Inventor
Atsushi Morihara
淳 森原
Yoshio Naganuma
永沼 義男
Kazunori Ouchi
大内 和紀
Hiroshi Yokoyama
宏 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63235003A priority Critical patent/JPH0283958A/en
Publication of JPH0283958A publication Critical patent/JPH0283958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce a load necessary to cool a whole device and facilitate highly reliable chip mounting at a low cost by a method wherein small cooling fins driven by an ultrasonic wave is provided above a chip and the chip is cooled individually. CONSTITUTION:An electric source is supplied to a module 8 through a large board 6 and contact pins 13 and an electric power is supplied to a chip 4 through a module board 5 and solder balls 12. The heat generated by the chip 4 is discharged out through the rear or the contact surface of the chip 4. Fins 1 provided in a cooling housing 7 are rotated in accordance with the vibration of a piezoelectric transducer 2 and a wind is supplied to the upper part of the chip 4. Further, a wind is supplied to the upper part of the board 6 to cool the whole board 6 and the wind is accelerated by the wind from the fins 1 to cool the chip generating much heat individually. With this constitution, a load necessary to cool the whole device can be reduced and highly reliable cooling can be performed at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、計算機に使用するチップと基盤の接続実装方
法に係り、特に、チップを個別に冷却するのに好適な、
低コスト高信頼性の実装冷却装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for connecting and mounting chips and boards used in computers, and in particular, a method suitable for cooling chips individually.
This invention relates to a low-cost, highly reliable mounting cooling device.

〔従来の技術〕[Conventional technology]

従来、チップに可動素子を用いて冷却する方法は特開昭
62−149158号公報で論じられている。この方式
では、バイモルフ振動子を用いて、ファンを形成し、こ
こに交流をかけることによって振動させ、チップの上面
の冷却境界層を崩して冷却効率を向上させている。
Conventionally, a method of cooling a chip using a movable element is discussed in Japanese Patent Application Laid-Open No. 149158/1983. In this method, a bimorph oscillator is used to form a fan, which is vibrated by applying an alternating current to it, thereby breaking down the cooling boundary layer on the top surface of the chip and improving cooling efficiency.

同様の例は、特開昭62−62546号、特開昭591
58541号、特開昭591−158542号公報等で
開示されている。
Similar examples include JP-A-62-62546 and JP-A-591.
58541, Japanese Unexamined Patent Publication No. 591-158542, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、フィンの冷却性能についての考慮は
なされておらず、高発熱のモジュールを効率よく冷却す
るには、高速度の風を送る必要があった。しかし、高速
度の風を送るためには圧電素子による方式では限界があ
り、冷却性能に限界があった。
In the above-mentioned conventional technology, no consideration is given to the cooling performance of the fins, and in order to efficiently cool a module that generates a high amount of heat, it is necessary to send high-velocity air. However, methods using piezoelectric elements have limitations in sending high-velocity air, which limits cooling performance.

本発明の目的は、発熱量の高いチップを個別に冷却する
装置を提供することにある。
An object of the present invention is to provide an apparatus for individually cooling chips that generate a large amount of heat.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、チップの冷却装置において、チップの上部
に超音波で駆動する小型冷却フィンを設けて、チップを
個別に冷却することにより解決される。
The above object is achieved in a chip cooling device by providing small cooling fins driven by ultrasonic waves on top of the chips to cool the chips individually.

特に、冷却ファンに超音波で駆動するモータを使用する
ことにより騒音、ノイズ等に関して影響が小さい。
In particular, by using a motor driven by ultrasonic waves for the cooling fan, the influence on noise, etc. is small.

〔作用〕[Effect]

発熱量の高いチップを個別に冷却できるので、装置全体
の冷却に要する負荷が軽減され、低コストで信頼性の高
い実装が可能となる。
Since chips that generate a large amount of heat can be individually cooled, the load required to cool the entire device is reduced, allowing for low-cost and highly reliable packaging.

〔実施例〕〔Example〕

以下、本発明の実施例の詳細を、第1図及び第2図によ
り説明する。
Hereinafter, details of embodiments of the present invention will be explained with reference to FIGS. 1 and 2.

全体は、封じられたモジュール8.冷却ハウジング7、
基板6より構成される。
The whole is an enclosed module 8. cooling housing 7,
It is composed of a substrate 6.

冷却ファン1は、中央部に送風部分があり1周辺部は超
音波振動子2に挾まれるつばが設置される。超音波素子
2は、冷却ハウジング7の内部に設置される。冷却ハウ
ジング7は、モジュール8の上部に接続子14を介して
設置される。モジュール8は接続ピン13を介して大型
基板6に設置される。モジュール8は上部が封じ用の蓋
3と多層配線用の基板5により、内部の素子4が実装配
置される。封じ用の蓋3の材質は、高熱伝導性で、かつ
、熱膨張率の差が小さいセラミックスを用いる。封じ用
の気体は、不活性で熱伝導性に優れたヘリウムなどで封
じる。電気的接続は、半田ボール12で行われる。
The cooling fan 1 has a blowing part in the center, and a collar that is held by the ultrasonic vibrator 2 is installed around the 1 part. The ultrasonic element 2 is installed inside the cooling housing 7. Cooling housing 7 is installed on top of module 8 via connector 14 . The module 8 is installed on the large board 6 via the connection pins 13. The module 8 has a lid 3 for sealing and a board 5 for multilayer wiring at the top, on which internal elements 4 are mounted and arranged. As the material of the sealing lid 3, ceramic is used which has high thermal conductivity and has a small difference in coefficient of thermal expansion. The sealing gas is helium, which is inert and has excellent thermal conductivity. Electrical connections are made with solder balls 12.

次に1本実施例1の動作について説明する。モジュール
8には大型基板6、接続ビン13を通して電源が供給さ
れ、モジュール基板5、半1Hボール12を通して、チ
ップ4に電力が供給される。
Next, the operation of the first embodiment will be explained. Power is supplied to the module 8 through the large board 6 and the connection bin 13, and power is supplied to the chip 4 through the module board 5 and the half 1H ball 12.

チップ4で発生した電力はチップ4の内部で熱に変わり
、大量の熱が発生する。この熱は、チップ1の裏面、あ
るいは、接続面を通して外部へ放散される。チップ4の
裏面には蓋8が設置され、これを介して熱が外部へ移送
される。
The electric power generated by the chip 4 is converted into heat inside the chip 4, and a large amount of heat is generated. This heat is dissipated to the outside through the back surface of the chip 1 or the connection surface. A lid 8 is installed on the back side of the chip 4, and heat is transferred to the outside through this lid.

冷却ハウジング7に配置されたフィン1は、超音波素子
2の振動に対応して回転する。その回転に応じて、風が
チップの上部へ供給される。大型基板6の上部には、大
型基板6に搭載された全てのチップを冷却すべく風が供
給される。この大型基板全体な冷却する冷風は、他の素
子を冷却するのには、十分な速度であるが、高発熱素子
を冷却するのには不十分である。フィン1の回転に応じ
て、モジュール8の上部へ供給される冷風は、大型基板
6全体を冷却する冷風を、更に、高速化して供給するの
でモジュール8は良好に冷却される。
The fins 1 arranged in the cooling housing 7 rotate in response to vibrations of the ultrasonic element 2. According to the rotation, air is supplied to the top of the chip. Air is supplied to the upper part of the large board 6 in order to cool all the chips mounted on the large board 6. The cold air that cools the entire large substrate has a sufficient speed to cool other elements, but is insufficient to cool high heat generating elements. The cold air supplied to the upper part of the module 8 according to the rotation of the fin 1 cools the entire large substrate 6 at a higher speed, so that the module 8 is cooled well.

こうして、大型基板6の中で、特に1発熱量の大きなチ
ップを個別に冷却することができる。
In this way, in the large substrate 6, chips that generate particularly large amounts of heat per unit can be individually cooled.

この実施例の効果は、モジュール8と一体化し1ている
ので、大型基板6への実装が容易である点である。また
、回転を与える素子として超音波を用いているので、ノ
イズや外乱が直流式モータと比較して少ない点である。
The advantage of this embodiment is that since it is integrated with the module 8, it can be easily mounted on the large board 6. Furthermore, since ultrasonic waves are used as the element that provides rotation, noise and disturbances are less compared to DC motors.

次に、他の実施例について第3図、第4図を用いて説明
する。全体は、素子21、冷却ハウジング7、基板6よ
り構成される6 冷却ファン1は、実施例1と同様に中央部に送風部分が
あり、周辺部は超音波振動子2に挾まれるつばが設置さ
れる。超音波素子2は、冷却ハウジング7の内部に設置
される。冷却ハウジング7は、大型基板6の上部に接続
子23を介して設置される。その下部には、チップ4が
複数配置される。素子の接続配線22は、大型基板6に
、直接、接続される。
Next, another embodiment will be described using FIG. 3 and FIG. 4. The entire cooling fan 1 is composed of an element 21, a cooling housing 7, and a substrate 6. Similar to the first embodiment, the cooling fan 1 has an air blowing part in the center, and a collar that is sandwiched by the ultrasonic transducer 2 in the peripheral part. will be installed. The ultrasonic element 2 is installed inside the cooling housing 7. The cooling housing 7 is installed on the top of the large board 6 via the connector 23 . A plurality of chips 4 are arranged at the bottom thereof. The element connection wiring 22 is directly connected to the large substrate 6.

次に1本実施例2の動作について説明する。チップ4に
は接続配線22を通して電力が供給される。チップ4で
発生した電力はチップ4の内部で熱となり、熱はチップ
1より外部へ放散される。
Next, the operation of the second embodiment will be explained. Power is supplied to the chip 4 through the connection wiring 22. The power generated in the chip 4 becomes heat inside the chip 4, and the heat is dissipated from the chip 1 to the outside.

冷却ハウジング7に配置されたフィン1は、超音波素子
2の振動に対応して回転し、風がチップ4の上部へ供給
される。大型基板6の上部には、大型基板6に搭載され
た全てのチップを冷却すべく風が供給される。フィン1
の回転に応じて、複数のチップ4の上部へ供給される冷
風は、大型基板6の全体を冷却する冷風を、更に、高速
化し、大型基板6の中で特に発熱量の大きなチップを個
別に冷却することができる。
The fins 1 arranged in the cooling housing 7 rotate in response to the vibrations of the ultrasonic element 2, and air is supplied to the top of the chip 4. Air is supplied to the upper part of the large board 6 in order to cool all the chips mounted on the large board 6. Fin 1
The cold air supplied to the upper part of the plurality of chips 4 according to the rotation of the large board 6 further increases the speed of the cold air that cools the entire large board 6, and individually cools the chips that generate a particularly large amount of heat in the large board 6. Can be cooled.

他の実施例の特有の効果は、大型基板6に、直接、冷却
ハウジング7を設置するので、モジュール8に振動が伝
わらず、チップ4の接続に信頼性をもたせられる点であ
る。
A unique advantage of the other embodiments is that since the cooling housing 7 is installed directly on the large substrate 6, vibrations are not transmitted to the module 8 and the connection of the chip 4 can be made reliable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1発熱量の高いチップを個別に冷却する
ことができるので、装置全体の冷却に要する負荷が軽減
され、低コストで信頼性の高い実装が可能となる。
According to the present invention, chips that generate a large amount of heat per unit can be individually cooled, so the load required for cooling the entire device is reduced, and low-cost and highly reliable mounting is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の平面図、第2図は、第1図
のn−n矢視断面図、第3図は1本発明の他の実施例の
平面図、第4図は第3図のTV −fV矢視断面図であ
る。
FIG. 1 is a plan view of one embodiment of the present invention, FIG. 2 is a sectional view taken along the nn arrow in FIG. 1, FIG. 3 is a plan view of another embodiment of the present invention, and FIG. is a sectional view taken along the TV-fV arrow in FIG. 3;

Claims (1)

【特許請求の範囲】 1、計算機に使用するチップの冷却装置において、前記
チップの上部、あるいは、周辺部に小型の回転翼をもつ
モータを前記チップと近接して配備することを特徴とす
るチップ個別冷却装置。 2、計算機に使用するチップの冷却装置において、前記
チップ上部、あるいは、周辺部に小型の回転翼をもち、
超音波で駆動するモータを配備することを特徴とするチ
ップ個別冷却装置。
[Claims] 1. A chip cooling device for use in a computer, characterized in that a motor having small rotary blades is disposed above or in the periphery of the chip in close proximity to the chip. Individual cooling device. 2. A cooling device for a chip used in a computer, which has a small rotary blade on the top of the chip or in the periphery,
An individual chip cooling device characterized by being equipped with a motor driven by ultrasonic waves.
JP63235003A 1988-09-21 1988-09-21 Discrete chip cooler Pending JPH0283958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235003A JPH0283958A (en) 1988-09-21 1988-09-21 Discrete chip cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235003A JPH0283958A (en) 1988-09-21 1988-09-21 Discrete chip cooler

Publications (1)

Publication Number Publication Date
JPH0283958A true JPH0283958A (en) 1990-03-26

Family

ID=16979622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235003A Pending JPH0283958A (en) 1988-09-21 1988-09-21 Discrete chip cooler

Country Status (1)

Country Link
JP (1) JPH0283958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162497A (en) * 1990-10-24 1992-06-05 Hitachi Ltd Cooling device for electronic apparatus
DE19507662A1 (en) * 1995-03-04 1996-09-26 Robert Price Power circuit cooling method for central processing unit of computer
US6219236B1 (en) 1997-10-20 2001-04-17 Fujitsu, Ltd. Cooling system for multichip module
EP1056132A3 (en) * 1992-08-06 2002-01-30 Pfu Limited Heat-generating element cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162497A (en) * 1990-10-24 1992-06-05 Hitachi Ltd Cooling device for electronic apparatus
EP1056132A3 (en) * 1992-08-06 2002-01-30 Pfu Limited Heat-generating element cooling device
EP1056131A3 (en) * 1992-08-06 2002-01-30 Pfu Limited Heat-generating element cooling device
DE19507662A1 (en) * 1995-03-04 1996-09-26 Robert Price Power circuit cooling method for central processing unit of computer
US6219236B1 (en) 1997-10-20 2001-04-17 Fujitsu, Ltd. Cooling system for multichip module

Similar Documents

Publication Publication Date Title
US4923000A (en) Heat exchanger having piezoelectric fan means
US7307841B2 (en) Electronic package and method of cooling electronics
US6702000B2 (en) Heat sink apparatus, blower for use therein and electronic equipment using the same apparatus
CN104902728B (en) A kind of electronic equipment and radiating piece
JP2002134973A (en) Heat sink device and electronic equipment
JPH10224061A (en) Heat sink unit and electronic equipment
JP4507984B2 (en) Cooling structure
US6233960B1 (en) Spot cooling evaporator cooling system for integrated circuit chip modules
JPH08330488A (en) Heat sink fitted with piezoelectric fan
JPH0283958A (en) Discrete chip cooler
US6295201B1 (en) Bus bar having embedded switching device
JPH10303582A (en) Cooing device of circuit module and portable information equipment mounting circuit module
WO2007007491A1 (en) Mesh material and electronic apparatus
JP2610492B2 (en) Semiconductor device cooling mounting structure
JPH08274224A (en) Sealed cooling structure of multichip module
JPH01151296A (en) Cooling apparatus for electronic parts
JPS6281736A (en) Semiconductor device
JP3406394B2 (en) Local cooling device with Peltier effect member
JPH0465862A (en) Semiconductor enclosure
JPH0310701Y2 (en)
JP2002076210A (en) Semiconductor device
JPS6262546A (en) Electronic part device
JPS6046053A (en) Cooling structure
JP2970629B2 (en) Rotary drive
JP2616681B2 (en) Heat sink for semiconductor device