WO2007007491A1 - Mesh material and electronic apparatus - Google Patents

Mesh material and electronic apparatus Download PDF

Info

Publication number
WO2007007491A1
WO2007007491A1 PCT/JP2006/311383 JP2006311383W WO2007007491A1 WO 2007007491 A1 WO2007007491 A1 WO 2007007491A1 JP 2006311383 W JP2006311383 W JP 2006311383W WO 2007007491 A1 WO2007007491 A1 WO 2007007491A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
exhaust port
mesh material
mesh
housing
Prior art date
Application number
PCT/JP2006/311383
Other languages
French (fr)
Japanese (ja)
Inventor
Yumi Yamashita
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO2007007491A1 publication Critical patent/WO2007007491A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications

Definitions

  • the present invention relates to a mesh material installed at an exhaust port or the like for discharging heat from a heat source, and an electronic device equipped with the mesh material.
  • the object of the present invention is to provide a mesh material for exhaust that can improve the exhaust heat efficiency by reducing the pressure loss near the exhaust port in a limited space. It is to provide an electronic device equipped with this.
  • a further object of the present invention is to provide a mesh material capable of suppressing the manufacturing cost and an electronic apparatus equipped with the mesh material.
  • a mesh material according to the present invention includes a heat generation source, a housing having the heat generation source and having an exhaust port, and heat of the heat generation source by gas through the exhaust port.
  • An electronic device having a heat dissipation mechanism that can be discharged in a vacuum is a mesh material provided at the exhaust port, and at least a part between the both end portions attached to the exhaust port and the both end portions is the housing. And a first mesh surface curved so as to protrude outward from the body.
  • the curved first mesh surface is provided so that the exhaust port force is also separated. Therefore, the heat dissipation mechanism can reduce the pressure loss when the exhaust heat gas flows from the inside of the housing to the outside through the exhaust port, and the exhaust heat efficiency can be increased.
  • both ends of the mesh material are attached to the exhaust port, and the first mesh surface that is curved is provided, so that the exhaust gas is exhausted as much as possible within a narrow housing or a limited space of the exhaust port. It is possible to efficiently exhaust heat by increasing the area or volume of the part.
  • Both end portions of the mesh material are, for example, both end portions in the vertical direction (vertical direction) of the electronic device, both end portions in the horizontal direction, or both end portions in the oblique direction. It is.
  • Examples of the heat source include electronic components such as an IC, a coil, and a resistor, or a power source such as a motor.
  • the heat dissipation mechanism includes, for example, a gas delivery mechanism that delivers at least gas as described later.
  • the heat dissipation mechanism may include a heat sink or a heat transport device using a heat pipe principle, or the like that has a heat dissipation function and a heat transfer function.
  • Electronic devices include computers (in the case of personal computers, laptops or desktops), PDAs (Personal Digital Assistance), electronic dictionaries, cameras, display devices, audio Z Examples include visual equipment, projectors, mobile phones, game equipment, car navigation equipment, robot equipment, and other electrical appliances.
  • the gas is, for example, a force including air, but is not limited thereto, and may be nitrogen, helium gas, argon gas, or other gas.
  • the mesh material further includes a flat second mesh surface provided continuously with the first mesh surface.
  • the mesh materials in particular, if the pressure loss is lowered, only the portion is set as the first and second mesh surfaces as appropriate.
  • the heat dissipation mechanism includes a heat sink having a first width disposed in the vicinity of the exhaust port and thermally connected to the heat generation source, and the mesh material includes: In the first width direction, the second width is 105% to 150% of the first width. Heat sink force is also applied to the mesh material Gas flows so that the heat sink force spreads. Therefore, according to the configuration of the present invention, the exhaust heat efficiency can be increased.
  • a mesh material according to another aspect of the present invention is capable of exhausting heat of the heat source through the exhaust port by a heat source, a housing with the heat source built in and having an exhaust port, and a gas.
  • the outlet of the air flow of the heat dissipation mechanism in the housing is near the exhaust port.
  • the mesh surface is formed along a plurality of planes at different angles, and a part of the mesh surface is provided so that the exhaust port force is also separated. Therefore, the heat dissipation mechanism can reduce the pressure loss when the exhaust heat gas flows from the inside of the housing to the outside through the exhaust port, and the exhaust heat efficiency can be increased.
  • the mesh surface has a first length in a first direction from the first end toward the second end, and is substantially orthogonal to the first direction.
  • the second direction has a second length longer than the first length.
  • the mesh surface has a first length in a first direction directed from the first end portion toward the second end portion, and the first direction and A second length shorter than the first length is provided in a second direction that is substantially orthogonal.
  • An electronic apparatus includes a heat generation source, a housing having the heat generation source therein and having an exhaust port, and a heat dissipation mechanism capable of discharging heat of the heat generation source through the exhaust port by gas. And a mesh material having a first mesh surface that is provided at the exhaust port and that is curved so that at least a part protrudes to the outside of the housing.
  • the first mesh surface is the second mesh surface. It is placed above the mesh surface.
  • the exhausted hot gas tends to flow upward.
  • the first mesh surface is disposed so as to be as perpendicular as possible to the gas flow, so that the heat exhaust efficiency is improved.
  • the heat dissipation mechanism is disposed in the vicinity of the exhaust port and thermally connected to the heat generation source, and is directed to the heat sink in order to cool the heat sink.
  • a gas delivery mechanism for delivering gas examples include a rotary fan or a jet generating device that discharges gas as a pulsating flow.
  • An electronic device is capable of exhausting heat of the heat source through the exhaust port by a heat source, a housing having the heat source built therein and having an exhaust port, and gas. And a mesh material provided along a plurality of planes at different angles, provided at the exhaust port.
  • An electronic device includes a heat generation source, a predetermined surface, an exhaust port opened in the surface, a housing containing the heat generation source, a gas
  • a heat dissipation mechanism capable of discharging the heat of the heat source through the exhaust port and a planar mesh material provided at the exhaust port so as to face an angle different from the angle of the surface.
  • FIG. 1 is a partially cutaway perspective view showing an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a back side of the electronic device shown in FIG.
  • FIG. 3 is a cross-sectional view of the back side of the electronic device shown in FIG.
  • FIG. 4 is a perspective view showing a mesh material according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a jet flow generating device.
  • FIG. 6 is a perspective view showing a heat sink.
  • FIG. 7 is a perspective view showing a mesh material according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the mesh material shown in FIG.
  • FIG. 9 is a perspective view showing a mesh material according to still another embodiment of the present invention.
  • FIG. 10 is a perspective view showing a mesh material according to still another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the back side of a PC provided with a mesh material according to still another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the back side of a PC provided with a mesh material according to still another embodiment of the present invention.
  • FIG. 13 is a graph showing the relationship between the distance between the heat sink and the mesh material and the pressure near the air flow outlet of the heat sink.
  • Figure 14 shows the relationship between the size of the exhaust port and the pressure near the airflow outlet of the heat sink. It is a graph which shows.
  • FIG. 15 is a graph showing the pressure in the vicinity of the airflow outlet of the heat sink for each mesh material according to each embodiment.
  • FIG. 16 is a graph showing the pressure in the vicinity of the airflow outlet of the heat sink for each mesh material according to each embodiment.
  • FIG. 1 is a partially cutaway perspective view showing an electronic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a back side of the electronic device illustrated in FIG.
  • FIG. 3 is a cross-sectional view of the electronic device shown in FIG.
  • Electronic device 100 is, for example, a laptop PC that includes a main body 102 and a display 103.
  • a housing 101 of the main body 102 includes a heat sink 20 and a jet flow generating device 30 that supplies a synthetic jet toward the heat sink 20.
  • An IC such as a CPU (Central Processing Unit) is thermally connected to the heat sink 20 as a heat source (not shown).
  • the term “thermally connected” means that both are in direct contact with each other, or that both are connected via a heat transfer device (not shown) such as a heat pipe or a heat conductive sheet.
  • An exhaust port 101 b is formed on the back surface 101 a of the housing 101.
  • the exhaust port 101b has, for example, a rectangular shape.
  • the heat sink 20 is disposed in the vicinity of the exhaust port 101b, and the jet flow generating device 30 is disposed in the vicinity of the heat sink 20.
  • a mesh member 50 according to an embodiment of the present invention is installed in the exhaust port 10 lb.
  • the exhaust port 101 b may be a side surface or an upper surface of the force housing 101 configured to be provided on the back side of the housing 101.
  • FIG. 4 is a perspective view showing the mesh material 50.
  • the mesh material 50 has, for example, a circular arc shape in cross section, and is formed by bending thin members vertically and horizontally.
  • the mesh material 50 is made of, for example, resin, metal, or carbon having high thermal conductivity. In the case of metals, examples include aluminum, copper, and stainless steel.
  • the upper and lower ends 51 and 52 of the mesh material 50 are placed above and below the exhaust port 101b, for example, welding, pressure bonding, laser bonding, etc. It is installed by.
  • the mesh material 50 may be integrally formed with the housing 101.
  • the left and right end portions of the mesh material 50 installed at the exhaust port 101b are covered with a cover member 58, for example.
  • the cover member 58 may also have a mesh structure.
  • As the mesh material 50 for example, a UL (UNDERWRITERS LABORATORIE S INC.) Standard mesh is used.
  • the cross section of the mesh material 50 is not necessarily an arc shape, but may be a quadratic function curve shape such as a hyperbola, a parabola, or an elliptic curve.
  • FIG. 5 is a cross-sectional view showing the jet flow generating device 30.
  • the jet flow generating device 30 includes a housing 32 having a prism shape on one side and a cylindrical shape on the opposite side.
  • the housing 32 is made of resin, metal, ceramics, or the like.
  • the diaphragm 35 is provided inside the housing 32 so as to divide the interior into the chambers 32a and 32b.
  • the diaphragm 35 is configured by attaching, for example, a planar coil (not shown) to a disk made of resin, metal, or other material.
  • the housing 32 is provided with a mechanism for electromagnetically driving the diaphragm 35 such as a magnet yoke (not shown).
  • a predetermined electric signal is applied to the planar coil by a control unit 36 having a driving IC or the like.
  • Two rows of upper and lower nozzles 33a and 33b are provided on the front surface of the housing 32.
  • a plurality of nozzles 33a and 33b are provided in the direction perpendicular to the paper surface in FIG.
  • the chamber 32a communicates with air outside the housing 32 through the nozzle group 33a.
  • the chamber 32b communicates with air outside the housing 32 through the nozzle group 33b.
  • the form of the jet flow generating device 30 is not limited to the above-described form, and there are various shapes and sizes of the diaphragm 35, such as the nozzle 32, the nozzle 32, the nozzle 33a, etc.
  • the form is considered.
  • the driving method of the diaphragm 35 is not limited to electromagnetic driving, and piezoelectric driving, electrostatic driving, or the like may be used.
  • the jet flow generating device 30 configured as described above will be described.
  • the diaphragm 35 performs sinusoidal vibration.
  • the volumes of the chambers 32a and 32b alternately increase and decrease, and as a result, air is alternately discharged in a reverse phase through the nozzles 33a and 33b.
  • the air around the housing 32 is entrained in the air flow discharged from the nozzles 33 a and 33 b, that is, becomes a synthetic jet, and this synthetic jet is supplied to the heat sink 20.
  • sound waves are generated independently from each nozzle 33a and nozzle 33b. Possible causes of this sound wave are vibration of the diaphragm 35, vibration of the air in the housing 32, or turbulence in the air inside the housing 32, the nozzle 33a, etc. .
  • the sound waves generated by the nozzles 33a and the nozzles 33b are sound waves of opposite phases, they are weakened with each other. As a result, noise is suppressed, and noise reduction can be achieved.
  • FIG. 6 is a perspective view showing the heat sink 20.
  • the heat sink 20 is configured by arranging a plurality of radiating fins 25, and is not limited to the form shown in FIG. 6, for example, if a known heat sink is used.
  • a plurality of air circulation holes 26 are formed between the heat radiating fins 25.
  • the jet generating device 30 and the heat sink 20 are positioned so that the nozzles 33a and 33b of the jet generating device 30 face each flow hole 26.
  • the curved mesh member 50 is provided so as to be separated from the exhaust port 101b. This also means that The pressure loss of the air flow passing through the tote sink 20 can be reduced. That is, the exhaust heat efficiency can be increased by increasing the area or volume around the exhaust port 101b as much as possible within the limited narrow space in the housing 101.
  • the dustproof effect can be enhanced as compared with an exhaust port formed of a plurality of small holes, a lattice-shaped hole, an exhaust port, or the like.
  • FIG. 7 is a perspective view showing a mesh material according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view thereof.
  • This mesh material 60 has mesh surfaces 60a and 60b formed along, for example, two different angle planes from one end 61 (first end) to the other end 62 (second end). .
  • the both ends 61 and 62 of the mesh material 60 thus configured are mounted on the upper and lower sides of the exhaust port 101b in the same manner as in FIG. 3, so that the mesh material 60 is installed in the exhaust port 101b.
  • the mesh surfaces 60a and 60b are separated from the exhaust port 101b, so that the pressure loss of the air flow from the heat sink 20 can be reduced and the exhaust heat efficiency can be improved. Can do. Further, almost in the same way as the curved mesh material 50 described above, the pressure loss can be reduced because the air flow cache surfaces 60a and 60b that flow out from the heat sink 20 and spread as close as possible.
  • FIG. 9 and FIG. 10 are perspective views showing a mesh material according to still another embodiment of the present invention.
  • the mesh member 70 shown in FIG. 9 has a plurality of mesh surfaces 70a, 70b, 70c, 70d, 70e and 70f at different angles from one end 73 to the other end 74 in the longitudinal direction, that is, the left-right direction. Even with such a configuration, the pressure loss of the air flow from the heat sink 20 can be reduced.
  • the mesh material 80 shown in FIG. 10 has a form in which the number of mesh surfaces of the mesh material 70 is increased.
  • FIG. 11 and FIG. 12 are cross-sectional views on the back side of a PC provided with a mesh material according to still another embodiment of the present invention.
  • the exhaust port 201b of the PC housing 201 shown in FIG. 11 is provided obliquely with respect to the vertical back surface 201a.
  • the upper and lower ends 90a and 90b of the mesh material 90 having one plane are mounted on the upper and lower sides of the exhaust port 201b that is opened obliquely in this way. With this configuration, the lower force of the mesh material 90 Great distance from 20 airflow outlets. Thereby, the pressure loss of the air flow can be reduced.
  • the exhaust port 201b is provided obliquely so that the opening surface faces upward toward the outside of the housing 201. However, conversely, it may be provided obliquely so that the opening surface faces downward. In this case, the mesh material 90 is also installed obliquely so as to face downward on the outside of the casing 201.
  • the exhaust port 301b of the PC housing 301 shown in FIG. 12 is also opened obliquely, similarly to the exhaust port 20 lb shown in FIG.
  • the upper mesh surface 110a is curved.
  • the lower part is planar. Since the high-temperature exhausted air tends to flow upward, the mesh surface 110b is arranged so that the upper mesh surface 110a is positioned above the lower mesh surface 110b so that it is as perpendicular as possible to the air flow. As a result, exhaust heat efficiency is improved.
  • FIG. 13 is a graph showing the relationship between the distance between the heat sink 20 and the mesh material 50 shown in FIG. 4 and the pressure in the vicinity of the air flow outlet of the heat sink 20.
  • the distance between the heat sink 20 and the mesh material 50 is a distance s from the end of the heat sink 20 on the air flow outlet side to both ends 51 or 52 of the mesh material 50. That is, the distance s is a distance from the heat sink 20 to a part of the mesh material 50 that is closest to the heat sink 20.
  • the distance is 2 mm or more.
  • the pressure near the end of the outlet side of the heat sink 20 can be reduced, and when the distance is 2 mm or more, the change is small. Therefore, in this case, the distance is preferably 2 mm or more.
  • FIG. 14 is a graph showing the relationship between the size of the exhaust port and the pressure in the vicinity of the airflow outlet of the heat sink 20.
  • the size of the exhaust port refers to the width d as shown in Fig.2.
  • the present inventor conducted an experiment by appropriately changing the width a of the mesh material in accordance with the size of the exhaust port. From this graph, the size of the exhaust port should be 110mm because the pressure decreases from around 110mm and becomes almost constant.
  • the horizontal width e of the heat sink used in this experiment in Fig. 6 is 100 mm.
  • the width e of the heat sink is about 105% to 150%, preferably about 110%. It is preferable to use an exhaust port or a mesh material having a lateral width. The upper limit is set to 150% because the exhaust heat efficiency does not change even if the width of the exhaust port is larger than this, and conversely the dust-proofing effect may be reduced.
  • FIG. 15 is a graph showing the pressure in the vicinity of the airflow outlet of the heat sink 20 for each mesh material according to the above embodiment.
  • A is a state where there is no mesh material at the exhaust port 101b
  • B is a general planar shape mesh material.
  • 50, 70 and 80 correspond to the mesh material 50 shown in FIG. 4, the mesh material 70 shown in FIG. 9, and the mesh material 80 shown in FIG. From this graph, it can be seen that the mesh material 50 shown in FIG. 4 has the best exhaust efficiency.
  • FIG. 16 is a graph having the same purpose as FIG. In the figure, 60, 90, and 110 correspond to the mesh material 60 shown in FIG. 7, the mesh material 90 shown in FIG. 11, and the mesh material 110 shown in FIG.
  • the mesh material 90 has a planar shape, but the present inventor conducted an experiment in a state of being installed obliquely. From this graph, it can be seen that the example shown in FIG. 12 has the best exhaust efficiency.
  • the jet generator 30 is used in the above embodiment.
  • a rotary vane fan may be used.
  • an axial fan or a centrifugal fan is used.
  • the mesh material 110 shown in FIG. 12 was installed in the exhaust port 301b having an oblique opening surface.
  • the mesh material 110 may be installed in a normal exhaust port 101b as shown in FIG. 3, for example.
  • various methods can be considered for mounting the mesh materials 50, 60, 70, etc., to the exhaust port, which is performed only by the mesh material 110.
  • the mesh members 50, 60, 70, 80, 90, 110 and the exhaust ports are all elongated, the present invention is not limited to this.
  • the laptop PC is used as the electronic device, it may be a desktop type or an electronic device other than the PC.
  • one mesh material by combining at least one of the characteristic portions of the mesh materials 50, 60, 70, 80, 90, and 110 according to the above embodiments.
  • the pressure at the exhaust port is limited in a limited space. Reduces loss and improves exhaust heat efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Provided are a mesh material for exhausting air, capable of, in a limited reduced space, reducing pressure loss near an air exhaust opening of a housing to improve heat exhaust efficiency, and an electronic apparatus having the mesh material mounted on it. Airflow exhausted from a jet flow generation device (30) passes through a heatsink (20). The airflow exiting from the heatsink (20) tends to spread three-dimentionally, and this causes the airflow to pass through a mesh material (50) such that the airflow is perpendicular as much as possible to a curved surface that forms a mesh surface of the mesh material (50). The mesh surface of the mesh material (50) is away toward the outside of a housing (101) from an air exhaust opening. This reduces pressure loss occurring when the airflow passes through the mesh material (50), and as a result, the flow rate of air increases, air exhaust efficiency is enhanced, and heat exhaust efficiency is improved.

Description

明 細 書  Specification
メッシュ材及び電子機器  Mesh material and electronic equipment
技術分野  Technical field
[0001] 本発明は、発熱源の熱を排出するための排気口等に設置されるメッシュ材、これを 搭載した電子機器に関する。  TECHNICAL FIELD [0001] The present invention relates to a mesh material installed at an exhaust port or the like for discharging heat from a heat source, and an electronic device equipped with the mesh material.
背景技術  Background art
[0002] 従来から、 PC (Personal Computer)の高性能化に伴う IC (Integrated Circuit)等の 発熱体からの発熱量の増大が問題となっており、様々な放熱の技術が提案され、あ るいは製品化されている。その放熱方法として、例えば ICにアルミニウム等の金属で なる放熱用のフィン (ヒートシンク)を接触させて、 ICからの熱をヒートシンクに伝導さ せて放熱する方法がある。また、ファンを用いることにより、例えば PCの筐体内の温 まった空気を強制的に排除し、周囲の低温の空気を発熱体周辺に導入することで放 熱する方法もある。さらにはヒートシンクとファンとを併用することにより、ヒートシンクで 発熱体と空気の接触面積を大きくしつつ、ファンによりヒートシンクの周囲の暖まった 空気を強制的に排除する方法もある。このように、ヒートシンクに周囲の暖まった空気 は、 PCの筐体の排気口を介して筐体の外部へ排出される。  [0002] Conventionally, an increase in the amount of heat generated from a heating element such as an IC (Integrated Circuit) due to high performance of a PC (Personal Computer) has been a problem, and various heat dissipation techniques have been proposed. Has been commercialized. As a heat dissipation method, for example, there is a method in which a heat sink fin (heat sink) made of a metal such as aluminum is brought into contact with the IC, and the heat from the IC is conducted to the heat sink to release the heat. In addition, there is also a method of using a fan to forcibly remove the warm air in the PC housing and for example releasing heat by introducing ambient low-temperature air around the heating element. Furthermore, by using a heat sink and a fan together, there is a method of forcibly removing the warm air around the heat sink by the fan while increasing the contact area between the heating element and the air with the heat sink. In this way, the warm air around the heat sink is discharged to the outside of the housing through the exhaust port of the PC housing.
[0003] ところで、筐体の排気口の形状を工夫して排熱効率を向上させた技術が開示され ている(例えば、「特開 2004— 259916号公報の段落 [0010]乃至 [0013]及び図 2」 参照。;)。この「特開 2004— 259916号公報」では、複数ある排気口のうちの 1つの 排気口が、上下一対で設けられた庇のような部材 (前部膨出部 (9a)及び後部膨出 部(9b) )が筐体の内部側と外部側にそれぞれ突出することで形成されて 、る。これ により、開口面積が広くなり、排熱効率が向上する。  [0003] By the way, a technique that improves the exhaust heat efficiency by devising the shape of the exhaust port of the housing is disclosed (for example, paragraphs [0010] to [0013] and FIG. See 2 ”;). In this “Japanese Patent Laid-Open No. 2004-259916”, one of the plurality of exhaust ports is provided with a pair of upper and lower ridge-like members (front bulge portion (9a) and rear bulge portion). (9b) is formed by projecting to the inside and outside of the casing. This increases the opening area and improves the exhaust heat efficiency.
発明の開示  Disclosure of the invention
[0004] し力しながら、異物が排気口を介して筐体内に進入することによって機器が破損す ること等を防ぐために、排気口の開口のサイズ等が所定規格を満たす必要があり、制 約が大きい。また、このような制約があることで、排気口部分の圧力損失が増大し、す なわち排気効率が低下することにより、放熱効率の低下が避けられない状況にある。 [0005] 特に、電子機器が小型化していく場合、開口面積を大きくすることはできず、「特開 2004— 259916号公報」に記載の技術では、排気効率の低下という問題に対応す ることは困難である。「特開 2004— 259916号公報」の技術では、製作工程が複雑 で製作コストが高くなるという問題もある。 [0004] In order to prevent foreign matter from entering the housing through the exhaust port while damaging the device, the size of the exhaust port opening and the like must satisfy a predetermined standard. About big. In addition, due to such restrictions, the pressure loss at the exhaust port portion increases, that is, the exhaust efficiency decreases, so that the heat dissipation efficiency is unavoidably reduced. [0005] In particular, when an electronic device is downsized, the opening area cannot be increased, and the technique described in “Japanese Patent Laid-Open No. 2004-259916” addresses the problem of reduced exhaust efficiency. It is difficult. The technique disclosed in Japanese Patent Laid-Open No. 2004-259916 has a problem that the manufacturing process is complicated and the manufacturing cost is high.
[0006] また、 IC等の発熱量の増加にもかかわらず、電子機器本体には小型化が強く求め られており、限られたスペースの中で、排気口での圧力損失を小さくする必要がある  [0006] In addition, despite the increase in the amount of heat generated by ICs and the like, there is a strong demand for miniaturization of electronic device bodies, and it is necessary to reduce the pressure loss at the exhaust port in a limited space. is there
[0007] 以上のような事情に鑑み、本発明の目的は、限られた少な 、スペース内で、排気口 付近での圧力損失を小さくして排熱効率を向上させることができる排気用のメッシュ 材、これを搭載した電子機器を提供することにある。 [0007] In view of the circumstances as described above, the object of the present invention is to provide a mesh material for exhaust that can improve the exhaust heat efficiency by reducing the pressure loss near the exhaust port in a limited space. It is to provide an electronic device equipped with this.
[0008] 本発明のさらなる目的は、製造コストを抑制することができるメッシュ材、これを搭載 した電子機器を提供することにある。  [0008] A further object of the present invention is to provide a mesh material capable of suppressing the manufacturing cost and an electronic apparatus equipped with the mesh material.
[0009] 上記目的を達成するため、本発明に係るメッシュ材は、発熱源と、前記発熱源を内 蔵し排気口を有する筐体と、気体により前記発熱源の熱を前記排気口を介して排出 可能な放熱機構とを有する電子機器の、前記排気口に設けられたメッシュ材であつ て、前記排気口に装着される両端部と、前記両端部の間の少なくとも一部が、前記筐 体の外側へ突出するように湾曲する第 1のメッシュ面とを具備する。  [0009] In order to achieve the above object, a mesh material according to the present invention includes a heat generation source, a housing having the heat generation source and having an exhaust port, and heat of the heat generation source by gas through the exhaust port. An electronic device having a heat dissipation mechanism that can be discharged in a vacuum is a mesh material provided at the exhaust port, and at least a part between the both end portions attached to the exhaust port and the both end portions is the housing. And a first mesh surface curved so as to protrude outward from the body.
[0010] 本発明では、例えば筐体内にある放熱機構の気体流の出口が排気口近くにあって も、湾曲する第 1のメッシュ面がその排気口力も離れるように設けられている。したが つて、放熱機構により筐体の内部から排熱用の気体が排気口を介して外部へ流され るときの圧力損失を低減でき、排熱効率を高めることができる。つまり、本発明では、 メッシュ材の両端部が排気口に装着され、かつ、湾曲する第 1のメッシュ面が設けら れることで、狭い筐体や排気口の限られたスペース内で、極力排気部分の面積また は容積を増やして効率良く排熱することができる。  [0010] In the present invention, for example, even if the outlet of the gas flow of the heat dissipation mechanism in the casing is near the exhaust port, the curved first mesh surface is provided so that the exhaust port force is also separated. Therefore, the heat dissipation mechanism can reduce the pressure loss when the exhaust heat gas flows from the inside of the housing to the outside through the exhaust port, and the exhaust heat efficiency can be increased. In other words, in the present invention, both ends of the mesh material are attached to the exhaust port, and the first mesh surface that is curved is provided, so that the exhaust gas is exhausted as much as possible within a narrow housing or a limited space of the exhaust port. It is possible to efficiently exhaust heat by increasing the area or volume of the part.
[0011] また、排気口にメッシュ材が設けられるだけでよいので、例えば「特開 2004— 259 916号公報」等の構造に比べ、製造コストを抑制することができる。  [0011] Further, since only the mesh material needs to be provided at the exhaust port, for example, the manufacturing cost can be suppressed as compared with a structure such as "JP-A-2004-259916".
[0012] メッシュ材の両端部とは、例えば電子機器の上下方向(垂直方向)における両端部 、水平方向における両端部、または、斜め方向の両端部であり、色々な態様が考えら れる。 [0012] Both end portions of the mesh material are, for example, both end portions in the vertical direction (vertical direction) of the electronic device, both end portions in the horizontal direction, or both end portions in the oblique direction. It is.
[0013] 発熱源としては、例えば IC、コイル、抵抗等の電子部品、あるいはモータ等の動力 源が挙げられる。  [0013] Examples of the heat source include electronic components such as an IC, a coil, and a resistor, or a power source such as a motor.
[0014] 放熱機構とは、例えば、後述するように少なくとも気体を送出する気体送出機構を 含む。放熱機構は、送風デバイスのほかにも、ヒートシンク、またはヒートパイプの原 理を用いた熱輸送デバイス等、放熱作用、伝熱作用のあるものを含んでもよい。  [0014] The heat dissipation mechanism includes, for example, a gas delivery mechanism that delivers at least gas as described later. In addition to the blower device, the heat dissipation mechanism may include a heat sink or a heat transport device using a heat pipe principle, or the like that has a heat dissipation function and a heat transfer function.
[0015] 電子機器としては、コンピュータ(パーソナルコンピュータの場合、ラップトップ型で あっても、デスクトップ型であってもよい。)、 PDA (Personal Digital Assistance)、電子 辞書、カメラ、ディスプレイ装置、オーディオ Zビジュアル機器、プロジェクタ、携帯電 話、ゲーム機器、カーナビゲーシヨン機器、ロボット機器、その他の電化製品等が挙 げられる。  [0015] Electronic devices include computers (in the case of personal computers, laptops or desktops), PDAs (Personal Digital Assistance), electronic dictionaries, cameras, display devices, audio Z Examples include visual equipment, projectors, mobile phones, game equipment, car navigation equipment, robot equipment, and other electrical appliances.
[0016] 気体は、例えば空気が挙げられる力 これに限らず、窒素、ヘリウムガス、あるいは アルゴンガス、その他の気体であってもよい。  The gas is, for example, a force including air, but is not limited thereto, and may be nitrogen, helium gas, argon gas, or other gas.
[0017] 本発明にお 、て、当該メッシュ材は、前記第 1のメッシュ面と連続して設けられた平 面状の第 2のメッシュ面をさらに具備する。メッシュ材の中でも、特に、圧力損失を低く した 、部分だけを適宜第 1及び第 2のメッシュ面として設定すればょ 、。  In the present invention, the mesh material further includes a flat second mesh surface provided continuously with the first mesh surface. Among the mesh materials, in particular, if the pressure loss is lowered, only the portion is set as the first and second mesh surfaces as appropriate.
[0018] 本発明にお ヽて、前記放熱機構は、前記排気口の近傍に配置され、前記発熱源 に熱的に接続された第 1の幅を有するヒートシンクを有し、当該メッシュ材は、前記第 1の幅の方向に、該第 1の幅の 105%〜150%の幅である第 2の幅を有する。ヒート シンク力もメッシュ材に向力 気体は、ヒートシンク力も広がるように流れる。したがって 、本発明のような構成によれば、排熱効率を高めることができる。  [0018] In the present invention, the heat dissipation mechanism includes a heat sink having a first width disposed in the vicinity of the exhaust port and thermally connected to the heat generation source, and the mesh material includes: In the first width direction, the second width is 105% to 150% of the first width. Heat sink force is also applied to the mesh material Gas flows so that the heat sink force spreads. Therefore, according to the configuration of the present invention, the exhaust heat efficiency can be increased.
[0019] 本発明の他の観点に係るメッシュ材は、発熱源と、前記発熱源を内蔵し排気口を有 する筐体と、気体により前記発熱源の熱を前記排気口を介して排出可能な放熱機構 とを有する電子機器の、前記排気口に設けられたメッシュ材であって、前記排気口に 装着される、第 1の端部及び該第 1の端部とは反対側の第 2の端部と、前記第 1の端 部から前記第 2の端部にかけて複数の異なる角度の平面に沿って形成されたメッシ ュ面とを具備する。  [0019] A mesh material according to another aspect of the present invention is capable of exhausting heat of the heat source through the exhaust port by a heat source, a housing with the heat source built in and having an exhaust port, and a gas. A mesh material provided at the exhaust port of an electronic device having a heat dissipation mechanism, and a first end portion mounted on the exhaust port and a second end opposite to the first end portion And a mesh surface formed along a plurality of planes at different angles from the first end to the second end.
[0020] 本発明では、例えば筐体内にある放熱機構の空気流の出口が排気口近くにあって も、メッシュ面は複数の異なる角度の平面に沿って形成されており、メッシュ面の一部 がその排気口力も離れるように設けられている。したがって、放熱機構により筐体の 内部から排熱用の気体が排気口を介して外部へ流されるときの圧力損失を低減でき 、排熱効率を高めることができる。 In the present invention, for example, the outlet of the air flow of the heat dissipation mechanism in the housing is near the exhaust port. In addition, the mesh surface is formed along a plurality of planes at different angles, and a part of the mesh surface is provided so that the exhaust port force is also separated. Therefore, the heat dissipation mechanism can reduce the pressure loss when the exhaust heat gas flows from the inside of the housing to the outside through the exhaust port, and the exhaust heat efficiency can be increased.
[0021] 本発明において、前記メッシュ面は、前記第 1の端部から前記第 2の端部へ向かう 第 1の方向に第 1の長さを有するとともに、前記第 1の方向とほぼ直交する第 2の方向 に前記第 1の長さより長い第 2の長さを有する。あるいは、本発明において、前記メッ シュ面は、前記第 1の端部から前記第 2の端部へ向力う第 1の方向に第 1の長さを有 するとともに、前記第 1の方向とほぼ直交する第 2の方向に前記第 1の長さより短い第 2の長さを有する。  In the present invention, the mesh surface has a first length in a first direction from the first end toward the second end, and is substantially orthogonal to the first direction. The second direction has a second length longer than the first length. Alternatively, in the present invention, the mesh surface has a first length in a first direction directed from the first end portion toward the second end portion, and the first direction and A second length shorter than the first length is provided in a second direction that is substantially orthogonal.
[0022] 本発明に係る電子機器は、発熱源と、前記発熱源を内蔵し、排気口を有する筐体 と、気体により前記発熱源の熱を前記排気口を介して排出可能な放熱機構と、前記 排気口に設けられ、少なくとも一部が、前記筐体の外側へ突出するように湾曲する第 1のメッシュ面を有するメッシュ材とを具備する。  [0022] An electronic apparatus according to the present invention includes a heat generation source, a housing having the heat generation source therein and having an exhaust port, and a heat dissipation mechanism capable of discharging heat of the heat generation source through the exhaust port by gas. And a mesh material having a first mesh surface that is provided at the exhaust port and that is curved so that at least a part protrudes to the outside of the housing.
[0023] 例えば、本発明にお 、て、前記メッシュ材カ 第 1のメッシュ面と連続して設けられ た平面状の第 2のメッシュ面を有する場合、前記第 1のメッシュ面は前記第 2のメッシ ュ面より上部に配置されている。排気される高温の気体は上方に流れようとする。第 1 のメッシュ面が第 2のメッシュ面より上部に配置されることで、気体流に極力垂直に近 くなるように第 1のメッシュ面が配置されるので、排熱効率が向上する。  [0023] For example, in the present invention, in the case where the mesh material has a planar second mesh surface provided continuously with the first mesh surface, the first mesh surface is the second mesh surface. It is placed above the mesh surface. The exhausted hot gas tends to flow upward. By disposing the first mesh surface above the second mesh surface, the first mesh surface is disposed so as to be as perpendicular as possible to the gas flow, so that the heat exhaust efficiency is improved.
[0024] 本発明にお ヽて、前記放熱機構は、前記排気口の近傍に配置され、前記発熱源 に熱的に接続されたヒートシンクと、前記ヒートシンクを冷却するために、前記ヒートシ ンクに向けて気体を送出する気体送出機構とを具備する。気体送出機構としては、 例えば回転式のファン、または、気体を脈流として吐出する噴流発生装置が挙げら れる。  In the present invention, the heat dissipation mechanism is disposed in the vicinity of the exhaust port and thermally connected to the heat generation source, and is directed to the heat sink in order to cool the heat sink. And a gas delivery mechanism for delivering gas. Examples of the gas delivery mechanism include a rotary fan or a jet generating device that discharges gas as a pulsating flow.
[0025] 本発明の他の観点に係る電子機器は、発熱源と、前記発熱源を内蔵し、排気口を 有する筐体と、気体により前記発熱源の熱を前記排気口を介して排出可能な放熱機 構と、前記排気口に設けられ、複数の異なる角度の平面に沿って形成されたメッシュ 材とを具備する。 [0026] 本発明のさらに別の観点に係る電子機器は、発熱源と、所定の面と、前記面に開 口された排気口とを有し、前記発熱源を内蔵する筐体と、気体により前記発熱源の 熱を前記排気口を介して排出可能な放熱機構と、前記面の角度とは異なる角度に面 するように前記排気口に設けられた平面状のメッシュ材とを具備する。 [0025] An electronic device according to another aspect of the present invention is capable of exhausting heat of the heat source through the exhaust port by a heat source, a housing having the heat source built therein and having an exhaust port, and gas. And a mesh material provided along a plurality of planes at different angles, provided at the exhaust port. [0026] An electronic device according to still another aspect of the present invention includes a heat generation source, a predetermined surface, an exhaust port opened in the surface, a housing containing the heat generation source, a gas Thus, a heat dissipation mechanism capable of discharging the heat of the heat source through the exhaust port and a planar mesh material provided at the exhaust port so as to face an angle different from the angle of the surface.
[0027] このような構成によっても、例えば筐体内にある放熱機構の空気流の出口が排気口 近くにあっても、メッシュ材の一部がその排気口力も離れるように設けられて 、るので 、放熱機構により筐体の内部から排熱用の気体が排気口を介して外部へ流されると きの圧力損失を低減できる。  [0027] Even with such a configuration, for example, even if the outlet of the air flow of the heat dissipation mechanism in the housing is close to the exhaust port, a part of the mesh material is provided so that the exhaust port force is also separated. The heat dissipation mechanism can reduce pressure loss when the exhaust heat gas flows from the inside of the housing to the outside through the exhaust port.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]図 1は、本発明の一実施の形態に係る電子機器を示す一部破断斜視図である  FIG. 1 is a partially cutaway perspective view showing an electronic device according to an embodiment of the present invention.
[図 2]図 2は、図 1に示す電子機器の背面側を示す図である。 FIG. 2 is a diagram showing a back side of the electronic device shown in FIG.
[図 3]図 3は、図 1に示す電子機器の背面側の断面図である。  3 is a cross-sectional view of the back side of the electronic device shown in FIG.
[図 4]図 4は、本発明の一実施の形態に係るメッシュ材を示す斜視図である。  FIG. 4 is a perspective view showing a mesh material according to an embodiment of the present invention.
[図 5]図 5は、噴流発生装置を示す断面図である。  FIG. 5 is a cross-sectional view showing a jet flow generating device.
[図 6]図 6は、ヒートシンクを示す斜視図である。  FIG. 6 is a perspective view showing a heat sink.
[図 7]図 7は、本発明の他の実施の形態に係るメッシュ材を示す斜視図である。  FIG. 7 is a perspective view showing a mesh material according to another embodiment of the present invention.
[図 8]図 8は、図 7に示すメッシュ材の断面図である。  FIG. 8 is a cross-sectional view of the mesh material shown in FIG.
[図 9]図 9は、本発明のさらに別の実施の形態に係るメッシュ材を示す斜視図である。  FIG. 9 is a perspective view showing a mesh material according to still another embodiment of the present invention.
[図 10]図 10は、本発明のさらに別の実施の形態に係るメッシュ材を示す斜視図であ る。  FIG. 10 is a perspective view showing a mesh material according to still another embodiment of the present invention.
[図 11]図 11は、本発明のさらに別の実施の形態に係るメッシュ材を備えた PCの背面 側の断面図である。  FIG. 11 is a cross-sectional view of the back side of a PC provided with a mesh material according to still another embodiment of the present invention.
[図 12]図 12は、本発明のさらに別の実施の形態に係るメッシュ材を備えた PCの背面 側の断面図である。  FIG. 12 is a cross-sectional view of the back side of a PC provided with a mesh material according to still another embodiment of the present invention.
[図 13]図 13は、ヒートシンク及びメッシュ材間の距離と、ヒートシンクの空気流の出口 付近の圧力との関係を示すグラフである。  FIG. 13 is a graph showing the relationship between the distance between the heat sink and the mesh material and the pressure near the air flow outlet of the heat sink.
[図 14]図 14は、排気口のサイズと、ヒートシンクの空気流の出口付近の圧力との関係 を示すグラフである。 [Figure 14] Figure 14 shows the relationship between the size of the exhaust port and the pressure near the airflow outlet of the heat sink. It is a graph which shows.
[図 15]図 15は、各実施の形態に係るメッシュ材ごとの、ヒートシンクの空気流の出口 付近の圧力を示すグラフである。  FIG. 15 is a graph showing the pressure in the vicinity of the airflow outlet of the heat sink for each mesh material according to each embodiment.
[図 16]図 16は、各実施の形態に係るメッシュ材ごとの、ヒートシンクの空気流の出口 付近の圧力を示すグラフである。  FIG. 16 is a graph showing the pressure in the vicinity of the airflow outlet of the heat sink for each mesh material according to each embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の実施の形態を図面に基づき説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明の一実施の形態に係る電子機器を示す一部破断斜視図である。図 2は、図 1に示す電子機器の背面側を示す図である。図 3は、図 1に示す電子機器の 背面側の断面図である。  FIG. 1 is a partially cutaway perspective view showing an electronic apparatus according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a back side of the electronic device illustrated in FIG. FIG. 3 is a cross-sectional view of the electronic device shown in FIG.
[0030] 電子機器 100は、本体 102とディスプレイ 103とで構成される、例えばラップトップ 型の PCである。本体 102の筐体 101には、ヒートシンク 20と、このヒートシンク 20に向 けて合成噴流を供給する噴流発生装置 30とが内蔵されている。ヒートシンク 20には 、図示しない発熱源として、例えば CPU (Central Processing Unit)等の ICが熱的に 接続されている。熱的に接続されているとは、両者が直接接している場合、または、 両者が例えばヒートパイプや熱伝導シート等の図示しない熱伝達デバイスを介して 接続されて ヽることを意味する。  [0030] Electronic device 100 is, for example, a laptop PC that includes a main body 102 and a display 103. A housing 101 of the main body 102 includes a heat sink 20 and a jet flow generating device 30 that supplies a synthetic jet toward the heat sink 20. An IC such as a CPU (Central Processing Unit) is thermally connected to the heat sink 20 as a heat source (not shown). The term “thermally connected” means that both are in direct contact with each other, or that both are connected via a heat transfer device (not shown) such as a heat pipe or a heat conductive sheet.
[0031] 筐体 101の背面 101aには排気口 101bが形成されている。排気口 101bは、例え ば長方形状をなしている。図 3に示すように、ヒートシンク 20は、排気口 101bの近傍 に配置され、噴流発生装置 30はヒートシンク 20の近傍に配置されている。排気口 10 lbには、本発明の一実施の形態に係るメッシュ材 50が設置されている。排気口 101 bは、筐体 101の背面側に設けられる構成とした力 筐体 101の側面や上面等であつ てもよい。  An exhaust port 101 b is formed on the back surface 101 a of the housing 101. The exhaust port 101b has, for example, a rectangular shape. As shown in FIG. 3, the heat sink 20 is disposed in the vicinity of the exhaust port 101b, and the jet flow generating device 30 is disposed in the vicinity of the heat sink 20. A mesh member 50 according to an embodiment of the present invention is installed in the exhaust port 10 lb. The exhaust port 101 b may be a side surface or an upper surface of the force housing 101 configured to be provided on the back side of the housing 101.
[0032] 図 4は、このメッシュ材 50を示す斜視図である。メッシュ材 50は、例えば断面が円弧 状でなり、縦横に細い部材が集められて湾曲して構成されている。メッシュ材 50は、 例えば榭脂、金属、あるいは熱伝導性の高いカーボン等でなる。金属の場合、アルミ ユウム、銅、ステンレス等が挙げられる。図 3に示すように、メッシュ材 50の上下の両 端部 51及び 52が排気口 101bの上下に、例えば、溶着、圧着、またはレーザ接合等 により装着されている。あるいは、メッシュ材 50は、筐体 101と一体成形されてもよい FIG. 4 is a perspective view showing the mesh material 50. The mesh material 50 has, for example, a circular arc shape in cross section, and is formed by bending thin members vertically and horizontally. The mesh material 50 is made of, for example, resin, metal, or carbon having high thermal conductivity. In the case of metals, examples include aluminum, copper, and stainless steel. As shown in FIG. 3, the upper and lower ends 51 and 52 of the mesh material 50 are placed above and below the exhaust port 101b, for example, welding, pressure bonding, laser bonding, etc. It is installed by. Alternatively, the mesh material 50 may be integrally formed with the housing 101.
[0033] なお、図 2に示すように、排気口 101bに設置されたメッシュ材 50の左右の端部は、 例えばカバー部材 58により覆われている。しかし、このカバー部材 58の部分もメッシ ュ構造としてもよい。メッシュ材 50は、例えば UL (UNDERWRITERS LABORATORIE S INC.)規格のメッシュが用いられる。メッシュ材 50の断面は、必ずしも円弧状である 必要はなぐ双曲線、放物線、あるいは楕円曲線等の 2次関数曲線状であってもよい As shown in FIG. 2, the left and right end portions of the mesh material 50 installed at the exhaust port 101b are covered with a cover member 58, for example. However, the cover member 58 may also have a mesh structure. As the mesh material 50, for example, a UL (UNDERWRITERS LABORATORIE S INC.) Standard mesh is used. The cross section of the mesh material 50 is not necessarily an arc shape, but may be a quadratic function curve shape such as a hyperbola, a parabola, or an elliptic curve.
[0034] 図 5は、噴流発生装置 30を示す断面図である。噴流発生装置 30は、一方の側が 角柱形で、その反対側が円筒形状のハウジング 32を備えている。ハウジング 32は、 榭脂、金属、またはセラミックス等でなる。ノ、ウジング 32の内部には、当該内部を二 分してチャンバ 32a及び 32bを形成するように振動板 35が設けられて 、る。振動板 3 5は、榭脂、金属、あるいはその他の材料でなる円板に、例えば図示しない平面コィ ルが取り付けられて構成されている。また、ハウジング 32内には、図示しないマグネッ トゃヨーク等、振動板 35を電磁駆動するための機構が備えられている。上記平面コィ ルには、駆動用の IC等を有する制御部 36によって所定の電気信号が印加される。 FIG. 5 is a cross-sectional view showing the jet flow generating device 30. The jet flow generating device 30 includes a housing 32 having a prism shape on one side and a cylindrical shape on the opposite side. The housing 32 is made of resin, metal, ceramics, or the like. The diaphragm 35 is provided inside the housing 32 so as to divide the interior into the chambers 32a and 32b. The diaphragm 35 is configured by attaching, for example, a planar coil (not shown) to a disk made of resin, metal, or other material. The housing 32 is provided with a mechanism for electromagnetically driving the diaphragm 35 such as a magnet yoke (not shown). A predetermined electric signal is applied to the planar coil by a control unit 36 having a driving IC or the like.
[0035] ハウジング 32の前面には上下 2列のノズル 33a及び 33bが設けられている。ノズル 33a及び 33bは、図 5中、紙面に垂直方向にそれぞれ複数設けられている。チャンバ 32aは、ノズル群 33aを介してハウジング 32の外部の空気と連通している。同様に、 チャンバ 32bは、ノズル群 33bを介してハウジング 32の外部の空気と連通している。  [0035] Two rows of upper and lower nozzles 33a and 33b are provided on the front surface of the housing 32. A plurality of nozzles 33a and 33b are provided in the direction perpendicular to the paper surface in FIG. The chamber 32a communicates with air outside the housing 32 through the nozzle group 33a. Similarly, the chamber 32b communicates with air outside the housing 32 through the nozzle group 33b.
[0036] なお、噴流発生装置 30の形態は、上述した形態に限られず、ノ、ウジング 32、ノズ ル 33a等、振動板 35の形状や大きさ、振動板 35の駆動方式等は、様々な形態が考 えられる。振動板 35の駆動方式は電磁駆動に限られず、圧電駆動、静電駆動等を 用いてもよい。  [0036] The form of the jet flow generating device 30 is not limited to the above-described form, and there are various shapes and sizes of the diaphragm 35, such as the nozzle 32, the nozzle 32, the nozzle 33a, etc. The form is considered. The driving method of the diaphragm 35 is not limited to electromagnetic driving, and piezoelectric driving, electrostatic driving, or the like may be used.
[0037] このように構成された噴流発生装置 30の動作を説明する。例えば振動板 35のコィ ルに正弦波の交流電圧が印加されると、振動板 35は正弦波振動を行う。振動板 35 が図 5中、上下に振動することにより、チャンバ 32a及び 32bの容積が交互に増減し、 その結果、ノズル 33a及び 33bを介して交互に逆位相で空気が脈流として吐出され る。ノズル 33a及び 33bから空気が吐出されるときに、その空気に流速が発生すること によってノズル 33a及び 33bの周辺の圧力が低下する。その結果、ハウジング 32の 周辺の空気が、ノズル 33a及び 33bから吐出された空気流に巻き込まれ、すなわち 合成噴流となり、この合成噴流がヒートシンク 20に供給される。一方、各ノズル 33a及 びノズル 33bから独立して音波が発生する。この音波の発生原因は、振動板 35が振 動することにより、ハウジング 32内の空気の振動すること、あるいは、ハウジング 32や ノズル 33a等の内部で空気に乱流が発生すること等が考えられる。し力しながら、各ノ ズル 33a及びノズル 33bとで発生する各音波は逆位相の音波であるため互いに弱め られる。これにより、騒音が抑制され、静音化を図ることができる。 [0037] The operation of the jet flow generating device 30 configured as described above will be described. For example, when a sinusoidal AC voltage is applied to the coil of the diaphragm 35, the diaphragm 35 performs sinusoidal vibration. As the diaphragm 35 vibrates up and down in FIG. 5, the volumes of the chambers 32a and 32b alternately increase and decrease, and as a result, air is alternately discharged in a reverse phase through the nozzles 33a and 33b. The When air is discharged from the nozzles 33a and 33b, the pressure around the nozzles 33a and 33b decreases due to the flow velocity of the air. As a result, the air around the housing 32 is entrained in the air flow discharged from the nozzles 33 a and 33 b, that is, becomes a synthetic jet, and this synthetic jet is supplied to the heat sink 20. On the other hand, sound waves are generated independently from each nozzle 33a and nozzle 33b. Possible causes of this sound wave are vibration of the diaphragm 35, vibration of the air in the housing 32, or turbulence in the air inside the housing 32, the nozzle 33a, etc. . However, since the sound waves generated by the nozzles 33a and the nozzles 33b are sound waves of opposite phases, they are weakened with each other. As a result, noise is suppressed, and noise reduction can be achieved.
[0038] 図 6は、ヒートシンク 20を示す斜視図である。ヒートシンク 20は、複数の放熱フィン 2 5が配列されて構成されており、例えば公知のヒートシンクが用いられればよぐ図 6 に示すような形態に限られない。各放熱フィン 25の間には、複数の空気の流通穴 26 が形成されている。図 1及び図 3に示すように、各流通穴 26に上記噴流発生装置 30 のノズル 33a及び 33bが対面するように、噴流発生装置 30及びヒートシンク 20が位 置決めされる。 FIG. 6 is a perspective view showing the heat sink 20. The heat sink 20 is configured by arranging a plurality of radiating fins 25, and is not limited to the form shown in FIG. 6, for example, if a known heat sink is used. A plurality of air circulation holes 26 are formed between the heat radiating fins 25. As shown in FIGS. 1 and 3, the jet generating device 30 and the heat sink 20 are positioned so that the nozzles 33a and 33b of the jet generating device 30 face each flow hole 26.
[0039] 以上のように構成された放熱システムの作用につ 、て説明する。噴流発生装置 30 により合成噴流が生成されると、その合成噴流による空気流がヒートシンク 20の流通 穴 26を通る。ヒートシンク 20を通る空気流は、各放熱フィン 25の表面に滞留する温 度境界層を破壊しながら進むので、熱を含む空気流となる。ヒートシンク 20を通り抜 けた空気流は、排気口 101b及びメッシュ材 50を介して筐体 101の外部へ、熱ととも に排出される。  [0039] The operation of the heat dissipation system configured as described above will be described. When a composite jet is generated by the jet generator 30, the air flow generated by the composite jet passes through the flow hole 26 of the heat sink 20. The air flow through the heat sink 20 proceeds while destroying the temperature boundary layer staying on the surface of each radiating fin 25, and thus becomes an air flow including heat. The air flow passing through the heat sink 20 is discharged together with heat to the outside of the housing 101 through the exhaust port 101b and the mesh material 50.
[0040] 図 3に示すように、ヒートシンク 20を出た空気流は 3次元的に広がろうとするので、 当該空気流が、メッシュ材 50のメッシュ面を構成する湾曲面に対し、極力垂直に近く なるように、メッシュ材 50を通り抜ける。これにより、空気流カ^ッシュ材 50を通り抜け るときの圧力損失が低減されるので、空気の流量が多くなる。その結果、空気の排出 効率が高められ、排熱効率が向上する。  [0040] As shown in FIG. 3, since the air flow exiting the heat sink 20 tends to spread three-dimensionally, the air flow is as perpendicular as possible to the curved surface constituting the mesh surface of the mesh material 50. Pass through the mesh material 50 so that it is close. This reduces the pressure loss as it passes through the airflow cache 50, thus increasing the air flow rate. As a result, the efficiency of exhausting air is increased and the efficiency of exhaust heat is improved.
[0041] また、ヒートシンク 20の空気流の出口側が排気口 101bの近くにあっても、湾曲する メッシュ材 50がその排気口 101bから離れるように設けられている。これによつても、ヒ ートシンク 20を通り抜けた空気流の圧力損失を低減できる。すなわち、筐体 101内の 限られた狭いスペース内で、極力排気口 101bの周囲の面積または容積を増やして 排熱効率を高めることができる。 [0041] Further, even when the airflow outlet side of the heat sink 20 is near the exhaust port 101b, the curved mesh member 50 is provided so as to be separated from the exhaust port 101b. This also means that The pressure loss of the air flow passing through the tote sink 20 can be reduced. That is, the exhaust heat efficiency can be increased by increasing the area or volume around the exhaust port 101b as much as possible within the limited narrow space in the housing 101.
[0042] また、メッシュ材 50が備えられることにより、複数の小さい孔でなる排気口や、格子 状の孔のぁ 、た排気口等に比べ、防塵の効果を高めることができる。  [0042] Further, by providing the mesh member 50, the dustproof effect can be enhanced as compared with an exhaust port formed of a plurality of small holes, a lattice-shaped hole, an exhaust port, or the like.
さらに、排気口 101bにメッシュ材 50が設けられるだけでよいので、例えば「特開 20 04 - 259916号公報」等の構造に比べ、製造コストを抑制することができる。  Furthermore, since only the mesh material 50 needs to be provided at the exhaust port 101b, the manufacturing cost can be reduced as compared with, for example, the structure of “Japanese Patent Laid-Open No. 2004-259916”.
[0043] 図 7は、本発明の他の実施の形態に係るメッシュ材を示す斜視図である。図 8は、そ の断面図である。このメッシュ材 60は、一端部 61 (第 1の端部)から他端部 62 (第 2の 端部)にかけて、例えば 2つの異なる角度の平面に沿って形成されたメッシュ面 60a 及び 60bを有する。このように構成されたメッシュ材 60の両端部 61及び 62が、図 3と 同様に排気口 101bの上下に装着されることで、メッシュ材 60が排気口 101bに設置 される。これにより、ヒートシンク 20が排気口 101bの近くにあっても、メッシュ面 60a及 び 60bが排気口 101bから離れているので、ヒートシンク 20からの空気流の圧力損失 を低減でき、排熱効率を高めることができる。また、上記湾曲するメッシュ材 50とほぼ 同様に、ヒートシンク 20から流出して広がる空気流カ^ッシュ面 60a及び 60bに対し て極力垂直に近くなるので、圧力損失を低減することができる。  FIG. 7 is a perspective view showing a mesh material according to another embodiment of the present invention. FIG. 8 is a cross-sectional view thereof. This mesh material 60 has mesh surfaces 60a and 60b formed along, for example, two different angle planes from one end 61 (first end) to the other end 62 (second end). . The both ends 61 and 62 of the mesh material 60 thus configured are mounted on the upper and lower sides of the exhaust port 101b in the same manner as in FIG. 3, so that the mesh material 60 is installed in the exhaust port 101b. As a result, even if the heat sink 20 is close to the exhaust port 101b, the mesh surfaces 60a and 60b are separated from the exhaust port 101b, so that the pressure loss of the air flow from the heat sink 20 can be reduced and the exhaust heat efficiency can be improved. Can do. Further, almost in the same way as the curved mesh material 50 described above, the pressure loss can be reduced because the air flow cache surfaces 60a and 60b that flow out from the heat sink 20 and spread as close as possible.
[0044] 図 9及び図 10は、本発明のさらに別の実施の形態に係るメッシュ材を示す斜視図 である。図 9に示すメッシュ材 70は、その長手方向、つまり、左右方向の一端部 73か ら他端部 74にかけて複数の異なる角度のメッシュ面 70a、 70b、 70c、 70d、 70e及 び 70fを有する。このような構成によっても、ヒートシンク 20からの空気流の圧力損失 を低減できる。図 10に示すメッシュ材 80は、上記メッシュ材 70のメッシュ面の数を多 くした形態でなる。  FIG. 9 and FIG. 10 are perspective views showing a mesh material according to still another embodiment of the present invention. The mesh member 70 shown in FIG. 9 has a plurality of mesh surfaces 70a, 70b, 70c, 70d, 70e and 70f at different angles from one end 73 to the other end 74 in the longitudinal direction, that is, the left-right direction. Even with such a configuration, the pressure loss of the air flow from the heat sink 20 can be reduced. The mesh material 80 shown in FIG. 10 has a form in which the number of mesh surfaces of the mesh material 70 is increased.
[0045] 図 11及び図 12は、本発明のさらに別の実施の形態に係るメッシュ材を備えた PC の背面側の断面図である。図 11に示す PCの筐体 201が有する排気口 201bは、垂 直な背面 201aに対して斜めに設けられて 、る。このように斜めに開口された排気口 201bの上下に、 1つの平面でなるメッシュ材 90の上下両端部 90a及び 90bが装着さ れている。このような構成により、メッシュ材 90の下部力 その上部に比べヒートシンク 20の空気流の出口からの距離が大きい。これにより、空気流の圧力損失を低減する ことができる。 FIG. 11 and FIG. 12 are cross-sectional views on the back side of a PC provided with a mesh material according to still another embodiment of the present invention. The exhaust port 201b of the PC housing 201 shown in FIG. 11 is provided obliquely with respect to the vertical back surface 201a. The upper and lower ends 90a and 90b of the mesh material 90 having one plane are mounted on the upper and lower sides of the exhaust port 201b that is opened obliquely in this way. With this configuration, the lower force of the mesh material 90 Great distance from 20 airflow outlets. Thereby, the pressure loss of the air flow can be reduced.
[0046] なお、排気口 201bは、筐体 201の外側に向かって開口面が上に向くように斜めに 設けられた。しかし、逆に、開口面が下に向くように斜めに設けられるようにしてもよい 。この場合、メッシュ材 90も、筐体 201の外側に向力つて下方向に向くように斜めに 設置される。  It should be noted that the exhaust port 201b is provided obliquely so that the opening surface faces upward toward the outside of the housing 201. However, conversely, it may be provided obliquely so that the opening surface faces downward. In this case, the mesh material 90 is also installed obliquely so as to face downward on the outside of the casing 201.
[0047] 図 12に示す PCの筐体 301が有する排気口 301bも、図 11に示す排気口 20 lbと 同様に斜めに開口されている。メッシュ材 110は、上部のメッシュ面 110aが曲面状を なしている。一方、下部は平面状でなる。排気される高温の空気は上方に流れようと するので、上部のメッシュ面 110aが下部のメッシュ面 110bより上部に配置されること で、空気流に極力垂直に近くなるようにメッシュ面 110bが配置され、排熱効率が向 上する。  The exhaust port 301b of the PC housing 301 shown in FIG. 12 is also opened obliquely, similarly to the exhaust port 20 lb shown in FIG. In the mesh material 110, the upper mesh surface 110a is curved. On the other hand, the lower part is planar. Since the high-temperature exhausted air tends to flow upward, the mesh surface 110b is arranged so that the upper mesh surface 110a is positioned above the lower mesh surface 110b so that it is as perpendicular as possible to the air flow. As a result, exhaust heat efficiency is improved.
[0048] 図 13は、ヒートシンク 20及び図 4に示したメッシュ材 50間の距離と、ヒートシンク 20 の空気流の出口付近の圧力との関係を示すグラフである。この実験で用いられたメッ シュ材 50のサイズは、図 4に示すように、横幅 a= 100mm、縦幅 b= 15mm、高さ c = 3mmとされた。ヒートシンク 20及びメッシュ材 50間の距離とは、図 3に示すように、 ヒートシンク 20の空気流の出口側の端部と、メッシュ材 50の両端部 51または 52まで の距離 sである。つまり、距離 sは、ヒートシンク 20から最も近くにあるメッシュ材 50の一 部までの距離である。このグラフより、当該距離が 2mm以上になると、ヒートシンク 20 の出口側の端部付近の圧力を低減することができ、 2mm以上は、変化が少ないこと がわかる。したがって、この場合、当該距離は 2mm以上とすることが好ましい。  FIG. 13 is a graph showing the relationship between the distance between the heat sink 20 and the mesh material 50 shown in FIG. 4 and the pressure in the vicinity of the air flow outlet of the heat sink 20. As shown in FIG. 4, the mesh material 50 used in this experiment had a width a = 100 mm, a length b = 15 mm, and a height c = 3 mm. As shown in FIG. 3, the distance between the heat sink 20 and the mesh material 50 is a distance s from the end of the heat sink 20 on the air flow outlet side to both ends 51 or 52 of the mesh material 50. That is, the distance s is a distance from the heat sink 20 to a part of the mesh material 50 that is closest to the heat sink 20. From this graph, it can be seen that when the distance is 2 mm or more, the pressure near the end of the outlet side of the heat sink 20 can be reduced, and when the distance is 2 mm or more, the change is small. Therefore, in this case, the distance is preferably 2 mm or more.
[0049] 図 14は、排気口のサイズと、ヒートシンク 20の空気流の出口付近の圧力との関係を 示すグラフである。排気口のサイズとは、図 2に示すように横幅 dを指す。このグラフに 係る実験では、本発明者は、排気口のサイズに合わせて、メッシュ材の横幅 aを適宜 変えて実験した。このグラフより、排気口のサイズは、 110mmあたりから圧力が低減 してほぼ一定になるので、 110mmがよい。また、図 6のこの実験で用いられたヒート シンクの横幅 eは、 100mmである。  FIG. 14 is a graph showing the relationship between the size of the exhaust port and the pressure in the vicinity of the airflow outlet of the heat sink 20. The size of the exhaust port refers to the width d as shown in Fig.2. In the experiment related to this graph, the present inventor conducted an experiment by appropriately changing the width a of the mesh material in accordance with the size of the exhaust port. From this graph, the size of the exhaust port should be 110mm because the pressure decreases from around 110mm and becomes almost constant. The horizontal width e of the heat sink used in this experiment in Fig. 6 is 100 mm.
[0050] 結果として、ヒートシンクの横幅 eの 105%〜150%程度、好ましくは 110%程度の 横幅を有する排気口またはメッシュ材が用いられることが好ましい。上限を 150%とし たのは、排気口の横幅がこれより大きくても、排熱効率は変わらず、逆に防塵の効果 が低下するおそれがある力もである。 [0050] As a result, the width e of the heat sink is about 105% to 150%, preferably about 110%. It is preferable to use an exhaust port or a mesh material having a lateral width. The upper limit is set to 150% because the exhaust heat efficiency does not change even if the width of the exhaust port is larger than this, and conversely the dust-proofing effect may be reduced.
[0051] 図 15は、上記実施の形態に係るメッシュ材ごとの、ヒートシンク 20の空気流の出口 付近の圧力を示すグラフである。グラフ中、 Aは排気口 101bにメッシュ材がない状態 、 Bは一般的な平面形状のメッシュ材である。 50、 70及び 80は、図 4に示したメッシュ 材 50、図 9に示したメッシュ材 70及び図 10に示したメッシュ材 80にそれぞれ対応す る。このグラフより、図 4に示したメッシュ材 50が最も排気効率がよいことがわかる。ま た、図 16は、図 15と同様の趣旨のグラフである。図中、 60、 90及び 110は、図 7に示 したメッシュ材 60、図 11に示したメッシュ材 90及び図 12に示したメッシュ材 110にそ れぞれ対応する。メッシュ材 90は平面形状であるが、本発明者は斜めに設置した状 態で実験した。このグラフからは、図 12に示した例が最も排気効率がよいことがわか る。 FIG. 15 is a graph showing the pressure in the vicinity of the airflow outlet of the heat sink 20 for each mesh material according to the above embodiment. In the graph, A is a state where there is no mesh material at the exhaust port 101b, and B is a general planar shape mesh material. 50, 70 and 80 correspond to the mesh material 50 shown in FIG. 4, the mesh material 70 shown in FIG. 9, and the mesh material 80 shown in FIG. From this graph, it can be seen that the mesh material 50 shown in FIG. 4 has the best exhaust efficiency. FIG. 16 is a graph having the same purpose as FIG. In the figure, 60, 90, and 110 correspond to the mesh material 60 shown in FIG. 7, the mesh material 90 shown in FIG. 11, and the mesh material 110 shown in FIG. The mesh material 90 has a planar shape, but the present inventor conducted an experiment in a state of being installed obliquely. From this graph, it can be seen that the example shown in FIG. 12 has the best exhaust efficiency.
[0052] 本発明は以上説明した実施の形態には限定されるものではなぐ種々の変形が可 能である。  The present invention is not limited to the embodiment described above, and various modifications are possible.
気体送出機構として、上記実施の形態では、噴流発生装置 30が用いられた。しか し、回転羽根式のファンが用いられてもよい。この場合、例えば軸流ファンや遠心ファ ンが用いられる。  As the gas delivery mechanism, the jet generator 30 is used in the above embodiment. However, a rotary vane fan may be used. In this case, for example, an axial fan or a centrifugal fan is used.
[0053] 例えば、図 12に示したメッシュ材 110は、開口面が斜めである排気口の 301bに設 置された。しかし、メッシュ材 110は、例えば図 3に示すような通常の排気口 101bに 設置されてもよい。また、メッシュ材 1 10だけでなぐ上記各メッシュ材 50、 60、 70等 の排気口に対する装着の仕方は様々な形態が考えられる。  [0053] For example, the mesh material 110 shown in FIG. 12 was installed in the exhaust port 301b having an oblique opening surface. However, the mesh material 110 may be installed in a normal exhaust port 101b as shown in FIG. 3, for example. In addition, various methods can be considered for mounting the mesh materials 50, 60, 70, etc., to the exhaust port, which is performed only by the mesh material 110.
[0054] 上記各メッシュ材 50、 60、 70、 80、 90、 1 10や排気口の形状は、すべて長尺状と したが、これに限られない。また、電子機器としてラップトップ型の PCとしたが、デスク トップ型でよいし、 PC以外の電子機器でもよい。  [0054] Although the mesh members 50, 60, 70, 80, 90, 110 and the exhaust ports are all elongated, the present invention is not limited to this. In addition, although the laptop PC is used as the electronic device, it may be a desktop type or an electronic device other than the PC.
[0055] 上記各実施の形態に係るメッシュ材 50、 60、 70、 80、 90、 110の特徴部分のうち 少なくとも 1つを組み合わせて、 1つのメッシュ材を構成することも可能である。  [0055] It is also possible to configure one mesh material by combining at least one of the characteristic portions of the mesh materials 50, 60, 70, 80, 90, and 110 according to the above embodiments.
[0056] 以上のように、本発明によれば、限られた少ないスペースの中で、排気口での圧力 損失を小さくして排熱効率を向上させることができる [0056] As described above, according to the present invention, the pressure at the exhaust port is limited in a limited space. Reduces loss and improves exhaust heat efficiency

Claims

請求の範囲 The scope of the claims
[1] 発熱源と、前記発熱源を内蔵し排気口を有する筐体と、気体により前記発熱源の 熱を前記排気口を介して排出可能な放熱機構とを有する電子機器の、前記排気口 に設けられたメッシュ材であって、  [1] The exhaust port of an electronic device having a heat source, a housing having the heat source built therein and having an exhaust port, and a heat dissipation mechanism capable of discharging heat of the heat source through the exhaust port by gas The mesh material provided in
前記排気口に装着される両端部と、  Both ends mounted on the exhaust port;
前記両端部の間の少なくとも一部が、前記筐体の外側へ突出するように湾曲する 第 1のメッシュ面と  A first mesh surface that curves so that at least a portion between the both end portions protrudes to the outside of the housing;
を具備することを特徴とするメッシュ材。  The mesh material characterized by comprising.
[2] 請求項 1に記載のメッシュ材であって、  [2] The mesh material according to claim 1,
前記第 1のメッシュ面と連続して設けられた平面状の第 2のメッシュ面をさらに具備 することを特徴とするメッシュ材。  A mesh material further comprising a planar second mesh surface provided continuously with the first mesh surface.
[3] 請求項 1に記載のメッシュ材であって、 [3] The mesh material according to claim 1,
前記放熱機構は、  The heat dissipation mechanism is
前記排気口の近傍に配置され、前記発熱源に熱的に接続された第 1の幅を有する ヒートシンクを有し、  A heat sink having a first width disposed near the exhaust port and thermally connected to the heat source;
当該メッシュ材は、前記第 1の幅の方向に、該第 1の幅の 105%〜200%の幅であ る第 2の幅を有することを特徴とするメッシュ材。  The mesh material has a second width that is 105% to 200% of the first width in the direction of the first width.
[4] 発熱源と、前記発熱源を内蔵し排気口を有する筐体と、気体により前記発熱源の 熱を前記排気口を介して排出可能な放熱機構とを有する電子機器の、前記排気口 に設けられたメッシュ材であって、 [4] The exhaust port of an electronic device comprising a heat source, a housing having the heat source built therein and having an exhaust port, and a heat dissipation mechanism capable of discharging heat of the heat source through the exhaust port by gas The mesh material provided in
前記排気口に装着される、第 1の端部及び該第 1の端部とは反対側の第 2の端部と 前記第 1の端部から前記第 2の端部にかけて複数の異なる角度の平面に沿って形 成されたメッシュ面と  A first end and a second end opposite to the first end, which are attached to the exhaust port, and a plurality of different angles from the first end to the second end. A mesh surface formed along a plane,
を具備することを特徴とするメッシュ材。  The mesh material characterized by comprising.
[5] 請求項 4に記載のメッシュ材であって、 [5] The mesh material according to claim 4,
前記メッシュ面は、前記第 1の端部力 前記第 2の端部へ向力う第 1の方向に第 1の 長さを有するとともに、前記第 1の方向とほぼ直交する第 2の方向に前記第 1の長さよ り長 、第 2の長さを有することを特徴とするメッシュ材。 The mesh surface has a first length in a first direction toward the second end portion and a second direction substantially perpendicular to the first direction. The first length A mesh material characterized by having a second length.
[6] 請求項 4に記載のメッシュ材であって、 [6] The mesh material according to claim 4,
前記メッシュ面は、前記第 1の端部力 前記第 2の端部へ向力う第 1の方向に第 1の 長さを有するとともに、前記第 1の方向とほぼ直交する第 2の方向に前記第 1の長さよ り短 、第 2の長さを有することを特徴とするメッシュ材。  The mesh surface has a first length in a first direction toward the second end portion and a second direction substantially perpendicular to the first direction. A mesh material having a second length shorter than the first length.
[7] 発熱源と、 [7] a heat source;
前記発熱源を内蔵し、排気口を有する筐体と、  A housing containing the heat source and having an exhaust port;
気体により前記発熱源の熱を前記排気口を介して排出可能な放熱機構と、 前記排気口に設けられ、少なくとも一部が、前記筐体の外側へ突出するように湾曲 する第 1のメッシュ面を有するメッシュ材と  A heat dissipating mechanism capable of discharging heat of the heat generation source through the exhaust port by gas; and a first mesh surface provided at the exhaust port and curved so that at least a part protrudes to the outside of the housing. Mesh material having
を具備することを特徴とする電子機器。  An electronic apparatus comprising:
[8] 請求項 7に記載の電子機器であって、 [8] The electronic device according to claim 7,
前記メッシュ材は、第 1のメッシュ面と連続して設けられた平面状の第 2のメッシュ面 を有することを特徴とする電子機器。  2. The electronic apparatus according to claim 1, wherein the mesh material has a planar second mesh surface provided continuously with the first mesh surface.
[9] 請求項 8に記載の電子機器であって、 [9] The electronic device according to claim 8,
前記第 1のメッシュ面は前記第 2のメッシュ面より上部に配置されていることを特徴と する電子機器。  The electronic device according to claim 1, wherein the first mesh surface is disposed above the second mesh surface.
[10] 請求項 7に記載の電子機器であって、 [10] The electronic device according to claim 7,
前記放熱機構は、  The heat dissipation mechanism is
前記排気口の近傍に配置され、前記発熱源に熱的に接続された第 1の幅を有する ヒートシンクを有し、  A heat sink having a first width disposed near the exhaust port and thermally connected to the heat source;
前記メッシュ材は、前記第 1の幅の方向に、該第 1の幅の 105%〜150%の幅であ る第 2の幅を有することを特徴とする電子機器。  The electronic apparatus according to claim 1, wherein the mesh material has a second width that is 105% to 150% of the first width in the first width direction.
[11] 請求項 7に記載の電子機器であって、 [11] The electronic device according to claim 7,
前記放熱機構は、  The heat dissipation mechanism is
前記排気口の近傍に配置され、前記発熱源に熱的に接続されたヒートシンクと、 前記ヒートシンクを冷却するために、前記ヒートシンクに向けて気体を送出する気体 送出機構と を有することを特徴とする電子機器。 A heat sink disposed in the vicinity of the exhaust port and thermally connected to the heat generation source; and a gas delivery mechanism for sending gas toward the heat sink to cool the heat sink. An electronic device comprising:
[12] 発熱源と、  [12] a heat source;
前記発熱源を内蔵し、排気口を有する筐体と、  A housing containing the heat source and having an exhaust port;
気体により前記発熱源の熱を前記排気口を介して排出可能な放熱機構と、 前記排気口に設けられ、複数の異なる角度の平面に沿って形成されたメッシュ材と を具備することを特徴とする電子機器。  A heat dissipating mechanism capable of discharging heat from the heat source through the exhaust port by gas; and a mesh material provided at the exhaust port and formed along a plurality of planes at different angles. Electronic equipment.
[13] 発熱源と、 [13] A heat source,
所定の面と、前記面に開口された排気口とを有し、前記発熱源を内蔵する筐体と、 気体により前記発熱源の熱を前記排気口を介して排出可能な放熱機構と、 前記面の角度とは異なる角度に面するように前記排気口に設けられた平面状のメッ シュ材と  A housing having a predetermined surface and an exhaust port opened in the surface, and including the heat generation source; a heat dissipating mechanism capable of exhausting heat of the heat generation source by gas through the exhaust port; A planar mesh material provided at the exhaust port so as to face an angle different from the angle of the surface;
を具備することを特徴とする電子機器。  An electronic apparatus comprising:
PCT/JP2006/311383 2005-07-14 2006-06-07 Mesh material and electronic apparatus WO2007007491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005205821A JP2007027319A (en) 2005-07-14 2005-07-14 Mesh material and electronic apparatus
JP2005-205821 2005-07-14

Publications (1)

Publication Number Publication Date
WO2007007491A1 true WO2007007491A1 (en) 2007-01-18

Family

ID=37636890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311383 WO2007007491A1 (en) 2005-07-14 2006-06-07 Mesh material and electronic apparatus

Country Status (3)

Country Link
JP (1) JP2007027319A (en)
TW (1) TW200719812A (en)
WO (1) WO2007007491A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993199B2 (en) 2009-12-09 2015-03-31 Nisshinbo Holdings, Inc. Flexible carbon fiber nonwoven fabric
US20160143188A1 (en) * 2014-11-14 2016-05-19 Quanta Computer Inc. Heat dissipating module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518097B2 (en) 2007-04-13 2010-08-04 ソニー株式会社 Front structure of information processing equipment
WO2011067860A1 (en) * 2009-12-04 2011-06-09 富士通株式会社 Electronic apparatus
CN104619155A (en) * 2015-02-05 2015-05-13 刘青建 Horizontal type sand mill voltage transformation circuit heat dissipation module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460571A (en) * 1994-10-31 1995-10-24 Kato; Junichi Electro-magnetically shielded ventilation system
JP2001326486A (en) * 2000-05-12 2001-11-22 Seiko Epson Corp Air vent structure of electronic equipment
JP2004119621A (en) * 2002-09-25 2004-04-15 Sony Corp Cooling device and electronic equipment having the same
JP2004164667A (en) * 1998-12-18 2004-06-10 Furukawa Electric Co Ltd:The Radiation hinge structure for electronic device
JP2005510069A (en) * 2001-11-14 2005-04-14 ミネベア株式会社 Housing parts for equipment to be ventilated

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460571A (en) * 1994-10-31 1995-10-24 Kato; Junichi Electro-magnetically shielded ventilation system
JP2004164667A (en) * 1998-12-18 2004-06-10 Furukawa Electric Co Ltd:The Radiation hinge structure for electronic device
JP2001326486A (en) * 2000-05-12 2001-11-22 Seiko Epson Corp Air vent structure of electronic equipment
JP2005510069A (en) * 2001-11-14 2005-04-14 ミネベア株式会社 Housing parts for equipment to be ventilated
JP2004119621A (en) * 2002-09-25 2004-04-15 Sony Corp Cooling device and electronic equipment having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993199B2 (en) 2009-12-09 2015-03-31 Nisshinbo Holdings, Inc. Flexible carbon fiber nonwoven fabric
US20160143188A1 (en) * 2014-11-14 2016-05-19 Quanta Computer Inc. Heat dissipating module
US10067544B2 (en) * 2014-11-14 2018-09-04 Quanta Computer Inc. Heat dissipating module

Also Published As

Publication number Publication date
TW200719812A (en) 2007-05-16
JP2007027319A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US7010930B2 (en) Method and system for cooling high power density devices
TWI307764B (en)
US8430644B2 (en) Synthetic jet ejector for the thermal management of PCI cards
US6958912B2 (en) Enhanced heat exchanger
JP2002134973A (en) Heat sink device and electronic equipment
JP2005321287A (en) Cooling device, electronic apparatus, heat sink, and radiation fin
WO2007007491A1 (en) Mesh material and electronic apparatus
JP2006332575A (en) Cooler, heat sink and electronic apparatus
JP4867324B2 (en) Heat dissipation device and electronic device
TW201638469A (en) Miniature piezoelectric fan heat dissipation module
US20110168361A1 (en) Heat dissipation device and airflow generator thereof
JP2006310673A (en) Jet flow generating device, heat sink, cooling device, and electronic apparatus
JP2012124246A (en) Heat radiator for electronic equipment
JP4844236B2 (en) NOZZLE, JET GENERATOR, COOLING DEVICE, AND ELECTRONIC DEVICE
JP4730180B2 (en) Cooling system
JP2007113530A (en) Jet flow generator and electronic apparatus
JPH1153061A (en) Electronic equipment with air-cooling structure
JP2002130199A (en) Piezoelectric fan
EP1579155B1 (en) Method and system for cooling high power density devices
JP6768872B2 (en) Electronics
JP4389335B2 (en) Heat sink device
JP3908439B2 (en) Fan integrated heat sink
JP2003168884A (en) Electronic component
JP2000261173A (en) Cooling device and electronic unit
JP3000846B2 (en) Cooling device for electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757090

Country of ref document: EP

Kind code of ref document: A1