JPH0283262A - Production of sintered material of aluminum nitride having metallized layer - Google Patents

Production of sintered material of aluminum nitride having metallized layer

Info

Publication number
JPH0283262A
JPH0283262A JP63232648A JP23264888A JPH0283262A JP H0283262 A JPH0283262 A JP H0283262A JP 63232648 A JP63232648 A JP 63232648A JP 23264888 A JP23264888 A JP 23264888A JP H0283262 A JPH0283262 A JP H0283262A
Authority
JP
Japan
Prior art keywords
sintered body
metallized layer
aluminum nitride
thermal conductivity
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63232648A
Other languages
Japanese (ja)
Other versions
JP2620326B2 (en
Inventor
Kohei Shimoda
浩平 下田
Akira Sasame
笹目 彰
Akira Yamakawa
晃 山川
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63232648A priority Critical patent/JP2620326B2/en
Publication of JPH0283262A publication Critical patent/JPH0283262A/en
Application granted granted Critical
Publication of JP2620326B2 publication Critical patent/JP2620326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered material having high thermal conductivity by making a relative density of sintered material >= a specific value while controlling content of a sintering auxiliary comprising Y2O3 or Gd2O3 in sintered material and content of oxygen <= specific values. CONSTITUTION:AlN powder as a main component and <=0.65wt.% based on parent material of Y2O3 or Gd2O3 as a sintering auxiliary are processed to give a green sheet of pressed molded article or tape molded article. The green sheet is coated with a paste consisting of Al compound powder of additive, W powder, a binder and a solvent by screen printing and simultaneously calcined in a nonoxidizing atmosphere at 1,700-2,000 deg.C to give a sintered material having <=0.3wt.% O2 content and >=98% relative density. Sintered AlN containing a metallized layer having >=160W/m.K thermal conductivity is obtained by this method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はIC絶縁基板をはじめ多くの分野で注目されて
いる窒化アルミニウム焼結体特に金属化層を有する窒化
アルミニウム焼結体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum nitride sintered body, which is attracting attention in many fields including IC insulating substrates, and particularly to a method for manufacturing an aluminum nitride sintered body having a metallized layer. .

[従来の技術] 最近のICにおける集積度の向上は目覚ましい。集積度
の向上に伴い発熱量が増大するため、その放熱性が重要
視されるようになってきた。
[Prior Art] The degree of integration in recent ICs has improved markedly. Since the amount of heat generated increases with the increase in the degree of integration, the heat dissipation performance has become important.

アルミナは電気絶縁性、化学的・熱的安定性に優れてい
るため、従来IC絶縁基板材料に広く使用されてきたが
、このアルミナは熱伝導率が低く、IC絶縁基板材料と
して要求される放熱性が十分に満足できなくなりつつあ
る。このためIC基板材料として、熱伝導率が高いベリ
リアが検討されているが、ベリリアは毒性が高く、その
取扱いが困難であるという欠点がある。
Alumina has excellent electrical insulation properties and chemical and thermal stability, so it has been widely used as an IC insulating substrate material. Sexuality is becoming less satisfying. For this reason, beryllia, which has high thermal conductivity, is being considered as an IC substrate material, but beryllia has the drawbacks of being highly toxic and difficult to handle.

窒化アルミニウム(AIN)は、熱伝導性、電気絶縁性
、化学的・熱的安定性に優れており、毒性もないため、
アルミナに代るIC絶縁基板材料として注目を集めてい
る。AIN焼結体をICC絶縁基板科料して用いるには
、通常その表面に金属化層を形成せしめることが不可欠
となっている。その金属化層を形成せしめる方法は、厚
膜焼成法、D B C(Direct Bond Co
pper)法、薄膜法等が行われ、その成功例も数多く
報告されている。
Aluminum nitride (AIN) has excellent thermal conductivity, electrical insulation, chemical and thermal stability, and is non-toxic.
It is attracting attention as an IC insulating substrate material that can replace alumina. In order to use an AIN sintered body as an ICC insulating substrate material, it is usually essential to form a metallized layer on its surface. The method for forming the metallized layer is the thick film firing method, DBC (Direct Bond Co.
pper) method, thin film method, etc., and many successful examples have been reported.

その他、AIN未焼結体に金属化用組成物からなるペー
ストを塗布し、非酸化性雰囲気中にて焼成する同時焼結
法についても成功例があり、数例報告されている。
In addition, there are also successful examples of a simultaneous sintering method in which a paste made of a metallizing composition is applied to an AIN green body and fired in a non-oxidizing atmosphere, and several examples have been reported.

その−例として、非酸化物系セラミック体の金属化用組
成物および金属化方法(特公昭62−27037号)が
ある。これには、メツキ、ろう付は可能な強固な接希を
得ることができる組成物並びにそれを用いた金属化方法
について開示されており、AINセラミックス体では、
金属化用組成物としてW、Moのほかに非酸化物系セラ
ミックスの措成要素物質、つまりAINと金属あるいは
金属酸化物を含有せしめてなる金属化用組成物並びにA
IN未焼結成形体にそのペーストを塗布して非酸化性雰
囲気中で焼成する同時焼成法について説明されている。
An example thereof is a composition and method for metallizing non-oxide ceramic bodies (Japanese Patent Publication No. 62-27037). This document discloses a composition that can obtain a strong grafting that is possible with plating and brazing, and a metallization method using the same.
A metallizing composition containing, in addition to W and Mo, a component material of non-oxide ceramics, that is, AIN, and a metal or a metal oxide;
A co-firing method is described in which the paste is applied to an IN green compact and fired in a non-oxidizing atmosphere.

この他にも若干例の報告があるが、WもしくはMoのペ
ーストにAINの添加もしくはその他に金属、金属酸化
物も添加することにより、密着強度が高い良好なAIN
焼結体が得られるものと判断され、その密着機構として
は、AtN焼結体側より焼結助剤成分を含む融液が毛細
管現象により金属化層中に浸出し、固化して金属化層と
AIN焼結体とを機械的強度により、強固に密着するも
のと考えられる。
There are some reports of other examples, but good AIN with high adhesion strength can be achieved by adding AIN to W or Mo paste, or by adding other metals or metal oxides.
It was determined that a sintered body could be obtained, and the mechanism of its adhesion was that the melt containing the sintering aid component leaked from the AtN sintered body side into the metallized layer by capillary action, solidified, and formed a metalized layer. It is thought that the AIN sintered body is firmly attached to the AIN sintered body due to its mechanical strength.

[発明が解決しようとする課題〕 そこで、本発明者らは、上記と同様の成分を含有する金
属化層を具備したAIN基板の熱伝導率の測定を行った
ところ、60〜140W/m.kと予想外にその値か低
いレベルに止り、鋭意検討を行ったところ、焼結助剤成
分を含む融液が固化して生じたガラス#Hの熱伝導性が
極めて悪いことがその原因であるという結論に達した。
[Problems to be Solved by the Invention] Therefore, the present inventors measured the thermal conductivity of an AIN substrate provided with a metallized layer containing the same components as above, and found that it was 60 to 140 W/m. The value of k was unexpectedly low, and after intensive investigation, it was found that the cause was the extremely poor thermal conductivity of glass #H, which was formed by solidification of the melt containing the sintering aid component. I came to the conclusion that there is.

すなわち、金属化層とAIN焼結体との界面領域に数μ
m厚のガラス層が形成され、これが絶縁性セラミックス
の熱伝導の主体をなすフォノン伝導の障壁となっている
。ゆえに、高熱伝導性を有するAIN焼結体を用いても
、ガラス相が熱伝導を阻害し、AIN本来の高熱伝導性
という優れた特性を十分に発揮することができなかった
In other words, a few μ
A glass layer with a thickness of m is formed, and this serves as a barrier to phonon conduction, which is the main component of heat conduction in insulating ceramics. Therefore, even if an AIN sintered body having high thermal conductivity is used, the glass phase inhibits thermal conduction, and the excellent property of high thermal conductivity inherent to AIN cannot be fully exhibited.

本発明は、AIN焼結体におけるかかる課題を解決せん
とするものである。
The present invention aims to solve such problems in AIN sintered bodies.

[課題を解決するだめの手段] 本発明は、アルミニウム化合物を添加剤とするタングス
テンの金属化層を有する窒化アルミニウム焼結体中の酸
化イツトリウムまたは酸化ガドリニウムよりなる焼結助
剤の含有率が母材に対して0.85を量%以下であり、
又、焼結体中に含まれる酸素の含有率が0.3重量%以
下であり、相対密度が98%以上、熱伝導率がteow
lm。
[Means for Solving the Problems] The present invention provides that the content of a sintering aid made of yttrium oxide or gadolinium oxide in an aluminum nitride sintered body having a metallized layer of tungsten with an aluminum compound as an additive is 0.85% by weight or less for the material,
In addition, the content of oxygen contained in the sintered body is 0.3% by weight or less, the relative density is 98% or more, and the thermal conductivity is teow.
lm.

K以上であることを緻密化する金属化層を有すル’M 
化アルミニウム焼結体並びに窒化アルミニウム粉末を主
成分とし、これに焼結助剤として酸化イツトリウム又は
酸化ガドリニウムを用いたプレス成形体あるいはテープ
成形体により得られるグリーンシートに、タングステン
を主とし、アルミニウム化合物の添加剤を有する金属化
ペーストをスクリーン印刷により塗布し、非酸化性雰囲
気下にて1700〜2000”Cで同時焼成し、その熱
伝導率が180W/m.k以上である焼結体を得ること
を緻密化する金属化層を有する窒化アルミニラム焼結体
の製造方法である。
Le'M with a metallized layer densified to be more than K
A green sheet containing aluminum oxide sintered body and aluminum nitride powder as the main components, and a green sheet obtained by press molding or tape molding using yttrium oxide or gadolinium oxide as a sintering aid, and an aluminum compound mainly containing tungsten. A metallized paste having additives of This is a method for manufacturing a sintered aluminum nitride lamb having a metallized layer that densifies the material.

同時焼成法により熱伝導度が高い金属化層を有するAI
N焼結体を得るためには、熱伝導性の障壁となっている
ガラス相の厚みを極力小さくすることと、AIN焼結体
および金属化層の緻密化、AIN焼結体において不可避
的に含まれる酸素の含有率が低いことが重要である。
AI with metallized layer with high thermal conductivity by co-firing method
In order to obtain a N sintered body, it is necessary to reduce the thickness of the glass phase, which is a barrier to thermal conductivity, as much as possible, and to make the AIN sintered body and metallized layer denser, which are unavoidable in the AIN sintered body. It is important that the oxygen content is low.

上記ガラス層の厚みを極力小さくするためには、焼結助
剤成分を含む融液のAIN焼結体側からの浸み出しを抑
制するのが最も効果的であるため、本発明では、焼結助
剤の添加率を0.65fflffi%以下と極めて低い
レベルにした。この条件において焼結体の緻密化と、不
itJ避的に含まれる酸素の含有率を低減させることか
必要となる。そのためには、焼結助剤および脱酸剤とし
ての周期律表na、ma族から選ばれた化合物、例えば
CaO1Y203等を添加する方法、AIN粉末ととも
に炭素を添加して焼結することによって脱酸し、低酸素
の焼結体を得る方法、高純度低酸素のAIN粉末を添加
する方法、AIN焼結体に残留する焼結助剤を分解蒸発
させ、高純度のAIN焼結を得る方法、焼結体に残留す
る焼結助剤を長時間の還元雰囲気下に曝し除去する方法
、AIN基板つまり母材から金属化層に浸透する助剤に
よってAIN粉末の焼結助剤および脱酸剤としての効果
を奏する方法などがあり、これら何れの方法でも作用に
変りはない。
In order to reduce the thickness of the glass layer as much as possible, it is most effective to suppress seepage of the melt containing the sintering aid component from the AIN sintered body side. The addition rate of the auxiliary agent was set to an extremely low level of 0.65fffffi% or less. Under these conditions, it is necessary to make the sintered body denser and to reduce the content of oxygen contained in the sintered body. For this purpose, there are methods of adding compounds selected from the na and ma groups of the periodic table as sintering aids and deoxidizing agents, such as CaO1Y203, and deoxidizing by adding carbon together with AIN powder and sintering. A method for obtaining a low-oxygen sintered body, a method for adding high-purity low-oxygen AIN powder, a method for decomposing and evaporating the sintering aid remaining in the AIN sintered body, and obtaining high-purity AIN sintered body. A method in which the sintering aid remaining in the sintered body is removed by exposing it to a reducing atmosphere for a long time, and the aid penetrates into the metallized layer from the AIN substrate, that is, the base material, and is used as a sintering aid and deoxidizer for the AIN powder. There are methods that achieve this effect, and there is no difference in the effect of any of these methods.

また、金属化層の緻密化については、高融点金属の焼結
機構の詳細について明らかでない部分が多いが、非酸化
性雰囲気中では自己焼結性が劣るのであるが、AtN焼
結体中に含まれる焼結助剤成分を含む融液の浸み出しを
制御して焼成を行うと、金属化層の焼結性が著しく向上
し、緻密な金属化層が得られることが明らかとなった。
Regarding the densification of the metallized layer, although the details of the sintering mechanism of high-melting point metals are not clear in many parts, self-sintering properties are poor in a non-oxidizing atmosphere, but in an AtN sintered body, It has been revealed that when firing is performed by controlling the seepage of the melt containing the sintering aid component, the sinterability of the metallized layer is significantly improved and a dense metallized layer can be obtained. .

また、IC放熱基板材料の要求特性としては、ソリが6
0μm以下、引張り強度が2゜Okg/mm ’以上と
なっている。ソリが60μmを超えると、基板の熱抵抗
が急激に増大し、放熱性が悪化する等の問題が生じる。
In addition, the required characteristics of the IC heat dissipation board material include warpage of 6.
It has a tensile strength of 0 μm or less and a tensile strength of 2°Okg/mm’ or more. If the warp exceeds 60 μm, the thermal resistance of the substrate increases rapidly, causing problems such as poor heat dissipation.

引張り強度が2.0kg/■’未満であると、IC製造
工程中の熱サイクルにより基板とメタライズ層が剥離す
る。通常、AtN焼結体中に含まれる焼結助剤成分を含
む融液より生じたガラス層が引張り強度の向上に寄与す
るのであるが、ガラス層は熱伝導の大きな障壁となる。
If the tensile strength is less than 2.0 kg/■', the substrate and the metallized layer will peel off due to thermal cycles during the IC manufacturing process. Normally, a glass layer formed from a melt containing a sintering aid component contained in the AtN sintered body contributes to improving the tensile strength, but the glass layer becomes a large barrier to heat conduction.

従って本発明では、上記融液の浸み出しを制御し、ガラ
ス層を極力少なくするとともに、タングステンの金属化
層に添加剤を用いて金属化層の濡れ性を向上させ、引張
り強度の向上を図っている。
Therefore, in the present invention, the seepage of the melt is controlled, the glass layer is minimized, and an additive is used in the tungsten metallized layer to improve the wettability of the metallized layer, thereby improving the tensile strength. I'm trying.

本発明について詳細に説明すると、タングステンの金属
化層に用いる添加剤のアルミニウム化合物は、AIN粉
末、酸化アルミニウム(A 120コ) 酸窒化アルミ
ニウム(AION)が好適に用いられる。これらをタン
グステン粉末とともにエチルセルロース、アクリル樹脂
、ポリビニルアルコールなどの公知の粘結剤と、α−テ
ルピネオール、ブチカルビノールなどの公知の溶剤から
なるバインダーを添加してペーストとして用いる。
To explain the present invention in detail, the additive aluminum compound used in the tungsten metallized layer is preferably AIN powder, aluminum oxide (A120), or aluminum oxynitride (AION). These are used as a paste by adding a binder consisting of tungsten powder, a known binder such as ethyl cellulose, acrylic resin, or polyvinyl alcohol, and a known solvent such as α-terpineol or butycarbinol.

また、AIN焼結体原料としては、AIN粉末と、AI
Nが難焼結性であるため添加助剤を用いている。焼結助
剤成分としては、焼成時に分解して酸化イツトリウム(
Y2O2)もしくは酸化ガドリニウム(Gd203)を
生じるYlGdのステアリン酸塩をはじめとする有機酸
塩あるいはアルコキシドを用い、Y20yもしくはGd
z03換算で母材に対して0465重量%以下となるよ
うに用いた。これよりプレス成形体およびテープ成形法
によりグリーンシートを得る。
In addition, as raw materials for the AIN sintered body, AIN powder and AI
Since N is difficult to sinter, an additive aid is used. As a sintering aid component, it decomposes during firing to produce yttrium oxide (
Using organic acid salts or alkoxides such as stearate of YlGd that produce Y2O2) or gadolinium oxide (Gd203), Y20y or Gd
It was used so that the amount was 0465% by weight or less based on the base material in terms of z03. From this, a green sheet is obtained by a press molding method and a tape molding method.

このプレス成形体もしくはグリーンシートに前述のペー
ストをスクリーン印刷により塗布し、非酸化性雰囲気中
にて1700〜2000℃で焼成して、金属化層を何す
るAIN焼結体を得る。
The above-mentioned paste is applied to this press-formed body or green sheet by screen printing and fired at 1700 to 2000°C in a non-oxidizing atmosphere to obtain an AIN sintered body having a metallized layer.

以上のようにガラス相の形成を制御するために焼結助剤
の金白°量を抑えつつ、金属化層を有する窒化アルミニ
ウム焼結体の相対密度を98%以上と緻密化し、又、A
tN焼結体中に不可避的に含まれる酸素の含有率を抑制
することにより、金属化層を有するAIN焼結体の熱伝
導率を180W/m.k以上とすることができる。
As described above, in order to control the formation of the glass phase, the relative density of the aluminum nitride sintered body having the metallized layer was made denser to 98% or more while suppressing the amount of gold platinum in the sintering aid.
By suppressing the content of oxygen that is inevitably included in the tN sintered body, the thermal conductivity of the AIN sintered body with the metallized layer can be increased to 180 W/m. It can be more than k.

[実施例] 焼結助剤として、YまたはGdの有機酸塩もしくはアル
コキシドをY2O2またはcd20.換算で0.65重
二%以下含有したAINの未焼結体に、Al2O3、A
INまたはAl0Nを各種割合で添加したWのペースト
をスクリーン印刷により所定のパターンを印刷した後、
窒素雰囲気中にて1700〜2000”Cで1〜5時間
保持して焼成を行った。各実施例の条件を表1に示す。
[Example] As a sintering aid, an organic acid salt or alkoxide of Y or Gd is used as Y2O2 or cd20. Al2O3, A
After printing a predetermined pattern by screen printing a paste of W containing IN or AlON in various proportions,
Firing was carried out in a nitrogen atmosphere at 1,700 to 2,000"C for 1 to 5 hours. Table 1 shows the conditions for each example.

表1 表1つつゝゝま 上記例で得られた焼結体の密度、酸素含有量を第2表に
示すとともに、レーザーフラッシュ法で測定した熱伝導
率並びにソリのΔp[定結果も併せて第2表に示す。
Table 1 Table 1 shows the density and oxygen content of the sintered body obtained in the above example, and also includes the thermal conductivity and warp Δp measured by the laser flash method. Shown in Table 2.

また、表面にNiメツキを施した後、pb−Snメツキ
した軟銅線を半田付した後、引張試験を行った。その結
果も表2に示す。
Further, after the surface was plated with Ni and soldered with a pb-Sn plated annealed copper wire, a tensile test was conducted. The results are also shown in Table 2.

熱伝導性は焼結温度がl800℃以上であると特に優れ
ており、またいずれの場合においても、ソリ、引張強度
がそれぞれ60μm未満、2kg/■2以上と実用上全
く問題はなかった。
Thermal conductivity is particularly excellent when the sintering temperature is 1800° C. or higher, and in any case, the warpage and tensile strength are less than 60 μm and 2 kg/2 or more, respectively, and there are no practical problems at all.

表2 表3 表4 [比較例〕 各比較例の条件を表3に示し、この各例により得られた
焼結体の試験結果を表4に示す。
Table 2 Table 3 Table 4 [Comparative Examples] The conditions of each comparative example are shown in Table 3, and the test results of the sintered bodies obtained in each example are shown in Table 4.

表4つづき 上記衣に示す結果から明らかなように、焼結温度が15
00〜1650℃の場合、相対密度が70〜95%にと
どまり、熱伝導率も 11O〜140ν/m.kと低か
った。これは、焼結助剤添加量、酸素含有率、相対密度
のいずれかが、本発明の範囲外となるためである。
Table 4 continued As is clear from the results shown above, the sintering temperature was 15
In the case of 00 to 1650°C, the relative density remains at 70 to 95%, and the thermal conductivity is 110 to 140 ν/m. It was as low as k. This is because any one of the amount of sintering aid added, oxygen content, and relative density is outside the scope of the present invention.

[発明の効果] 発明によるAIN焼結体は優れた熱伝導率、引張強度を
有し、ソリも少ないことから半導体工業において基板材
料もしくはパッケージ材料、特に放熱特性の要求される
多層配線基板材料として極めて有効である。
[Effects of the invention] The AIN sintered body according to the invention has excellent thermal conductivity and tensile strength, and has little warpage, so it is used as a substrate material or packaging material in the semiconductor industry, especially as a multilayer wiring board material that requires heat dissipation properties. Extremely effective.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウム化合物を添加剤とするタングステン
の金属化層を有する窒化アルミニウム焼結体中の酸化イ
ットリウムまたは酸化ガドリニウムよりなる焼結助剤の
含有率が母材に対して0.65重量%以下であり、又、
焼結体中に含まれる酸素の含有率が0.3重量%以下で
あり、相対密度が98%以上、熱伝導率が160W/m
.k以上であることを特徴とする金属化層を有する窒化
アルミニウム焼結体。
(1) The content of the sintering aid made of yttrium oxide or gadolinium oxide in the aluminum nitride sintered body having a tungsten metallized layer containing an aluminum compound as an additive is 0.65% by weight or less based on the base material. And also,
The content of oxygen contained in the sintered body is 0.3% by weight or less, the relative density is 98% or more, and the thermal conductivity is 160W/m
.. An aluminum nitride sintered body having a metallized layer having a metallization layer of k or more.
(2)窒化アルミニウム粉末を主成分とし、これに焼結
助剤として酸化イットリウム又は酸化ガドリニウムを用
いたプレス成形体あるいはテープ成形体により得られる
グリーンシートに、タングステンを主とし、アルミニウ
ム化合物の添加剤を有する金属化ペーストをスクリーン
印刷により塗布し、非酸化性雰囲気下にて1700〜2
000℃で同時焼成し、その熱伝導率が160W/m.
k以上である焼結体を得ることを特徴とする金属化層を
有する窒化アルミニウム焼結体の製造方法。
(2) A green sheet made of aluminum nitride powder as a main component and obtained by press molding or tape molding using yttrium oxide or gadolinium oxide as a sintering aid, and an additive of an aluminum compound mainly containing tungsten. 1700-2 in a non-oxidizing atmosphere.
Co-firing at 000℃, the thermal conductivity is 160W/m.
A method for producing an aluminum nitride sintered body having a metallized layer, the method comprising obtaining a sintered body having a metallization layer of k or more.
(3)窒化アルミニウム焼結体中に含まれる焼結助剤成
分を含む融液の浸み出しを制御することにより、金属化
層を緻密化する請求項(2)記載の金属化層を有する窒
化アルミニウム焼結体の製造方法。
(3) A metallized layer according to claim (2), wherein the metallized layer is densified by controlling seepage of a melt containing a sintering aid component contained in the aluminum nitride sintered body. A method for producing an aluminum nitride sintered body.
JP63232648A 1988-09-19 1988-09-19 Method for producing aluminum nitride sintered body having metallized layer Expired - Lifetime JP2620326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232648A JP2620326B2 (en) 1988-09-19 1988-09-19 Method for producing aluminum nitride sintered body having metallized layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232648A JP2620326B2 (en) 1988-09-19 1988-09-19 Method for producing aluminum nitride sintered body having metallized layer

Publications (2)

Publication Number Publication Date
JPH0283262A true JPH0283262A (en) 1990-03-23
JP2620326B2 JP2620326B2 (en) 1997-06-11

Family

ID=16942587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232648A Expired - Lifetime JP2620326B2 (en) 1988-09-19 1988-09-19 Method for producing aluminum nitride sintered body having metallized layer

Country Status (1)

Country Link
JP (1) JP2620326B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292869A (en) * 1988-09-29 1990-04-03 Ibiden Co Ltd Production of high-purity sintered aluminum nitride
JPH09157034A (en) * 1995-12-06 1997-06-17 Denki Kagaku Kogyo Kk Aluminum nitride sintered body, its production and circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292869A (en) * 1988-09-29 1990-04-03 Ibiden Co Ltd Production of high-purity sintered aluminum nitride
JPH09157034A (en) * 1995-12-06 1997-06-17 Denki Kagaku Kogyo Kk Aluminum nitride sintered body, its production and circuit board

Also Published As

Publication number Publication date
JP2620326B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
KR920004211B1 (en) Sintered aluminum nitride body having high thermal conductivity and its production
JP3629783B2 (en) Circuit board
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JPH0969672A (en) Silicon nitride circuit board
JP3193305B2 (en) Composite circuit board
JPS61291480A (en) Surface treating composition for aluminum nitride base material
JP2772273B2 (en) Silicon nitride circuit board
JPH0283262A (en) Production of sintered material of aluminum nitride having metallized layer
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
EP3799965A1 (en) Metallized ceramic substrate and method for manufacturing same
JP2772274B2 (en) Composite ceramic substrate
JPH11135900A (en) Aluminum nitride wiring board and production thereof
JP2677748B2 (en) Ceramics copper circuit board
JPH0757709B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3230861B2 (en) Silicon nitride metallized substrate
JP3895211B2 (en) Method for manufacturing silicon nitride wiring board
JP2949294B2 (en) Aluminum nitride substrate and method of manufacturing the same
JPH03146487A (en) Production of aluminum nitride sintered body with metallizing layer
JP2659068B2 (en) High thermal conductive AIN sintered body having metallized layer and high thermal conductive substrate using the same
JP4516057B2 (en) Silicon nitride wiring board and method for manufacturing the same
JPH09237957A (en) Alumina circuit board and manufacture thereof
JP2784551B2 (en) Aluminum nitride substrate
JP2763516B2 (en) Metallization method for aluminum nitride substrate
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2001019576A (en) Substrate and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12