JPH0282447A - Manufacture of lithium secondary battery - Google Patents

Manufacture of lithium secondary battery

Info

Publication number
JPH0282447A
JPH0282447A JP63233013A JP23301388A JPH0282447A JP H0282447 A JPH0282447 A JP H0282447A JP 63233013 A JP63233013 A JP 63233013A JP 23301388 A JP23301388 A JP 23301388A JP H0282447 A JPH0282447 A JP H0282447A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
seal plate
sealing plate
opening seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63233013A
Other languages
Japanese (ja)
Other versions
JP2808610B2 (en
Inventor
Kenichi Takada
高田 堅一
Nobuharu Koshiba
信晴 小柴
Shuichi Nishino
西野 秀一
Toshihiko Ikehata
敏彦 池畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63233013A priority Critical patent/JP2808610B2/en
Publication of JPH0282447A publication Critical patent/JPH0282447A/en
Application granted granted Critical
Publication of JP2808610B2 publication Critical patent/JP2808610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To achieve sufficient electric capacity and reduce voltage defective fraction and improve reliability by press-bonding lithium to an opening seal plate to interpose the lithium between the opening seal plate and a negative electrode. CONSTITUTION:Metal lithium 7 is interposed between a negative electrode 5 and an opening seal plate 2 which is a negative electrode current collector. As the opening seal plate 2 consists of a metal, materially the lithium 7 can be strongly and closely bonded to it than to an oxide. Therefore, the lithium 7 is press-bonded to the opening seal plate 2 beforehand, and subsequently a negative electrode additive is placed and an electrolyte is injected, and after a battery is constructed, the lithium 7 is sandwiched and held between the negative electrode additive 5 and the opening seal plate 2 so that the lithium can be doped into the oxide rapidly without peeling off. Thus, sufficient electric capacity can be achieved and voltage defective fraction can be reduced and reliability can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム二次電池の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a lithium secondary battery.

従来の技術 近年のエレクトロニクス分野における技術の急速な発展
により、電子機器の小型化が進み、それら機器の電源と
して、小型軽量で高エネルギー密度を有する電池の需要
が高まっている。そして、その電池として、負極にリチ
ウムを用いるリチウム二次電池が注目を集め世界的に研
究が行なわれている。しかしながら充放電の繰り返しに
より、リチウム負極表面にリチウムのデンドライトと呼
ばれる樹枝状結晶が成長して電池の内部短絡を弓き起こ
し、充放電サイクル寿命が著しく損なわれる。
BACKGROUND OF THE INVENTION With the rapid development of technology in the electronics field in recent years, electronic devices have become smaller and smaller, and there is an increasing demand for small, lightweight, and high energy density batteries as power sources for these devices. As a battery for this purpose, lithium secondary batteries that use lithium for the negative electrode are attracting attention and research is being conducted worldwide. However, repeated charging and discharging causes dendritic crystals called lithium dendrites to grow on the surface of the lithium negative electrode, causing internal short circuits in the battery and significantly reducing the charge-discharge cycle life.

この解決の一手段として五酸化ニオブや酸化チタンなど
の金属酸化物を負極に用いたリチウム二次電池が提案さ
れている。最近の研究では五酸化ニオブや酸化チタンに
対するリチウムイオンのドブ・アンドープがスムーズに
行なわれ易く、また充放電の繰り返しによるデンドライ
トの発生もないため、非常に長期にわたる充放電サイク
ル特性に優れていることがわかった。
As a means of solving this problem, a lithium secondary battery using a metal oxide such as niobium pentoxide or titanium oxide as a negative electrode has been proposed. Recent research shows that niobium pentoxide and titanium oxide are easily doped and undoped with lithium ions, and there is no dendrite formation due to repeated charging and discharging, resulting in excellent long-term charge-discharge cycle characteristics. I understand.

ただ、この場合、あらかじめ負極にリチウムを充填せね
ばならないが、一般的には、負極とリチウムを電解液中
で接触するだけで負極にリチウムがドーピングする性質
を有しているので、封口板内で負極酸化物の正極に対向
する面にリチウム箔を圧着し、電解液を注入し、電池内
でリチウムをドーピングさせていた。
However, in this case, the negative electrode must be filled with lithium in advance, but in general, the negative electrode has the property of being doped with lithium just by contacting the negative electrode with lithium in an electrolyte, so it is necessary to fill the sealing plate with lithium. Lithium foil was pressed onto the side of the negative electrode oxide facing the positive electrode, and electrolyte was injected to dope the battery with lithium.

発明が解決しようとする課題 上記のようなリチウムを負極合剤上に圧着する方法での
問題点としては、負極合剤が非常に柔かいため、リチウ
ムが剥離しやすい。そのため、電池を構成していく過程
において、負極合剤からはがれてしまい、リチウムが合
剤中に完全にドープせず、遊離した状態で残存する場合
が多かった。
Problems to be Solved by the Invention A problem with the above-described method of press-bonding lithium onto a negative electrode mixture is that the negative electrode mixture is very soft, so that the lithium easily peels off. Therefore, in the process of constructing a battery, lithium often peels off from the negative electrode mixture, and lithium is not completely doped into the mixture and remains in a free state.

そのため、電気容量を十分取シ出すことができなかった
り、極端な場合、遊離リチウムによって、セパレータの
脇を経由して内部ショートを引き起こしたシすることも
あった。したがって信頼性に極めて乏しい方法であった
As a result, sufficient electrical capacity could not be extracted, or in extreme cases, free lithium could pass through the side of the separator and cause an internal short circuit. Therefore, this method was extremely unreliable.

本発明は、上記の問題点を解消し、信頼性に優れたリチ
ウム二次電池を提供することを目的としたものである。
The present invention aims to solve the above problems and provide a lithium secondary battery with excellent reliability.

課題を解決するための手段 この問題を解決するために、本発明は、封口板と負極と
の間に金属リチウムを介在させることによシ、上記の問
題が解決されることを見い出した。
Means for Solving the Problems In order to solve this problem, the present invention has discovered that the above problem can be solved by interposing metallic lithium between the sealing plate and the negative electrode.

さらに、種々検討したところ、少なくともリチウムを圧
着する封口板の内面部にあらがじめカーボン塗布膜を形
成しておくことにより、より強固にリチウムが封目板に
密着し、良好であることがわかった。
Furthermore, after various studies, we found that at least by forming a carbon coating film on the inner surface of the sealing plate to which the lithium is pressed, the lithium will adhere more firmly to the sealing plate, resulting in better results. Understood.

作  用 封口板は金属よりなるので材質的にリチウムは酸化物に
対してよりもはるかに、密着強度が大きい。そこで、封
口板にあらかじめリチウムを圧着しておき、その後負極
合剤を載置し、電解液を注入して、電池を構成したあと
では、丁度、負極合剤と封口板との間にリチウムがサン
ドイッチ状に挟持されるので、リチウムが剥離すること
なく、速かに、酸化物中にドープすることができる。
Since the sealing plate is made of metal, lithium has a much greater adhesion strength than oxide materials. Therefore, after crimping lithium onto the sealing plate in advance, placing the negative electrode mixture, and injecting the electrolyte to form the battery, lithium is placed between the negative electrode mixture and the sealing plate. Since lithium is sandwiched, it can be quickly doped into the oxide without peeling off the lithium.

さらに、確実な方法として封口板内面にカーボン塗布膜
を形成しておくと、カーボン塗布膜の微細な凹凸にリチ
ウムが食い込み、より強固に密着される。また、リチウ
ムが負極にドーピングすると負極が若干膨張するが、そ
のため封目板側の負極合剤が封口板内面に強く圧接する
ようになり、このとき、カーボン塗布膜が存在するため
、封口板との電気的接触がより良好とな9、この点から
も利点がある。
Furthermore, as a reliable method, if a carbon coating film is formed on the inner surface of the sealing plate, the lithium will penetrate into the fine irregularities of the carbon coating film and will be more firmly adhered. In addition, when lithium is doped into the negative electrode, the negative electrode expands slightly, which causes the negative electrode mixture on the sealing plate side to come into strong pressure contact with the inner surface of the sealing plate. There is also an advantage in that electrical contact is better9.

これらのことより、本発明では単に遊離リチウムを防止
するだけでなく、電気的な密着度にも優れた効果を期待
できるものである。1 実施例 以下、本発明の実施例を図を参照して説明する。
From these facts, the present invention not only prevents free lithium, but also can be expected to have an excellent effect on electrical adhesion. 1 Examples Examples of the present invention will be described below with reference to the drawings.

第1図は正極に五酸化バナジウム、負極に五酸化ニオブ
を用いたリチウム二次電池を示す。
FIG. 1 shows a lithium secondary battery using vanadium pentoxide for the positive electrode and niobium pentoxide for the negative electrode.

図中、1は厚さ0.25ffのステンレス鋼板を打ち抜
き加工したケース、2は同材料を同様に加工した封口板
、3はケース1と封口板2を絶縁するポリプロピレン製
ガスケ乙ト、4は正極で五酸化バナジウム80重量部と
導電材であるアセチレンプラック10重量部、及び結着
剤であるポリ4フフ化工チレン1o重量部を混練した後
、外径15MN、厚み0.8zgに加圧成形したもの、
5は負極で五酸化ニオブ80重量部、アセチレンプラッ
ク10重量部、及びポリ4フッ化エチレン1,0重量部
を混練した後、外径15m、厚み0.6絹に加圧成した
ものである。6はセパレータで厚み0.3肩肩のポリプ
ロピレン製不織布である。7は外径10gm厚み0.1
 flのリチウムで5の負極と2の封口板の間にリチウ
ムが介在するように封口板にリチウムを圧着した、。
In the figure, 1 is a case made by punching a stainless steel plate with a thickness of 0.25 ff, 2 is a sealing plate made of the same material and processed in the same way, 3 is a polypropylene gasket that insulates the case 1 and the sealing plate 2, and 4 is a gasket made of polypropylene. In the positive electrode, 80 parts by weight of vanadium pentoxide, 10 parts by weight of acetylene plaque as a conductive material, and 10 parts by weight of poly-4fufu modified tyrene as a binder were kneaded, and then pressure molded to an outer diameter of 15 MN and a thickness of 0.8 zg. what you did,
No. 5 is a negative electrode made by kneading 80 parts by weight of niobium pentoxide, 10 parts by weight of acetylene plaque, and 1.0 parts by weight of polytetrafluoroethylene, and then pressurizing it into silk with an outer diameter of 15 m and a thickness of 0.6 mm. . 6 is a separator made of polypropylene nonwoven fabric with a thickness of 0.3 mm. 7 has an outer diameter of 10g and a thickness of 0.1
Lithium fl was pressed onto the sealing plate so that lithium was interposed between the negative electrode No. 5 and the sealing plate No. 2.

電解液には炭酸プロピレンと1.2−ジメトキシエタン
と等容積混合溶媒に過塩素酸リチウムを1モル/eの割
合で溶解したものを用いた。
The electrolytic solution used was one in which lithium perchlorate was dissolved at a ratio of 1 mol/e in a mixed solvent of equal volumes of propylene carbonate and 1,2-dimethoxyethane.

この本発明の電池をAとした。また、負極の正極に対向
する面にリチウムを圧着した従来の電池をBとした。
This battery of the present invention was designated as A. In addition, B was a conventional battery in which lithium was crimped onto the surface of the negative electrode facing the positive electrode.

尚、いずれの電池の大きさも直径20yryt、厚さ2
uで、容量は20 mAhである。
The size of each battery is 20 yryt in diameter and 2 in thickness.
u, the capacity is 20 mAh.

これら電池を2Q℃において、1mAの定電流で放電し
た時の1■までの放電電気容量を測定した。その結果を
表1に示す。、 表1 次に、これら電池の組立直後の電圧不良率を表2に示す
。組立直後の電圧は正常晶は1.7〜2.1Vであるが
、とくに顕著に電圧低下を示すもので、1v以下になっ
たものを電圧不良品とした。
When these batteries were discharged at a constant current of 1 mA at 2Q°C, the discharge capacity up to 1 inch was measured. The results are shown in Table 1. , Table 1 Next, Table 2 shows the voltage failure rate of these batteries immediately after assembly. The voltage immediately after assembly was 1.7 to 2.1 V for normal crystals, but those that showed a particularly noticeable voltage drop, and those whose voltage was 1 V or less were classified as voltage defective products.

表1よシ封ロ板にリチウムを圧着した本発明の電aAの
方が負極合剤にリチウムを圧着した従来の電池Bに比べ
、放電電気容量は大きく、またバラツキも小さい。これ
は、電池解析を行なった結果、封口板にリチウムを圧着
した’F[f池はリチウムが完全に負極にドーピングし
ているのに対して、負極合剤にリチウムを圧着した電池
はリチウムが負極合剤から剥離し、負極に完全にドープ
せず、遊離して残存していることが観察された。
As shown in Table 1, the battery aA of the present invention in which lithium was crimped to the sealing plate had a larger discharge capacity and less variation than the conventional battery B in which lithium was crimped to the negative electrode mixture. As a result of battery analysis, we found that in 'F [f batteries, which have lithium bonded to the sealing plate, the negative electrode is completely doped with lithium, whereas in batteries where lithium is bonded to the negative electrode mix, lithium is completely doped. It was observed that it was peeled off from the negative electrode mixture and remained free without being completely doped into the negative electrode.

また、表2より、本発明の電池Aは07100個と電圧
不良電池はないが、従来の7E池Bば3/100個も電
圧不良電池が生じている。そこで、この電圧不良品を分
解してみたところ、リチウムがセパレータの脇を経由し
て内部ショートを引き起こしていた。
Further, from Table 2, battery A of the present invention has 07,100 batteries with voltage defects, while conventional 7E battery B has 3/100 batteries with voltage defects. When we disassembled this voltage-defective product, we discovered that lithium had passed through the side of the separator and caused an internal short circuit.

次に封口板内面にあらかじめカーボン塗布膜を形成して
おき、負極と封口板の1−i4」にリチウムを介在させ
るようにカーボン塗布膜にリチウムを圧着した電池をC
とした。カーボン塗布膜によりリチウムは、さらに強固
に圧着できた。また、電池組立直後の電池の内部抵抗を
本発明の電池Aと比較して示す。
Next, a carbon coating film is formed on the inner surface of the sealing plate in advance, and the battery is bonded with lithium on the carbon coating film so that lithium is interposed between the negative electrode and the sealing plate.
And so. The carbon coating film allowed lithium to be bonded more firmly. Also, the internal resistance of the battery immediately after battery assembly is shown in comparison with Battery A of the present invention.

表3 表3の結果より、封口板にあらかじめカーボン塗料を形
成しておくことにより、電気的接触が良好になり、内部
抵抗も若干1氏くなった。
Table 3 From the results in Table 3, by forming the carbon paint on the sealing plate in advance, the electrical contact was improved and the internal resistance was slightly lowered by 1°C.

また、実施例においては、負極として五酸化ニオブを用
いたが、酸化チタンを用いた場合も同様の結果が得られ
た。
Further, in the examples, niobium pentoxide was used as the negative electrode, but similar results were obtained when titanium oxide was used.

発明の効果 以上の説明から明らかなように、封口板と負極の間にリ
チウムを介在させるようにリチウムを封口板に圧着する
ことによシ、電気容量を十分取り出すことができ、電圧
不良率も区域でき、信頼性に優れたリチウム二次電池を
得ることができた。
Effects of the Invention As is clear from the above explanation, by crimping lithium to the sealing plate so that lithium is interposed between the sealing plate and the negative electrode, a sufficient electrical capacity can be extracted and the voltage failure rate can be reduced. We were able to obtain a lithium secondary battery with excellent reliability.

また、カーボン塗布膜をあらかじめ封口板に形成してお
くことにより、さらに信頼性を高めることができた。
Furthermore, by forming the carbon coating film on the sealing plate in advance, reliability could be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における11池の縦断面図であ
る。 1・・・・・・ケース、2・・・・・・封口板、3・・
・・・・ガスケット、4・・・・・・正極、5・・・・
・・負極、6・・・・・・セパレータ、7・・・・・・
リチウム。
FIG. 1 is a longitudinal sectional view of pond No. 11 in an embodiment of the present invention. 1... Case, 2... Sealing plate, 3...
...Gasket, 4...Positive electrode, 5...
...Negative electrode, 6... Separator, 7...
lithium.

Claims (3)

【特許請求の範囲】[Claims] (1)負極に金属酸化物を用いるリチウム二次電池であ
って、負極と負極集電体である封口板との間に金属リチ
ウムを介在させることを特徴とするリチウム二次電池の
製造法。
(1) A method for producing a lithium secondary battery, which is a lithium secondary battery using a metal oxide for the negative electrode, characterized in that metallic lithium is interposed between the negative electrode and a sealing plate that is a negative electrode current collector.
(2)金属酸化物が五酸化ニオブまたは、酸化チタンで
あることを特徴とする請求項1記載のリチウム二次電池
の製造法。
(2) The method for manufacturing a lithium secondary battery according to claim 1, wherein the metal oxide is niobium pentoxide or titanium oxide.
(3)封口板内面にカーボン塗布膜を形成し、この上に
金属リチウムを圧着し、このリチウム上に負極である金
属酸化物を密着させて電池構成時リチウムと酸化物を反
応させてリチウム負極とすることを特徴とした請求項1
記載のリチウム二次電池の製造法。
(3) A carbon coating film is formed on the inner surface of the sealing plate, metallic lithium is pressure-bonded on top of this, and a metal oxide, which is a negative electrode, is closely adhered to the lithium, and when forming a battery, the lithium and oxide are reacted to form a lithium negative electrode. Claim 1 characterized in that
The method for producing the described lithium secondary battery.
JP63233013A 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery Expired - Fee Related JP2808610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233013A JP2808610B2 (en) 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233013A JP2808610B2 (en) 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0282447A true JPH0282447A (en) 1990-03-23
JP2808610B2 JP2808610B2 (en) 1998-10-08

Family

ID=16948448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233013A Expired - Fee Related JP2808610B2 (en) 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2808610B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715366A1 (en) * 1994-12-01 1996-06-05 Canon Kabushiki Kaisha Rechargeable lithium battery having an anode coated by a film containing a specific metal oxide material, process for the production of said anode, and process for the production of said rechargeable lithium battery
US6410188B1 (en) 1998-11-30 2002-06-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP2008198593A (en) * 2007-01-16 2008-08-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715366A1 (en) * 1994-12-01 1996-06-05 Canon Kabushiki Kaisha Rechargeable lithium battery having an anode coated by a film containing a specific metal oxide material, process for the production of said anode, and process for the production of said rechargeable lithium battery
US6063142A (en) * 1994-12-01 2000-05-16 Canon Kabushiki Kaisha Process for producing a rechargeable lithium battery having an improved anode coated by a film containing a specific metal oxide material
US6410188B1 (en) 1998-11-30 2002-06-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP2008198593A (en) * 2007-01-16 2008-08-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP2808610B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US6689176B2 (en) Method for manufacturing a battery
JP4338985B2 (en) Battery part, lithium polymer battery and manufacturing method thereof
JP4502311B2 (en) Method for manufacturing lithium secondary battery
EP2065954A1 (en) Battery electrode structure
CN101257109B (en) Electrode structure and method of manufacturing the same, and battery and method of manufacturing the same
JP2000182623A (en) Electrolytic copper foil, copper foil for current collector of secondary battery, and secondary battery
JP4207439B2 (en) Manufacturing method of lithium ion secondary battery
IL109845A (en) Rechargeable electrochemical cell
EP1120849A2 (en) Gel electrolyte battery
JP5260851B2 (en) Lithium ion secondary battery
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JPS63250055A (en) Cathode
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JPH079818B2 (en) Non-aqueous alkaline battery
JP2001236945A (en) Lithium battery electrode, its manufacturing method, and battery using the same
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JPH0282447A (en) Manufacture of lithium secondary battery
JPH0676860A (en) Secondary battery and manufacture thereof
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JPH0794211A (en) Manufacture of battery and electrode plate for battery
JPS63168964A (en) Thin-type cell and cassette cell using thin-type cell
JP2000006439A (en) Cathode plate and anode plate for non-aqueous electrolyte secondary cell
JP3300168B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPS63121247A (en) Negative electrode of secondary battery
JP2002231315A (en) Nonaqueous electrolyte battery and manufacturing method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees