JP5260851B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5260851B2
JP5260851B2 JP2006264738A JP2006264738A JP5260851B2 JP 5260851 B2 JP5260851 B2 JP 5260851B2 JP 2006264738 A JP2006264738 A JP 2006264738A JP 2006264738 A JP2006264738 A JP 2006264738A JP 5260851 B2 JP5260851 B2 JP 5260851B2
Authority
JP
Japan
Prior art keywords
electrode
mixture layer
binder
electrode mixture
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006264738A
Other languages
Japanese (ja)
Other versions
JP2008084742A (en
Inventor
清秀 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2006264738A priority Critical patent/JP5260851B2/en
Publication of JP2008084742A publication Critical patent/JP2008084742A/en
Application granted granted Critical
Publication of JP5260851B2 publication Critical patent/JP5260851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery having high reliability and good workability by suppressing occurrence of electrode scraps and separation of the electrode active material at the time of manufacturing the lithium-ion secondary battery. <P>SOLUTION: The lithium-ion secondary battery is equipped with a positive electrode and a negative electrode having an electrode mixture layer containing an electrode active material 1 and a binder 2 formed on a current collector 4, an electrolyte, and a separator. A binder layer 5 is provided on the surface of the electrode mixture layer 3 of at least one of the positive electrode or the negative electrode. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明はリチウムイオン二次電池に関し、特に電極の構造に関するものである。   The present invention relates to a lithium ion secondary battery, and more particularly to an electrode structure.

従来、リチウムイオン二次電池は、アルミニウム箔等の金属からなる正極集電体上にリチウムイオンを吸蔵、放出し得る正極活物質を含有する正極スラリーを塗布、乾燥、圧縮し正極合剤層を形成した正極と、銅箔等の金属からなる負極集電体上にリチウムイオンを吸蔵、放出する負極活物質を含有する負極スラリーを塗布、乾燥、圧縮し負極合剤層を形成した負極とを電解液、およびこれを含む不織布、ポリオレフィン微多孔膜などからなるセパレータを介して対向して配置され構成されていてこれらが電池ケースの中に密閉された状態となっている。   Conventionally, in a lithium ion secondary battery, a positive electrode slurry containing a positive electrode active material capable of occluding and releasing lithium ions is applied onto a positive electrode current collector made of a metal such as an aluminum foil, dried, and compressed to form a positive electrode mixture layer. The formed positive electrode and a negative electrode slurry containing a negative electrode active material that absorbs and releases lithium ions on a negative electrode current collector made of a metal such as copper foil, and dried and compressed to form a negative electrode mixture layer. The electrolyte solution, a non-woven fabric containing the electrolyte, and a separator made of a polyolefin microporous membrane are arranged to be opposed to each other, and these are sealed in a battery case.

ラミネート型リチウムイオン二次電池においては、正極は正極活物質としてのコバルト酸リチウムに、導電材としてのカーボンとバインダーとしてのPVDF(ポリフッ化ビニリデン)をNMP(N−メチル2ピロリドン)に溶解させ、混合した正極スラリーを正極集電体となるアルミニウム箔に塗布、乾燥、圧縮して正極集電体上に正極合剤層を形成し製造していた。また負極は負極活物質としてのグラファイトに、導電材としてのカーボンとバインダーとしてのPVDFをNMPに溶解させ、混合した負極スラリーを負極集電体となる銅箔に塗布、乾燥、圧縮して負極集電体上に負極合剤層を形成して製造していた。   In the laminated lithium ion secondary battery, the positive electrode is dissolved in lithium cobaltate as a positive electrode active material, carbon as a conductive material and PVDF (polyvinylidene fluoride) as a binder are dissolved in NMP (N-methyl 2-pyrrolidone), The mixed positive electrode slurry was applied to an aluminum foil serving as a positive electrode current collector, dried and compressed to form a positive electrode mixture layer on the positive electrode current collector. Also, the negative electrode is made of graphite as a negative electrode active material, carbon as a conductive material and PVDF as a binder are dissolved in NMP, and the mixed negative electrode slurry is applied to a copper foil as a negative electrode current collector, dried and compressed to obtain a negative electrode current collector. It was manufactured by forming a negative electrode mixture layer on the electric body.

これらの正極および負極を所定の寸法に切断し、セパレータを介して積層した後、正極、負極をそれぞれ外部引き出しタブに溶接し電極集合体を製造し、これをラミネート材からなる外装体に収納し、電解液を注入した後封止し、その後充電してラミネート型リチウムイオン二次電池を製造していた。   These positive electrode and negative electrode are cut to a predetermined size and laminated via a separator, and then the positive electrode and the negative electrode are welded to external lead tabs, respectively, to produce an electrode assembly, which is then housed in an exterior body made of a laminate material. Then, after injecting the electrolyte, it was sealed and then charged to produce a laminated lithium ion secondary battery.

従来の正極、負極等の電極を製造する場合、電極内部のバインダーとしてのPVDFは通常均一に分散されている。PVDFが少ない場合、電極の活物質の粒子同士の結合が弱くなり、電極は剥がれ易くなり、PVDFが多い場合、活物質の密度が少なくなり電池の高容量化ができない。   When manufacturing conventional electrodes such as a positive electrode and a negative electrode, PVDF as a binder inside the electrode is usually uniformly dispersed. When the PVDF is low, the bonding between the active material particles of the electrode is weak and the electrode is easily peeled off. When the PVDF is high, the density of the active material is low and the capacity of the battery cannot be increased.

電極の製造工程においては、電極の切断時に電極の剥離による電極クズが発生し、また、主に、電極集合体の組み立て時に発生する電極同士の接触、擦れによる電極活物質の剥離等が発生していた。   In the electrode manufacturing process, electrode debris occurs due to electrode peeling when the electrode is cut, and contact between the electrodes that occurs mainly during assembly of the electrode assembly, peeling of the electrode active material due to rubbing, etc. occur. It was.

特許文献1においては、電極合剤層内のバインダーの濃度を集電体近くにおいて濃くして集電体との密着性を向上するとともに、電極合剤層の表面のバインダーの濃度も高めて表面からの電極材料の脱落を防止する提案がなされている。また、特許文献2では、負極における電極活物質の集電体よりの剥離を抑制するため、負極合剤層のバインダーの分布状態を規定する提案がなされている。さらに電極合剤層内でバインダー濃度を変える提案が特許文献3および4において記載されている。   In Patent Document 1, the concentration of the binder in the electrode mixture layer is increased near the current collector to improve adhesion with the current collector, and the binder concentration on the surface of the electrode mixture layer is also increased to increase the surface. Proposals have been made to prevent the electrode material from falling off. Further, Patent Document 2 proposes to regulate the distribution state of the binder in the negative electrode mixture layer in order to suppress peeling of the electrode active material from the current collector in the negative electrode. Further, proposals for changing the binder concentration in the electrode mixture layer are described in Patent Documents 3 and 4.

特開平10−270013号公報JP-A-10-270013 特開平10−321235号公報Japanese Patent Laid-Open No. 10-32235 特開平11−265708号公報JP-A-11-265708 特開2004−95538号公報JP 2004-95538 A

しかしながら、従来の特許文献1〜4のように電極合剤層内でバインダー濃度を変えることでは、電極合剤層の表面の保護が充分ではなく、電極クズの発生、電極活物質の剥離が発生する恐れがあった。   However, by changing the binder concentration in the electrode mixture layer as in the conventional patent documents 1 to 4, the surface of the electrode mixture layer is not sufficiently protected, and electrode scraping and electrode active material peeling occur. There was a fear.

本発明の課題は、リチウムイオン二次電池を製造する際に、電極クズの発生、電極活物質の剥離を抑え、作業性がよく、信頼性の高いリチウムイオン二次電池を提供することにある。   It is an object of the present invention to provide a lithium ion secondary battery that has good workability and high reliability by suppressing generation of electrode debris and peeling of an electrode active material when producing a lithium ion secondary battery. .

本発明は前記課題の解決のため、電極の構造を検討した結果なされたものである。本発明のリチウムイオン二次電池は電極活物質とバインダーを含む電極合剤層を集電体上に形成した正極および負極と、電解質、セパレータを具備したリチウムイオン二次電池において、前記正極あるいは前記負極の少なくとも一方の電極合剤層の表面にポリフッ化ビニリデンのみからなる蜘蛛の巣状のバインダー層を有し、前記バインダー層の厚みが前記電極活物質の平均粒径の0.005倍〜0.1倍であることを特徴とする。また前記電極合剤層の表面近傍部のバインダー濃度が前記電極合剤層の内部のバインダー濃度より高いことが好ましく、前記電極合剤層の表面近傍部および集電体近傍部のバインダー濃度が前記電極合剤層の内部のバインダー濃度より高いことが好ましく、前記電極合剤層の表面近傍部および集電体近傍部のバインダー濃度が10〜20質量%で、前記電極合剤層の内部のバインダー濃度が1〜5質量%であることが好ましい。 The present invention has been made as a result of studying the structure of an electrode in order to solve the above problems. The lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode and a negative electrode on which an electrode mixture layer containing an electrode active material and a binder is formed on a current collector, an electrolyte, and a separator. consisting only of polyvinylidene fluoride on a surface of at least one of the electrode mixture layer of the negative electrode have a focal binder layer spider, 0.005 times to 0 of the average particle diameter of the thickness of the binder layer is the electrode active material .1 Baidea Rukoto and said. Preferably it has a binder concentration near the surface portion of the front Symbol electrode mixture layer or higher than the internal binder concentration of the electrode mixture layer, the binder concentration of the near-surface portion and the current collector vicinity of the electrode mixture layer Is preferably higher than the binder concentration inside the electrode mixture layer, the binder concentration in the vicinity of the surface of the electrode mixture layer and in the vicinity of the current collector is 10 to 20% by mass, and the inside of the electrode mixture layer It is preferable that the binder density | concentration of 1-5 mass%.

本発明は、電極合剤層の表面に0.1〜2μm程度のバインダー好ましくはPVDFの層を生成することより、電極合剤層の表面からの電極活物質の脱落防止が図れる。また、電極合剤層の内部のバインダー濃度をコントロールすることにより、剥がれにくくかつ高容量のリチウムイオン二次電池を提供する。さらに電極合剤層の表面近傍部および集電体近傍部のバインダー濃度を高くし電極内部のバインダー濃度を従来と同様とすることにより、製品の擦れ、取り扱い、切断における負荷による電極クズ、剥がれを防止することが可能となる。   According to the present invention, it is possible to prevent the electrode active material from falling off from the surface of the electrode mixture layer by forming a binder, preferably PVDF, layer of about 0.1 to 2 μm on the surface of the electrode mixture layer. In addition, by controlling the binder concentration inside the electrode mixture layer, it is possible to provide a lithium ion secondary battery that is difficult to peel off and has a high capacity. Furthermore, by increasing the binder concentration in the vicinity of the surface of the electrode mixture layer and in the vicinity of the current collector and making the binder concentration inside the electrode the same as in the past, it is possible to prevent electrode scraping and peeling due to load during product rubbing, handling, and cutting. It becomes possible to prevent.

本発明によれば、電極合剤層表面にバインダー層を形成することにより、電極クズの発生が抑えられ、電池内部への混入が無くなり、不良率の少ない信頼性の向上したリチウムイオン二次電池が得られる効果がある。   According to the present invention, by forming a binder layer on the surface of the electrode mixture layer, generation of electrode debris is suppressed, mixing into the battery is eliminated, and the reliability of the lithium ion secondary battery with a low defect rate is improved. Is effective.

次に、本発明の実施の形態について図面を参照して説明する。図1は本発明のリチウムイオン二次電池の電極の断面模式図であり、図2は電極合剤層の塗布、乾燥工程の説明図であり、図3はバインダー層の塗布、乾燥工程の説明図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an electrode of a lithium ion secondary battery of the present invention, FIG. 2 is an explanatory diagram of an electrode mixture layer coating and drying process, and FIG. 3 is an explanation of a binder layer coating and drying process. FIG.

リチウムイオン二次電池は、正極となるアルミニウム箔等の金属からなる集電体上に形成されたリチウムイオンを吸蔵、放出し得る電極活物質とバインダーを含有する電極合剤層と、負極となる銅箔等の金属からなる集電体上に形成されたリチウムイオンを吸蔵、放出する電極活物質とバインダーを含有する電極合剤層とが、電解液、およびこれを含む不織布、ポリオレフィン微多孔膜などからなるセパレータを介して対向して配置され構成されている。   A lithium ion secondary battery becomes an anode, an electrode mixture layer containing an electrode active material and a binder that can occlude and release lithium ions formed on a current collector made of a metal such as an aluminum foil that serves as a cathode, and an anode. An electrode active material that occludes and releases lithium ions formed on a current collector made of a metal such as copper foil, and an electrode mixture layer that contains a binder, an electrolyte solution, a nonwoven fabric containing the electrolyte, and a polyolefin microporous membrane It arrange | positions and is comprised facing through the separator which consists of.

先ず正極の製造について図1および図2を参照して説明する。電極6は平板状のアルミニウムなどの金属からなる集電体4にLiMO(ただしMは少なくとも1種類の遷移金属を表す)で表される複合酸化物、たとえばLiCoO、LiNiO、LiMnなどからなる電極活物質1とカーボンブラック等の導電材と、ポリフッ化ビニリデン(PVDF)等のバインダー2をNMP等の溶剤に分散混合した電極合剤スラリー7を塗布装置によって塗布し乾燥させ電極合剤層3を集電体4上に乾燥後50〜150μmとなるように形成する。電極合剤層3を集電体4の片面に形成し電極6aとした後に、集電体4の反対面に同様に電極合剤スラリー7を塗布し、両面に電極合剤層3を形成した電極6aとする。その後、電極活物質の充填密度の向上のため圧縮した後、所定の寸法に裁断し作製する。 First, manufacture of the positive electrode will be described with reference to FIGS. 1 and 2. The electrode 6 is a complex oxide represented by LiMO 2 (wherein M represents at least one kind of transition metal), for example, LiCoO 2 , LiNiO 2 or LiMn 2 O An electrode mixture slurry 7 prepared by dispersing and mixing an electrode active material 1 composed of 4 and the like, a conductive material such as carbon black, and a binder 2 such as polyvinylidene fluoride (PVDF) in a solvent such as NMP is applied and dried by a coating apparatus. The mixture layer 3 is formed on the current collector 4 so as to be 50 to 150 μm after drying. After the electrode mixture layer 3 was formed on one side of the current collector 4 to form the electrode 6a, the electrode mixture slurry 7 was similarly applied to the opposite surface of the current collector 4 to form the electrode mixture layer 3 on both sides. Let it be an electrode 6a. Then, after compressing in order to improve the packing density of the electrode active material, it is cut into a predetermined size.

電極合剤スラリー7の塗布、乾燥に際しては、図1、図2に示すように、集電体4の塗布する面の反対側に例えば120−150℃の温風等により熱8を加えて、電極合剤層3の集電体近傍部3cのNMP等の溶剤を乾燥させる。この乾燥方法により、集電体4上にまずPVDF等のバインダーが形成された後、NMP等の溶剤の蒸発が進むため集電体4と電極合剤層3の密着性が向上する。もし、上下から同時に熱を加え乾燥させた場合、電極合剤層の表面にPVDF等のバインダー層が形成され、NMP等の溶剤の蒸発が阻害されると同時に電極合剤層3の集電体近傍部3cのPVDF等から成るバインダーの量が減少し密着力が弱くなることとなる。電極合剤層3の集電体近傍部3cのバインダー濃度は10〜20質量%が望ましい。10質量%より小さいと電極と金属箔の密着が悪化し、20質量%より大きいと電池特性の悪化、特にインピーダンス増大の問題がある。   When applying and drying the electrode mixture slurry 7, as shown in FIGS. 1 and 2, heat 8 is applied to the opposite side of the surface on which the current collector 4 is applied, for example, with warm air at 120 to 150 ° C. The solvent such as NMP in the current collector vicinity 3c of the electrode mixture layer 3 is dried. By this drying method, after a binder such as PVDF is first formed on the current collector 4, evaporation of a solvent such as NMP proceeds, so that the adhesion between the current collector 4 and the electrode mixture layer 3 is improved. If heat is applied simultaneously from above and below and dried, a binder layer such as PVDF is formed on the surface of the electrode mixture layer, and evaporation of a solvent such as NMP is inhibited, and at the same time, the current collector of the electrode mixture layer 3 The amount of the binder made of PVDF or the like in the vicinity 3c is reduced, and the adhesion is weakened. As for the binder density | concentration of the electrical power collector vicinity part 3c of the electrode mixture layer 3, 10-20 mass% is desirable. If it is less than 10% by mass, the adhesion between the electrode and the metal foil is deteriorated.

その後、図1、図3に示すように、たとえば0.5〜5質量%のPVDF溶液(NMP95〜99.5質量%)などのバインダー溶液9を電極合剤層3の表面に塗布し乾燥させバインダー層5を形成した電極6とする。バインダー溶液の濃度、塗布厚、乾燥時間を変化させる事により、電極内部へのPVDF等のバインダー濃度分布、即ち電極合剤層3の表面近傍部3aと内部3bの厚さ及び電極合剤層3の表面のPVDF等のバインダー層5の厚さが変化する。なお、バインダー溶液9の塗布、乾燥は電極合剤層3を塗布、乾燥した後でもよいし、塗布、乾燥し、さらに圧縮した後に行なってもよい。バインダー層の厚みは電極活物質の平均粒径の0.005倍〜0.1倍であることが望ましい。0.005倍より小さいと活物質のはがれ防止機能は小さくなり0.1倍より大きいと電池特性の悪化、特にインピーダンス増大の問題がある。   Thereafter, as shown in FIGS. 1 and 3, for example, a binder solution 9 such as a 0.5 to 5 mass% PVDF solution (NMP 95 to 99.5 mass%) is applied to the surface of the electrode mixture layer 3 and dried. The electrode 6 is provided with the binder layer 5 formed thereon. By changing the concentration of the binder solution, the coating thickness, and the drying time, the binder concentration distribution of PVDF or the like inside the electrode, that is, the thickness of the electrode mixture layer 3 near the surface 3a and the inside 3b and the electrode mixture layer 3 The thickness of the binder layer 5 such as PVDF on the surface changes. The binder solution 9 may be applied and dried after the electrode mixture layer 3 is applied and dried, or may be applied, dried and further compressed. The thickness of the binder layer is preferably 0.005 to 0.1 times the average particle diameter of the electrode active material. If it is less than 0.005 times, the active material peeling prevention function is reduced, and if it is more than 0.1 times, there is a problem of deterioration of battery characteristics, particularly an increase in impedance.

負極については、平板状の銅箔などの金属箔からなる集電体にグラファイトなどからなる電極活物質と必要に応じ導電材とバインダーを溶剤に分散混合した電極合剤スラリーを正極の製造と同様に塗布、乾燥し電極合剤層を集電体上に形成する。その後、正極の場合と同様にバインダー層の形成を行なう。なお、バインダー層の形成は正極、負極のいずれか一方のみでもよい。   As for the negative electrode, an electrode mixture slurry in which a current collector made of a metal foil such as a flat copper foil is mixed with an electrode active material made of graphite and, if necessary, a conductive material and a binder in a solvent is mixed as in the production of the positive electrode. And the electrode mixture layer is formed on the current collector. Thereafter, a binder layer is formed as in the case of the positive electrode. Note that the binder layer may be formed by only one of the positive electrode and the negative electrode.

正極、負極の電極を形成した後、公知の方法によりこれらの電極を所定の寸法に切断し、セパレータを介して積層した後、正極、負極をそれぞれ外部引き出しタブに溶接し電極集合体を製造し、これをラミネート材からなる外装体に収納し、電解液を注入した後封止し、その後充電してラミネート型リチウムイオン二次電池を製造する。   After forming the positive electrode and the negative electrode, the electrodes are cut to a predetermined size by a known method, laminated via a separator, and then the positive electrode and the negative electrode are welded to the external lead tabs to produce an electrode assembly. This is housed in an outer package made of a laminate material, injected with an electrolytic solution, sealed, and then charged to produce a laminated lithium ion secondary battery.

以下、本発明を実施例に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

先ず正極の製造について説明する。平均粒径25μmのコバルト酸リチウム96質量%と、1質量%のカーボンブラックからなる導電材と、3質量%のPVDFをNMPに分散、混合して電極合剤スラリーを製造した。電極合剤スラリーをアルミニウム箔からなる集電体に、乾燥後の厚さが200μmになるように塗布した。乾燥は、図2に示すように、集電体の塗布する面の反対側から150℃の温風により熱を加えて行なった。その後、反対面にも電極を形成し、電極を圧縮した後、この電極について、電極電極剥離試験を行なった。即ち直径が1mmごとに異なるの金属製の丸棒に作製したシート状の電極板を擦り、電極合剤層が集電体と剥離する限界を計測したところ、Φ3.0mmの丸棒でも電極は剥がれ落ちることは無かった。このとき集電体から2μmにおける電極合剤層のバインダー濃度は10質量%であった。   First, the production of the positive electrode will be described. An electrode mixture slurry was produced by dispersing and mixing 96% by mass of lithium cobaltate having an average particle size of 25 μm, a conductive material composed of 1% by mass of carbon black, and 3% by mass of PVDF in NMP. The electrode mixture slurry was applied to a current collector made of aluminum foil so that the thickness after drying was 200 μm. As shown in FIG. 2, the drying was performed by applying heat with warm air of 150 ° C. from the opposite side of the surface on which the current collector was applied. Then, after forming an electrode also on the opposite surface and compressing the electrode, an electrode electrode peeling test was performed on this electrode. That is, when the limit of the electrode mixture layer peeling from the current collector was measured by rubbing the sheet-like electrode plate produced on a metal round bar having a different diameter every 1 mm, the electrode was not removed even with a round bar of Φ3.0 mm. There was no peeling off. At this time, the binder concentration of the electrode mixture layer at 2 μm from the current collector was 10 mass%.

比較として実施例と同様の電極合剤スラリーを用い、乾燥を集電体の塗布面の上下両方から温風により熱を加えて行い、その後、電極を圧縮した後、電極電極剥離試験を行なったところΦ4.0mmの丸棒で電極が剥がれ落ちた。このとき集電体から2μmにおける電極合剤層のバインダー濃度は3質量%であった。上下から同時に熱を加えて乾燥させた場合より、集電体側から熱を加える方が電極合剤層と集電体との密着性が強くなることが確認された。   For comparison, the same electrode mixture slurry as in Example was used, and drying was performed by applying heat from both the upper and lower sides of the current collector application surface with hot air, and then the electrode was compressed, and then an electrode electrode peeling test was performed. However, the electrode peeled off with a round bar of Φ4.0 mm. At this time, the binder concentration of the electrode mixture layer at 2 μm from the current collector was 3 mass%. It was confirmed that the adhesion between the electrode mixture layer and the current collector is stronger when the heat is applied from the current collector side than when the heat is applied simultaneously from the top and bottom.

その後、5質量%のPVDF溶液(NMP95質量%)のバインダー溶液を電極合剤層の表面に塗布し150℃の温風にて乾燥させる。5質量%溶液を17.5g/m2の量を塗布すると約0.5μmのPVDF膜が電極表面形成されることとなるが、実際は約20μm粒子径の活物質に蜘蛛の巣状のバインダー層が形成される。バインダー層が蜘蛛の巣状に形成される事により、電解液の進入、リチウムイオンの進入が防止されることが無く、活物質粒子が脱落しない状態となる。 Thereafter, a binder solution of 5% by mass PVDF solution (NMP 95% by mass) is applied to the surface of the electrode mixture layer and dried with hot air at 150 ° C. When an amount of 17.5 g / m 2 is applied to a 5% by mass solution, a PVDF film of about 0.5 μm is formed on the electrode surface. Is formed. By forming the binder layer in the form of a spider web, the ingress of the electrolytic solution and the ingress of lithium ions are not prevented, and the active material particles do not fall off.

次に負極の製造について説明する。平均粒径20μmのグラファイト94質量%と、1質量%の導電材(カーボンブラック)と5質量%のPVDFをNMPに分散、混合させ、電極合剤スラリーを製造した。電極合剤スラリーを銅箔からなる集電体に乾燥後の厚さ170μmになるように塗布し、集電体の塗布する面の反対側から温風により熱を加えて乾燥し電極合剤層を形成した。反対側の面にも同様に集電体上に電極合剤層を形成した後、電極密度を向上させるため、金属ローラーで圧縮後の厚さ110μmになるように圧縮した。   Next, production of the negative electrode will be described. 94% by mass of graphite having an average particle diameter of 20 μm, 1% by mass of a conductive material (carbon black) and 5% by mass of PVDF were dispersed and mixed in NMP to produce an electrode mixture slurry. The electrode mixture slurry is applied to a current collector made of copper foil so as to have a thickness of 170 μm after drying, and heated by applying hot air from the opposite side of the surface on which the current collector is applied to dry the electrode mixture layer Formed. Similarly, after the electrode mixture layer was formed on the current collector on the opposite side, it was compressed with a metal roller so that the thickness after compression was 110 μm in order to improve the electrode density.

その後、5質量%のPVDF溶液(NMP95質量%)のバインダー溶液を電極合剤層3表面に塗布し乾燥させる。5質量%溶液を17.5g/m2量塗布で計算上約0.5μmのPVDF膜が電極表面に形成される。実際は約20μm粒子径の活物質に蜘蛛の巣状のバインダー膜が形成される。バインダー膜が蜘蛛の巣状に形成される事により、電解液の進入、リチウムイオンの進入が防止されることが無く、活物質粒子が脱落しない状態となる。 Thereafter, a binder solution of 5% by mass PVDF solution (NMP 95% by mass) is applied to the surface of the electrode mixture layer 3 and dried. A PVDF film of about 0.5 μm is formed on the electrode surface by applying 17.5 g / m 2 of 5 mass% solution. Actually, a spider web-like binder film is formed on an active material having a particle diameter of about 20 μm. By forming the binder film in the form of a spider web, the ingress of the electrolytic solution and the ingress of lithium ions are not prevented, and the active material particles do not fall off.

この電極について、電極合剤層の表面の密着性を粘着テープを使用したピーリング試験により調査した。ピーリングはニチバン製LP−15、幅15mmの粘着テープを電極に貼り付け、15mm角の面積に100gの加重で押さえた後、テープを約5秒間ではがした。PVDF膜を電極合剤層表面に計算上約0.5μm生成し、負極PVDF量を5質量%とした場合、ピーリング試験においてテープの粘着面に電極は付着しなかった。   About this electrode, the adhesiveness of the surface of an electrode mixture layer was investigated by the peeling test using an adhesive tape. Peeling was done by attaching Nichiban LP-15, 15 mm wide adhesive tape to the electrode, pressing it on a 15 mm square area with a load of 100 g, and then peeling the tape for about 5 seconds. When about 0.5 μm of PVDF film was calculated on the surface of the electrode mixture layer and the amount of negative PVDF was 5% by mass, the electrode did not adhere to the adhesive surface of the tape in the peeling test.

比較として電極合剤層表面にバインダー層を形成せず電極合剤層中のPVDF量を5質量%とした場合、テープの粘着面の90%に電極が付着した。また、バインダー層を形成せず電極合剤層中のPVDF量を10質量%とした場合、テープの粘着面の50%に電極が付着した。   As a comparison, when the binder layer was not formed on the surface of the electrode mixture layer and the PVDF content in the electrode mixture layer was 5% by mass, the electrode adhered to 90% of the adhesive surface of the tape. Moreover, when the PVDF amount in the electrode mixture layer was 10% by mass without forming the binder layer, the electrode adhered to 50% of the adhesive surface of the tape.

この結果より、電極表面にPVDF皮膜を生成することにより、電極の脱落を低減できることが判明した。即ち電極合剤層表面にバインダー層を形成しない場合、テープの粘着面に電極粉が付着しており製造工程中で電極を取り扱った場合、電極クズが発生し、電池内部に混入し短絡不良の原因となる恐れがあるが本発明の電極であれば、電極表面にテープを貼りピーリングしても、テープに電極が付着することが無く、作業エリアにおいても電極クズ発生が少なくなり、電池内部の電極クズ混入が無くなった。よって、不良率、及び製品のショートに関する信頼性が向上した。   From this result, it has been found that electrode dropping can be reduced by forming a PVDF film on the electrode surface. That is, when the binder layer is not formed on the surface of the electrode mixture layer, the electrode powder adheres to the adhesive surface of the tape, and when the electrode is handled during the manufacturing process, electrode debris is generated and mixed into the battery, resulting in a short circuit failure. The electrode of the present invention may cause a cause, but even if a tape is applied to the electrode surface and peeled, the electrode does not adhere to the tape, and the generation of electrode scraps is reduced in the work area. There was no electrode waste. Therefore, the defect rate and the reliability regarding the short circuit of the product are improved.

本発明のリチウムイオン二次電池の電極の断面模式図。The cross-sectional schematic diagram of the electrode of the lithium ion secondary battery of this invention. 本発明のリチウムイオン二次電池の電極合剤層の塗布、乾燥工程の説明図。Explanatory drawing of the application | coating mixture layer of the lithium ion secondary battery of this invention, and a drying process. 本発明のリチウムイオン二次電池のバインダー層の塗布、乾燥工程の説明図。Explanatory drawing of the application | coating of the binder layer of the lithium ion secondary battery of this invention, and a drying process.

符号の説明Explanation of symbols

1 電極活物質
2 バインダー
3 電極合剤層
3a (電極合剤層の)表面近傍部
3b (電極合剤層の)内部
3c (電極合剤層の)集電体近傍部
4 集電体
5 バインダー層
6 (バインダー層を形成した)電極
6a (電極合剤層を集電体上に形成した)電極
7 電極合剤スラリー
8 熱
9 バインダー溶液
DESCRIPTION OF SYMBOLS 1 Electrode active material 2 Binder 3 Electrode mixture layer 3a (electrode mixture layer) surface vicinity part 3b (electrode mixture layer) inside 3c (electrode mixture layer) current collector vicinity part 4 Current collector 5 Binder Layer 6 (binder layer formed) electrode 6a (electrode mixture layer formed on current collector) electrode 7 electrode mixture slurry 8 heat 9 binder solution

Claims (4)

電極活物質とバインダーを含む電極合剤層を集電体上に形成した正極および負極と、電解質、セパレータを具備したリチウムイオン二次電池において、前記正極あるいは前記負極の少なくとも一方の電極合剤層の表面にポリフッ化ビニリデンのみからなる蜘蛛の巣状のバインダー層を有し、前記バインダー層の厚みが前記電極活物質の平均粒径の0.005倍〜0.1倍であることを特徴とするリチウムイオン二次電池。 In a lithium ion secondary battery comprising a positive electrode and a negative electrode on which an electrode mixture layer containing an electrode active material and a binder is formed on a current collector, an electrolyte, and a separator, at least one electrode mixture layer of the positive electrode or the negative electrode the have a focal binder layer spider composed only polyvinylidene fluoride on the surface, characterized in 0.005 times to 0.1 Baidea Rukoto an average particle size of the thickness of the binder layer is the electrode active material Lithium ion secondary battery. 前記電極合剤層の表面近傍部のバインダー濃度が前記電極合剤層の内部のバインダー濃度より高いことを特徴とする請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the binder concentration in the vicinity of the surface of the electrode mixture layer is higher than the binder concentration inside the electrode mixture layer. 前記電極合剤層の表面近傍部および集電体近傍部のバインダー濃度が前記電極合剤層の内部のバインダー濃度より高いことを特徴とする請求項1または2に記載のリチウムイオン二次電池。 Lithium-ion secondary battery according to claim 1 or 2, wherein the near-surface portion and the binder concentration of the current collector vicinity of the electrode mixture layer is higher than the internal binder concentration of the electrode mixture layer. 前記電極合剤層の表面近傍部および集電体近傍部のバインダー濃度が10〜20質量%で前記電極合剤層の内部のバインダー濃度が1〜5質量%であることを特徴とする請求項1乃至のいずれか1項に記載のリチウムイオン二次電池。 The binder concentration in the vicinity of the surface of the electrode mixture layer and the vicinity of the current collector is 10 to 20% by mass, and the binder concentration in the electrode mixture layer is 1 to 5% by mass. The lithium ion secondary battery according to any one of 1 to 3 .
JP2006264738A 2006-09-28 2006-09-28 Lithium ion secondary battery Active JP5260851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264738A JP5260851B2 (en) 2006-09-28 2006-09-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264738A JP5260851B2 (en) 2006-09-28 2006-09-28 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2008084742A JP2008084742A (en) 2008-04-10
JP5260851B2 true JP5260851B2 (en) 2013-08-14

Family

ID=39355371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264738A Active JP5260851B2 (en) 2006-09-28 2006-09-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5260851B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675519B2 (en) * 2011-07-11 2015-02-25 株式会社日立製作所 Secondary battery negative electrode, non-aqueous electrolyte secondary battery using secondary battery negative electrode, and methods for producing the same
DE112011105726T5 (en) 2011-10-11 2014-07-10 Toyota Jidosha Kabushiki Kaisha Non-aqueous secondary battery
KR101841809B1 (en) * 2014-10-31 2018-03-23 주식회사 엘지화학 Electrode-adhesive layer composite, method of producing the same, and secondary battery comprising the same
JP2016122631A (en) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 Method of manufacturing electrode for lithium ion secondary battery
KR101822593B1 (en) * 2015-03-17 2018-01-26 주식회사 엘지화학 Electrode having porous binder coating layer, method for preparation thereof, and lithium secondary battery comprising the same
KR101984727B1 (en) * 2016-11-21 2019-05-31 주식회사 엘지화학 Electrode and lithium secondary battery comprising the same
KR20210044503A (en) * 2019-10-15 2021-04-23 주식회사 엘지화학 Electrode plate for secondary battery comprising electrode mixture regions having different content ratio of binder and manufacturing method of electrode for secondary battery using the same
KR102637754B1 (en) * 2021-10-05 2024-02-16 주식회사 엘지에너지솔루션 ELECTRODE, SECONDARY BATTERY COMPRISING THE SAME, and method for MANUFACTURING the same
WO2023080514A1 (en) * 2021-11-03 2023-05-11 주식회사 엘지화학 Manufacturing method of positive electrode current collector coated with adhesion enhancement layer, positive electrode current collector coated with adhesion enhancement layer manufactured thereby, manufacturing method of positive electrode for lithium secondary battery, positive electrode for lithium secondary battery manufactured thereby, and lithium secondary battery comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (en) * 1994-01-31 2003-01-27 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH0864203A (en) * 1994-08-25 1996-03-08 Ricoh Co Ltd Electrode, manufacture thereof, and secondary battery using it
JP3482443B2 (en) * 1997-03-27 2003-12-22 日本電池株式会社 Electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2003109574A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4571841B2 (en) * 2004-09-30 2010-10-27 大日本印刷株式会社 Electrode plate manufacturing method
JP5241118B2 (en) * 2006-03-17 2013-07-17 三洋電機株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2008084742A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP5260851B2 (en) Lithium ion secondary battery
US11108078B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP5365106B2 (en) Method for producing electrode for electrochemical element, and electrode for electrochemical element
JP6318882B2 (en) Nonaqueous electrolyte secondary battery
WO2012137377A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2018207530A1 (en) Nonaqueous electrolyte secondary battery
WO2015045719A1 (en) Positive electrode for stacked lithium ion secondary batteries
JP2007311328A (en) Nonaqueous electrolyte battery
JP4992203B2 (en) Lithium ion secondary battery
KR20100101626A (en) Battery
WO2008026358A1 (en) Electrode for nonaqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP5211480B2 (en) Electrode active material particles, electrode, electrochemical device, and electrode manufacturing method
JP6303871B2 (en) Separator and lithium ion secondary battery
CN111386616B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
JP2010009818A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP5228501B2 (en) Electrode active material particles, electrode, electrochemical device, and electrode manufacturing method
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
JP6631095B2 (en) Separator and lithium ion secondary battery using the same
JPWO2015053177A1 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP2003297337A (en) Electrode structure, its manufacturing method, and secondary battery
JP5560869B2 (en) Electrode manufacturing method, electrode, and electrochemical element
JP2010251151A (en) Laminate battery
CN111868971A (en) Electrode for secondary battery, secondary battery using the same, and method of manufacturing the same
JP6846570B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2024046274A1 (en) Positive electrode sheet, secondary battery and electric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250