JP2808610B2 - Manufacturing method of lithium secondary battery - Google Patents

Manufacturing method of lithium secondary battery

Info

Publication number
JP2808610B2
JP2808610B2 JP63233013A JP23301388A JP2808610B2 JP 2808610 B2 JP2808610 B2 JP 2808610B2 JP 63233013 A JP63233013 A JP 63233013A JP 23301388 A JP23301388 A JP 23301388A JP 2808610 B2 JP2808610 B2 JP 2808610B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
sealing plate
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63233013A
Other languages
Japanese (ja)
Other versions
JPH0282447A (en
Inventor
堅一 高田
信晴 小柴
秀一 西野
敏彦 池畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63233013A priority Critical patent/JP2808610B2/en
Publication of JPH0282447A publication Critical patent/JPH0282447A/en
Application granted granted Critical
Publication of JP2808610B2 publication Critical patent/JP2808610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム二次電池の製造法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a lithium secondary battery.

従来の技術 近年のエレクトロニクス分野における技術の急速な発
展により、電子機器の小型化が進み、それら機器の電源
として、小型軽量で高エネルギー密度を有する電池の需
要が高まっている。そして、その電池として、負極にリ
チウムを用いるリチウム二次電池が注目を集め世界的に
研究が行なわれている。しかしながら充放電の繰り返し
により、リチウム負極表面にリチウムのデンドライトと
呼ばれる樹枝状結晶が成長して電池の内部短絡を引き起
こし、充放電サイクル寿命が著しく損なわれる。
2. Description of the Related Art Due to the rapid development of technologies in the field of electronics in recent years, electronic devices have been miniaturized, and there has been an increasing demand for small and lightweight batteries having a high energy density as power sources for those devices. As such a battery, a lithium secondary battery using lithium for the negative electrode has attracted attention and is being studied worldwide. However, repetition of charge and discharge causes dendritic crystals called lithium dendrites to grow on the surface of the lithium negative electrode, causing an internal short circuit in the battery, and significantly shortening the charge / discharge cycle life.

この解決の一手段として五酸化ニオブや酸化チタンな
どの金属酸化物を負極に用いたリチウム二次電池が提案
されている。最近の研究では五酸化ニオブや酸化チタン
に対するリチウムイオンのドープ・アンドープがスムー
ズに行なわれ易く、また充放電の繰り返しによるデンド
ライトの発生もないため、非常に長期にわたる充放電サ
イクル特性に優れていることがわかった。
As one solution to this problem, a lithium secondary battery using a metal oxide such as niobium pentoxide or titanium oxide for the negative electrode has been proposed. Recent studies show that lithium ion doping and undoping of niobium pentoxide and titanium oxide can be performed smoothly and that dendrite does not occur due to repeated charge / discharge, so that it has excellent charge / discharge cycle characteristics for a very long time. I understood.

ただ、この場合、あらかじめ負極にリチウムを充填せ
ねばならないが、一般的には、負極とリチウムを電解液
中で接触するだけで負極にリチウムがドーピングする性
質を有しているので、封口板内で負極酸化物の正極に対
向する面にリチウム箔を圧着し、電解液を注入し、電池
内でリチウムをドーピングさせていた。
However, in this case, the negative electrode must be filled with lithium in advance, but in general, the negative electrode is doped with lithium only by contacting the negative electrode with lithium in the electrolytic solution. A lithium foil was pressed against the surface of the negative electrode oxide facing the positive electrode, an electrolyte was injected, and lithium was doped in the battery.

発明が解決しようとする課題 上記のようなリチウムを負極合剤上に圧着する方法で
の問題点としては、負極合剤が非常に柔かいため、リチ
ウムが剥離しやすい。そのため、電池を構成していく過
程において、負極合剤からはがれてしまい、リチウムが
合剤中に完全にドープせず、遊離した状態で残存する場
合が多かった。そのため、電気容量を十分取り出すこと
ができなかったり、極端な場合、遊離リチウムによっ
て、セパレータの脇を経由して内部ショートを引き起こ
したりすることもあった。したがって信頼性に極めて乏
しい方法であった。
Problems to be Solved by the Invention The problem with the above-described method of pressing lithium onto a negative electrode mixture is that the lithium mixture is easily peeled because the negative electrode mixture is very soft. Therefore, in the process of constructing the battery, the anode mixture was often detached, and lithium was not completely doped in the mixture and remained in a free state in many cases. For this reason, sufficient electric capacity cannot be obtained, or in extreme cases, free lithium may cause an internal short circuit through the side of the separator. Therefore, the method was extremely poor in reliability.

本発明は、上記の問題点を解消し、信頼性に優れたリ
チウム二次電池を提供することを目的としたものであ
る。
An object of the present invention is to solve the above problems and to provide a highly reliable lithium secondary battery.

課題を解決するための手段 この問題を解決するために、本発明は、封口板と負極
との間に金属リチウムを介在させることにより、上記の
問題が解決されることを見い出した。さらに、種々検討
したところ、少なくともリチウムを圧着する封口板の内
面部にあらかじめカーボン塗布膜を形成しておくことに
より、より強固にリチウムが封口板に密着し、良好であ
ることがわかった。
Means for Solving the Problems In order to solve this problem, the present invention has found that the above problems can be solved by interposing metallic lithium between the sealing plate and the negative electrode. Furthermore, as a result of various studies, it was found that lithium was more firmly adhered to the sealing plate by forming a carbon coating film on the inner surface of the sealing plate to which lithium was to be pressed in advance.

作用 封口板は金属よりなるので材質的にリチウムは酸化物
に対してよりもはるかに、密着強度が大きい。そこで、
封口板にあらかじめリチウムを圧着しておき、その後負
極合剤を載置し、極解液を注入して、電池を構成したあ
とでは、丁度、負極合剤と封口板との間にリチウムがサ
ンドイッチ状に挟持されるので、リチウムが剥離するこ
となく、速かに、酸化物中にドープすることができる。
Action Since the sealing plate is made of metal, lithium has a much higher adhesive strength than oxides in material. Therefore,
Lithium is press-bonded to the sealing plate in advance, then the negative electrode mixture is placed, and the electrolyte is injected. After the battery is constructed, lithium is sandwiched between the negative electrode mixture and the sealing plate. Since it is sandwiched in a shape, lithium can be quickly doped into the oxide without exfoliation of lithium.

さらに、確実な方法として封口板内面にカーボン塗布
膜を形成しておくと、カーボン塗布膜の微細な凹凸にリ
チウムが食い込み、より強固に密着される。また、リチ
ウムが負極にドーピングすると負極が若干膨張するが、
そのため封口板側の負極合剤が封口板内面に強く圧接す
るようになり、このとき、カーボン塗布膜が存在するた
め、封口板との電気的接触がより良好となり、この点か
らも利点がある。
Furthermore, when a carbon coating film is formed on the inner surface of the sealing plate as a reliable method, lithium penetrates into the fine irregularities of the carbon coating film, and the lithium coating is firmly adhered. Also, when lithium is doped into the negative electrode, the negative electrode slightly expands,
Therefore, the negative electrode mixture on the sealing plate side comes to strongly press against the inner surface of the sealing plate, and at this time, since the carbon coating film is present, the electrical contact with the sealing plate becomes better, which is also advantageous from this point. .

これらのことより、本発明では単に遊離リチウムを防
止するだけでなく、電気的な密着度にも優れた効果を期
待できるものである。
From these facts, in the present invention, it is possible to expect not only prevention of free lithium but also an excellent effect on electrical adhesion.

実 施 例 以下、本発明の実施例を図を参照して説明する。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は正極に五酸化バナジウム、負極に五酸化ニオ
ブを用いたリチウム二次電池を示す。
FIG. 1 shows a lithium secondary battery using vanadium pentoxide for the positive electrode and niobium pentoxide for the negative electrode.

図中、1は厚さ0.25mmのステンレス鋼板を打ち抜き加
工したケース、2は同材料を同様に加工した封口板、3
はケース1と封口板2を絶縁するポリプロピレン製ガス
ケット、4は正極で五酸化バナジウム80重量部と導電材
であるアセチレンブラック10重量部、及び結着剤である
ポリ4フッ化エチレン10重量部を混練した後、外径15m
m、厚み0.8mmに加圧成形したもの、5は負極で五酸化ニ
オブ80重量部、アセチレンブラック10重量部、及びポリ
4フッ化エチレン10重量部を混練した後、外径15mm、厚
み0.5mmに加圧成したものである。6はセパレータで厚
み0.3mmのポリプロピレン製不織布である。7は外径10m
m厚み0.1mmのリチウムで5の負極と2の封口板の間にリ
チウムが介在するように封口板にリチウムを圧着した。
In the figure, 1 is a case punched out of a stainless steel plate having a thickness of 0.25 mm, 2 is a sealing plate made of the same material in the same manner, 3
Is a polypropylene gasket that insulates the case 1 and the sealing plate 2, and 4 is a positive electrode containing 80 parts by weight of vanadium pentoxide, 10 parts by weight of acetylene black as a conductive material, and 10 parts by weight of polytetrafluoroethylene as a binder. After kneading, outer diameter 15m
m, molded under pressure to a thickness of 0.8 mm, 5 is a negative electrode, after kneading 80 parts by weight of niobium pentoxide, 10 parts by weight of acetylene black, and 10 parts by weight of polytetrafluoroethylene, an outer diameter of 15 mm, a thickness of 0.5 mm This was pressurized. Reference numeral 6 denotes a polypropylene nonwoven fabric having a thickness of 0.3 mm. 7 is 10m outside diameter
Lithium was pressure-bonded to the sealing plate with lithium having a thickness of 0.1 mm so that lithium was interposed between the negative electrode 5 and the sealing plate 2.

電解液には炭酸プロピレンと1,2−ジメトキシエタン
と等容積混合溶媒に過塩素酸リチウムを1モル/の割
合で溶解したものを用いた。
As the electrolytic solution, a solution prepared by dissolving lithium perchlorate at a ratio of 1 mol / in a mixed solvent of propylene carbonate, 1,2-dimethoxyethane and equal volumes was used.

この本発明の電池をAとした。また、負極の正極に対
向する面にリチウムを圧着した従来の電池をBとした。
This battery of the present invention was designated as A. A conventional battery in which lithium was pressure-bonded to the surface of the negative electrode facing the positive electrode was designated as B.

尚、いずれの電池の大きさも直径20mm、厚さ2mmで、
容量は20mAhである。
The size of each battery is 20mm in diameter and 2mm in thickness.
The capacity is 20mAh.

これら電池を20℃において、1mAの定電流で放電した
時の1Vまでの放電電気容量を測定した。その結果を表1
に示す。
The discharge electric capacity up to 1 V when these batteries were discharged at a constant current of 1 mA at 20 ° C. was measured. Table 1 shows the results.
Shown in

次に、これら電池の組立直後の電圧不良率を表2に示
す。組立直後の電圧は正常品は1.7〜2.1Vであるが、と
くに顕著に電圧低下を示すもので、1V以下になったもの
を電圧不良品とした。
Next, Table 2 shows the voltage defect rate immediately after the assembly of these batteries. The voltage immediately after assembling is 1.7 to 2.1 V for a normal product, but shows a remarkable drop in voltage.

表1より封口板にリチウムを圧着した本発明の電池A
の方が負極合剤にリチウムを圧着した従来の電池Bに比
べ、放電電気容量は大きく、またバラツキも小さい。こ
れは、電池解析を行なった結果、封口板にリチウムを圧
着した電池はリチウムが完全に負極にドーピングしてい
るのに対して、負極合剤にリチウムを圧着した電池はリ
チウムが負極合剤から剥離し、負極に完全にドープせ
ず、遊離して残存していることが観察された。
According to Table 1, the battery A of the present invention in which lithium was pressure-bonded to the sealing plate
Is larger in discharge electric capacity and smaller in dispersion than the conventional battery B in which lithium is pressure-bonded to the negative electrode mixture. As a result of battery analysis, it was found that a battery with lithium sealed on the sealing plate had lithium completely doped into the negative electrode, whereas a battery with lithium pressed on the negative electrode mixture had lithium converted from the negative electrode mixture. It was observed that the film was peeled off and did not completely dope the negative electrode but remained free.

また、表2より、本発明の電池Aは0/100個と電圧不
良電池はないが、従来の電池Bは3/100個も電圧不良電
池が生じている。そこで、この電圧不良品を分解してみ
たところ、リチウムがセパレータの脇を経由して内部シ
ョートを引き起こしていた。
Also, from Table 2, the battery A of the present invention has 0/100 batteries and no defective batteries, but the conventional battery B has 3/100 defective batteries. Then, when this voltage defective product was disassembled, lithium was causing an internal short circuit via the side of the separator.

次に封口板内面にあらかじめカーボン塗布膜を形成し
ておき、負極と封口板の間にリチウムを介在させるよう
にカーボン塗布膜にリチウムを圧着した電池をCとし
た。カーボン塗布膜によりリチウムは、さらに強固に圧
着できた。また、電池組立直後の電池の内部抵抗を本発
明の電池Aと比較して示す。
Next, a battery in which a carbon coating film was formed in advance on the inner surface of the sealing plate and lithium was pressure-bonded to the carbon coating film so that lithium was interposed between the negative electrode and the sealing plate was designated as C. Lithium could be more firmly pressed by the carbon coating film. Also, the internal resistance of the battery immediately after battery assembly is shown in comparison with the battery A of the present invention.

表3の結果より、封口板にあらかじめカーボン塗料を
形成しておくことにより、電気的接触が良好になり、内
部抵抗も若干低くなった。
From the results in Table 3, it was found that the electrical contact was good and the internal resistance was slightly lower by forming the carbon paint on the sealing plate in advance.

また、実施例においては、負極として五酸化ニオブを
用いたが、酸化チタンを用いた場合も同様の効果が得ら
れた。
In the examples, niobium pentoxide was used as the negative electrode. However, the same effect was obtained when titanium oxide was used.

発明の効果 以上の説明から明らかなように、封口板と負極の間に
リチウムを介在させるようにリチウムを封口板に圧着す
ることにより、電気容量を十分取り出すことができ、電
圧不良率も低減でき、信頼性に優れたリチウム二次電池
を得ることができた。また、カーボン塗布膜をあらかじ
め封口板に形成しておくことにより、さらに信頼性を高
めることができた。
Effect of the Invention As is clear from the above description, by pressing lithium on the sealing plate so as to interpose lithium between the sealing plate and the negative electrode, sufficient electric capacity can be taken out and the voltage defect rate can be reduced. Thus, a highly reliable lithium secondary battery was obtained. Further, by forming the carbon coating film on the sealing plate in advance, the reliability could be further improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例における電池の縦断面図であ
る。 1……ケース、2……封口板、3……ガスケット、4…
…正極、5……負極、6……セパレータ、7……リチウ
ム。
FIG. 1 is a longitudinal sectional view of a battery according to an embodiment of the present invention. 1 ... case, 2 ... sealing plate, 3 ... gasket, 4 ...
... Positive electrode, 5 ... Negative electrode, 6 ... Separator, 7 ... Lithium.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池畠 敏彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭57−11476(JP,A) 特開 昭60−249247(JP,A) 特開 昭62−290075(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 H01M 10/40────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshihiko Ikehata 1006 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-57-11476 (JP, A) JP-A-60 -249247 (JP, A) JP-A-62-290075 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/02 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極に金属酸化物を用いるリチウム二次電
池の製造法であって、負極と負極集電体である封口板と
の間に金属リチウムを介在させることを特徴とするリチ
ウム二次電池の製造法。
1. A method for producing a lithium secondary battery using a metal oxide for a negative electrode, wherein metallic lithium is interposed between the negative electrode and a sealing plate serving as a negative electrode current collector. Battery manufacturing method.
【請求項2】金属酸化物が五酸化ニオブまたは、酸化チ
タンであることを特徴とする請求項1記載のリチウム二
次電池の製造法。
2. The method for producing a lithium secondary battery according to claim 1, wherein the metal oxide is niobium pentoxide or titanium oxide.
【請求項3】封口板内面に形成したカーボン塗布膜に金
属リチウムを圧着し、このリチウムに負極である金属酸
化物を密着させ、リチウムと酸化物を反応させてリチウ
ム負極とした請求項1記載のリチウム二次電池の製造
法。
3. A lithium negative electrode by pressurizing metallic lithium on a carbon coating film formed on the inner surface of the sealing plate, adhering a metal oxide serving as a negative electrode to the lithium, and reacting the lithium with the oxide. Of manufacturing a lithium secondary battery.
JP63233013A 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery Expired - Fee Related JP2808610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233013A JP2808610B2 (en) 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233013A JP2808610B2 (en) 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0282447A JPH0282447A (en) 1990-03-23
JP2808610B2 true JP2808610B2 (en) 1998-10-08

Family

ID=16948448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233013A Expired - Fee Related JP2808610B2 (en) 1988-09-16 1988-09-16 Manufacturing method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2808610B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347555B2 (en) * 1994-12-01 2002-11-20 キヤノン株式会社 Method for manufacturing negative electrode of lithium secondary battery
JP2000228196A (en) 1998-11-30 2000-08-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP5376800B2 (en) * 2007-01-16 2013-12-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0282447A (en) 1990-03-23

Similar Documents

Publication Publication Date Title
US6432576B1 (en) Lithium secondary battery
JP2002260739A (en) Nonaqueous electrolyte secondary battery and manufacturing method
JPH10302756A (en) Thin battery
JP2001297795A (en) Battery
JP2808610B2 (en) Manufacturing method of lithium secondary battery
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JPH10261386A (en) Battery case and battery
JPS6229071A (en) Organic electrolyte battery
US3694266A (en) Method of assembling multicell batteries comprising duplex electrode construction using continuous electrically conductive plastic carrier strip
KR100439351B1 (en) Rechargeable Lithium Polymer Battery and Method for Making the Same
JPS63168964A (en) Thin-type cell and cassette cell using thin-type cell
JPH0794211A (en) Manufacture of battery and electrode plate for battery
JP2666382B2 (en) Rechargeable battery
JP3115448B2 (en) Lithium solid electrolyte battery
JP2002324581A (en) Solid electrolyte battery
JPS63121247A (en) Negative electrode of secondary battery
JPH08293302A (en) Organic electrolytic secondary battery
JPH0896795A (en) Negative electrode for nonaqueous electrolytic secondary battery, its manufacture, and nonaqueous electrolytic secondary battery
JP2002231315A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP2000036294A (en) Battery, battery container material and manufacture of battery container material
JP3510488B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP3108142B2 (en) Non-aqueous electrolyte battery
JPH0613070A (en) Lithium secondary battery and manufacture of negative electrode for lithium secondary battery
JP2594027B2 (en) Battery
JPH09306473A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees