JP3300168B2 - Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents
Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3300168B2 JP3300168B2 JP22810994A JP22810994A JP3300168B2 JP 3300168 B2 JP3300168 B2 JP 3300168B2 JP 22810994 A JP22810994 A JP 22810994A JP 22810994 A JP22810994 A JP 22810994A JP 3300168 B2 JP3300168 B2 JP 3300168B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- negative electrode
- secondary battery
- battery
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非水電解質二次電池、
特に、電解質と一体化した負極の改良に関する。The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to improvement of a negative electrode integrated with an electrolyte.
【0002】[0002]
【従来の技術】今日、プロピレンカーボネート、γ−ブ
チロラクトン、ジメトキシエタン、テトラヒドロフラ
ン、ジオキソラン等の有機溶媒に、LiClO4、Li
BF4、LiAsF6、LiPF6、LiCF3SO3 等の
溶質を溶かして得られる電解液と、リチウム等のアルカ
リ金属を活物質とする負極を組み合わせた非水電解質電
池は、高エネルギー密度を有するため、電子時計、カメ
ラをはじめとする小型電子機器に広く用いられるように
なった。この種の非水電解質電池を充電可能にする課題
のひとつは、充電過程において負極上に析出するアルカ
リ金属の形態が、樹枝状、フィブリル状、針状という、
いわゆるデンドライトになることである。このデンドラ
イトが著しく成長すると負極と正極の内部短絡、発火と
いう危険性が増加するばかりか、以降の放電過程で溶解
させてもデンドライトの局部的溶解が進行し、一部は電
気的に極板より遊離するためすべてのデンドライトを溶
かし出すことができない。すなわち、充電(析出)量に
対する放電(溶解)量が小さくなり、充放電効率が低下
するとともに、サイクル寿命が短くなる。Nowadays, propylene carbonate, .gamma.-butyrolactone, dimethoxyethane, tetrahydrofuran, in organic solvent dioxolane, LiClO 4, Li
A non-aqueous electrolyte battery in which an electrolyte obtained by dissolving a solute such as BF 4 , LiAsF 6 , LiPF 6 , or LiCF 3 SO 3 and a negative electrode using an alkali metal such as lithium as an active material has a high energy density Therefore, it has been widely used for small electronic devices such as electronic watches and cameras. One of the issues that make this type of non-aqueous electrolyte battery rechargeable is that the form of alkali metal deposited on the negative electrode during the charging process is dendritic, fibril-like, and needle-like.
What is called a dendrite. If this dendrite grows remarkably, not only the danger of internal short circuit between the negative electrode and the positive electrode, but also the risk of ignition will increase, and even if the dendrite is dissolved in the subsequent discharge process, local dissolution of the dendrite will proceed, and part of it will be electrically All dendrites cannot be melted out due to liberation. That is, the amount of discharge (dissolution) relative to the amount of charge (precipitation) is reduced, the charge / discharge efficiency is reduced, and the cycle life is shortened.
【0003】このような、課題を解決する方法として、
電解液に代わり固形状のポリマー電解質を用いることに
よって、デンドライトの抑制を行うことが提案された
(FastIon Transport in Solids, North-Holland, New
York, 1979, 131頁)。ここで、ポリマー電解質とは、
酸素等の極性原子を分子鎖に有する高分子(例えば、ポ
リエチレンオキサイド)とこの高分子に溶解し解離する
アルカリ金属塩との混合物を指し、また、この混合物中
にはプロピレンカーボネート等の溶媒を含んでいてもよ
い。[0003] As a method of solving such a problem,
It has been proposed to control dendrites by using solid polymer electrolytes instead of electrolytes (FastIon Transport in Solids, North-Holland, New
York, 1979, p. 131). Here, the polymer electrolyte is
Refers to a mixture of a polymer having a polar atom such as oxygen in its molecular chain (for example, polyethylene oxide) and an alkali metal salt that dissolves and dissociates in the polymer. The mixture contains a solvent such as propylene carbonate. You may go out.
【0004】[0004]
【発明が解決しようとする課題】以上のようなポリマー
電解質を非水電解質二次電池に用いた場合、充放電サイ
クルにともなって電池の内部抵抗が徐々に上昇し、電解
液を用いた場合に比べてサイクル寿命が短くなるという
課題があった。これは以下の理由による。すなわち、電
池組み立て直後や充放電サイクルの初期では、リチウム
等のアルカリ金属を活物質とする負極の表面は比較的平
らであり、弾性的なポリマー電解質との密着性は良好で
あるため、負極とポリマー電解質の界面抵抗は小さい。
しかし、充放電サイクルが進行すると、負極の表面は局
部的なデンドライトの成長によって平らではなくなり、
デンドライトの各成長点を中心としてポリマー電解質が
持ち上げられ、負極とポリマー電解質が剥離するように
なる。その結果、負極とポリマー電解質の界面抵抗は増
大し電池の充放電は困難になる。本発明は、このような
従来の欠点を除去するものであり、充放電サイクルを繰
り返しても負極とポリマー電解質の界面抵抗は増加せ
ず、負極上でのデンドライトの発生が抑制されるポリマ
ー電解質と負極の一体化物を得ることによって、信頼性
の大きい非水電解質二次電池を提供することを目的とす
る。When the above-mentioned polymer electrolyte is used in a non-aqueous electrolyte secondary battery, the internal resistance of the battery gradually increases with the charge / discharge cycle, and when the electrolyte is used. There was a problem that the cycle life was shorter than that. This is for the following reason. That is, immediately after the battery is assembled or at the beginning of the charge / discharge cycle, the surface of the negative electrode using an alkali metal such as lithium as an active material is relatively flat, and the adhesion to the elastic polymer electrolyte is good. The interfacial resistance of the polymer electrolyte is low.
However, as the charge / discharge cycle progresses, the surface of the negative electrode becomes uneven due to local dendrite growth,
The polymer electrolyte is lifted around each of the dendrite growth points, and the negative electrode and the polymer electrolyte are separated. As a result, the interface resistance between the negative electrode and the polymer electrolyte increases, making it difficult to charge and discharge the battery. The present invention is to eliminate such a conventional disadvantage, and even if the charge and discharge cycle is repeated, the interface resistance between the negative electrode and the polymer electrolyte does not increase, and the generation of dendrites on the negative electrode is suppressed. An object is to provide a highly reliable nonaqueous electrolyte secondary battery by obtaining an integrated negative electrode.
【0005】[0005]
【課題を解決するための手段】本発明の非水電解質二次
電池用負極は、表面積が10000cm2/g以上のア
ルカリ金属箔および前記アルカリ金属箔の表面に密に一
体化した紫外線または熱によって硬化させるアルカリイ
オン伝導性ポリマー電解質を有する。また、本発明の非
水電解質二次電池用負極の製造方法は、アルカリ金属箔
からなる電極を電気化学的に溶解して前記電極表面上に
表面積が10000cm2/g以上の凹凸を形成し、し
かる後、紫外線または熱によって硬化するポリマー電解
質用材料を前記電極表面上で硬化させるものである。さ
らに、本発明の非水電解質二次電池は、上記のようにし
てアルカリイオン伝導性のポリマー電解質と強固に一体
化された負極を具備する。ここで、一体化の定義である
が、負極表面積の90%以上がポリマー電解質によって
覆われている(濡れている)場合を指し、強固な一体性
とは、ポリマー電解質を負極表面から事実上電解質の痕
跡無しに剥がすことができないことをいう。This onset Ming nonaqueous negative electrode for electrolyte secondary battery SUMMARY OF THE INVENTION may, ultraviolet light or heat surface area is closely integrated with the surface of 10000 cm 2 / g or more alkali metal foils and the alkali metal foil Having an alkali ion conductive polymer electrolyte cured by Further, the method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention comprises the steps of electrochemically dissolving an electrode made of an alkali metal foil , and forming an uneven surface having a surface area of 10,000 cm 2 / g or more on the electrode surface. Then , a polymer electrolyte material that is cured by ultraviolet light or heat is cured on the electrode surface. Further, the non-aqueous electrolyte secondary battery of the present invention includes the negative electrode firmly integrated with the alkali ion-conductive polymer electrolyte as described above. Here, the definition of integration refers to a case where 90% or more of the negative electrode surface area is covered (wetted) by the polymer electrolyte, and the strong integration means that the polymer electrolyte is substantially separated from the negative electrode surface by the electrolyte. Can not be peeled off without traces.
【0006】[0006]
【作用】アルカリ金属を活物質とする負極の表面上に凹
凸が形成されていると、硬化前のポリマー電解質用材料
(溶液)は容易に電極凹部に染み込んでいき、負極表面
全体がポリマー電解質用材料で隙間なく濡れる。この
後、ポリマー電解質材料を重合等によって硬化すれば、
強固なポリマー電解質と負極の一体化物を得ることがで
きる。ここで、ポリマー電解質と負極が強固に密着する
理由は明かではないが、以下のように推察される。第一
に、負極表面上に凹凸が形成されると、負極の表面積が
増大する。このため、ポリマー電解質と負極の物理的引
力が増加することで強固な一体性が得られることにな
る。第二に、高分子は硬化前と硬化後でその嵩密度を大
きく変化させる。特に、イオン伝導性のポリマー電解質
材料は、硬化することで嵩密度が減少、すなわち、体積
を増大させる。したがって、凹部に染み込んでいたポリ
マー電解質用材料は、硬化によって凹部内で膨張しよう
とし、その結果、ポリマー電解質の凸部と負極の凹部に
よる鍵と鍵穴の関係のようなものが形成されることでポ
リマー電解質と負極の強固な一体性が得られることにな
る。以上のような作用は、アルカリ金属を活物質とする
負極の表面がミクロ〜サブミクロン以下の微細な凹凸を
もつ場合にのみ得られ、負極の表面積が10000cm
2/g 以上である必要がある。これは、ポリマー電解質
と負極の物理的結合力が小さいので、全体としての結合
力を高めるには桁違いの表面積にする必要があるためで
ある。When the surface of the negative electrode containing an alkali metal as an active material has irregularities, the material (solution) for the polymer electrolyte before curing easily penetrates into the concave portions of the electrode, and the entire negative electrode surface is used for the polymer electrolyte. Wet without gaps with material. Thereafter, if the polymer electrolyte material is cured by polymerization or the like,
An integrated product of a strong polymer electrolyte and a negative electrode can be obtained. Here, the reason why the polymer electrolyte and the negative electrode firmly adhere to each other is not clear, but is presumed as follows. First, when irregularities are formed on the negative electrode surface, the surface area of the negative electrode increases. For this reason, by increasing the physical attraction between the polymer electrolyte and the negative electrode, a strong integration can be obtained. Second, polymers significantly change their bulk density before and after curing. In particular, the ion conductive polymer electrolyte material hardens to reduce the bulk density, that is, increase the volume. Therefore, the material for the polymer electrolyte that has permeated into the concave portion tends to expand in the concave portion due to curing, and as a result, a material such as a key-keyhole relationship formed by the convex portion of the polymer electrolyte and the concave portion of the negative electrode is formed. Strong integration between the polymer electrolyte and the negative electrode is obtained. The above action is obtained only when the surface of the negative electrode using an alkali metal as an active material has fine irregularities of micro to sub-micron or less, and the surface area of the negative electrode is 10,000 cm.
2 / g or more. This is because the physical bonding force between the polymer electrolyte and the negative electrode is small, so that it is necessary to increase the surface area by an order of magnitude to increase the bonding force as a whole.
【0007】[0007]
【実施例】以下、本発明の実施例について説明する。な
お、実施例はすべてアルゴンガス雰囲気下で行った。ま
た、負極活物質のアルカリ金属としてリチウムを用いた
が、他のアルカリ金属やアルカリ金属との合金を使用し
ても同様な結果が得られる。 [実施例1]種々の表面積のリチウム電極箔を作製する
ため、LiClO4 を1.0モル/lの濃度で溶解した
プロピレンカーボネート溶液中で交流電流を流しリチウ
ム表面を溶解した。リチウム箔には300μm厚のもの
を用い、電流密度を2mA/cm2、アノード時間を1
分、カソード時間を30秒に設定し、アノード溶解とカ
ソード析出を1サイクルとし、このサイクル数を変化さ
せることで表面積が130〜58000cm2/g のリ
チウム電極箔を得た。ここで、130cm2/g は未処
理の場合の表面積である。ポリマー電解質材料は以下の
ようにして調製した。平均重量分子量8000のポリエ
チレングリコールジアクリレートとLiClO4のプロ
ピレンカーボネート溶液(濃度1M)とを重量比で4/
6の割合で混合した。これに、紫外線硬化開始剤(チバ
ガイギー社製イルガキュアー651)を100ppm添
加して、ポリマー電解質用材料とした。Embodiments of the present invention will be described below. Note that all the examples were performed in an argon gas atmosphere. Although lithium was used as the alkali metal of the negative electrode active material, similar results can be obtained by using other alkali metals or alloys with alkali metals. Example 1 In order to produce lithium electrode foils having various surface areas, an alternating current was passed in a propylene carbonate solution in which LiClO 4 was dissolved at a concentration of 1.0 mol / l to dissolve the lithium surface. A lithium foil having a thickness of 300 μm was used, the current density was 2 mA / cm 2 , and the anode time was 1
Minute and cathode time were set to 30 seconds, and anode dissolution and cathode deposition were defined as one cycle. By changing the number of cycles, a lithium electrode foil having a surface area of 130 to 58000 cm 2 / g was obtained. Here, 130 cm 2 / g is the surface area in the case of untreated. The polymer electrolyte material was prepared as follows. A polyethylene glycol diacrylate having an average weight molecular weight of 8000 and a propylene carbonate solution of LiClO 4 (concentration: 1 M) were mixed at a weight ratio of 4 /
6 were mixed. To this, 100 ppm of an ultraviolet curing initiator (Irgacure 651 manufactured by Ciba Geigy) was added to obtain a polymer electrolyte material.
【0008】以上のように作製した表面が凹凸のリチウ
ム電極箔上にポリマー電解質用材料を流し込み、ポリマ
ー電解質用材料の面に対して、45mW/cm2 、3分
間紫外線を照射しポリマー電解質用材料を硬化させたと
ころ、リチウム電極箔とポリマー電解質の合計で厚さが
約600μmの厚みのポリマー電解質・リチウム電極箔
一体化物が得られた。このようにして作製したポリマー
電解質・リチウム電極箔一体化物のすべてにおいて、光
学顕微鏡で観察したところ、ポリマー電解質とリチウム
電極箔の間には気泡はなく、リチウム電極箔の表面は濡
れていることが確認された。[0008] A polymer electrolyte material is poured onto the lithium electrode foil having the uneven surface prepared as described above, and the surface of the polymer electrolyte material is irradiated with ultraviolet rays at 45 mW / cm 2 for 3 minutes to irradiate the polymer electrolyte material. As a result, an integrated polymer electrolyte / lithium electrode foil having a thickness of about 600 μm in total of the lithium electrode foil and the polymer electrolyte was obtained. Observation with an optical microscope of all of the polymer electrolyte / lithium electrode foil integrated bodies produced in this way revealed that there were no bubbles between the polymer electrolyte and the lithium electrode foil, and that the surface of the lithium electrode foil was wet. confirmed.
【0009】次に、ポリマー電解質・リチウム電極箔一
体化物の各々について、ピンセットでポリマー電解質部
分を挟みポリマー電解質を剥離しようとしたところ、リ
チウム表面を電気化学的に溶解しなかった表面積が13
0cm2/g のものについては、容易にポリマー電解質
が約300μmのフィルムとして剥がれた。一方、表面
積が58000cm2/g のリチウム電極箔では、ポリ
マー電解質は容易には剥がれず、無理に剥がそうとする
と、ポリマー電解質はリチウム表面の凹凸部にしっかり
と固定された部分を残して2枚に分離し、リチウム表面
からポリマー電解質の痕跡を残さずにポリマー電解質を
剥がすことはできなかった。同様な操作を種々の表面積
をもったリチウム箔に対して施し、リチウム表面から痕
跡を残さずにポリマー電解質を剥がすことができるかを
検討した。その結果を図1に示す。リチウム表面からポ
リマー電解質の痕跡を残さずに剥がすことができたの
は、表面積が約8000cm2/g までであり、800
0〜10000cm2/g では一部痕跡を残さずに剥離
可能、10000cm2/g 以上ではまったく剥離がで
きなかった。以上のことから、強固なポリマー電解質と
リチウム電極箔の一体化物は表面積が10000cm2
/g 以上で得られることがわかる。Next, for each of the polymer electrolyte / lithium electrode foil integrated material, when the polymer electrolyte was to be peeled by sandwiching the polymer electrolyte portion with tweezers, the surface area of the lithium surface not electrochemically dissolved was 13%.
In the case of 0 cm 2 / g, the polymer electrolyte was easily peeled off as a film of about 300 μm. On the other hand, in the case of a lithium electrode foil having a surface area of 58000 cm 2 / g, the polymer electrolyte is not easily peeled off. And the polymer electrolyte could not be separated from the lithium surface without leaving any trace of the polymer electrolyte. The same operation was performed on lithium foils having various surface areas, and it was examined whether the polymer electrolyte could be peeled off from the lithium surface without leaving any trace. The result is shown in FIG. The surface area up to about 8000 cm 2 / g was able to be peeled from the lithium surface without leaving a trace of the polymer electrolyte,
At 0 to 10,000 cm 2 / g, peeling was possible without leaving any trace, and at 10,000 cm 2 / g or more, no peeling was possible. From the above, the integrated product of the strong polymer electrolyte and the lithium electrode foil has a surface area of 10,000 cm 2.
/ G or more.
【0010】[実施例2]本実施例では、高い表面積を
もつ電極とポリマー電解質が強固に一体化した電池をこ
れまでの電池組み立て手順を大幅に変えることなく容易
に作製できることを示す。実施例1で用いたポリマー電
解質用材料に添加した紫外線硬化開始剤の代わりに熱硬
化開始剤ベンゾイルパーオキサイドを用いた。このよう
にして調製したポリマー電解質用材料を用いて、図2に
示すような偏平型電池を構成した。以下、図2に基づき
説明する。正極1は、LiMn2O4 粉末、カーボンブ
ラックおよびポリ四弗化エチレン樹脂粉末を混合し、チ
タンのエキスパンドメタル集電体2をスポット溶接した
正極缶3に加圧成型したものに、上記のポリマー電解質
用材料を真空含浸させた。負極4は、円板状に打ち抜い
たリチウムシートをニッケルのエキスパンドメタル5を
スポット溶接した封口板6に圧着した。セパレータ7に
は、ポリプロピレン製多孔質膜を用い、前記のポリマー
電解質用材料を注液後、正極缶3と封口板6をガスケッ
ト8を介して組み合わせ偏平型電池を構成した。次に、
このようにして組み立てた電池を25℃において、2.
0mA/cm2 の電流密度、放電下限電圧2.0V、充
電上限電圧3.5Vの条件で充放電サイクルを3回繰り
返した後、電池を80℃に温め、電池内でポリマー電解
質用材料を硬化させポリマー電解質とした。電池のいく
つかをポリマー電解質用材料を硬化させる前後で分解し
たところ、リチウム負極の表面積は17000cm2/
g であり、実施例1と同様にポリマー電解質とリチウ
ム負極は一体化していることが確かめられた。 [比較例1]セパレータにポリマー電解質用材料を染み
込ませ、80℃であらかじめ硬化させたセパレータ・ポ
リマー電解質一体化物をリチウム負極に貼り合わせた以
外は実施例2と同様にして電池を組み立てた。Embodiment 2 In this embodiment, it is shown that a battery in which an electrode having a high surface area and a polymer electrolyte are firmly integrated can be easily manufactured without greatly changing the conventional battery assembly procedure. In place of the ultraviolet curing initiator added to the polymer electrolyte material used in Example 1, a thermosetting initiator benzoyl peroxide was used. A flat battery as shown in FIG. 2 was constructed using the polymer electrolyte material thus prepared. Hereinafter, description will be given based on FIG. The positive electrode 1 was prepared by mixing LiMn 2 O 4 powder, carbon black and polytetrafluoroethylene resin powder, and pressing the expanded metal current collector 2 made of titanium into a positive electrode can 3 by spot welding. The electrolyte material was vacuum impregnated. The negative electrode 4 was obtained by pressing a lithium sheet punched into a disc shape onto a sealing plate 6 to which a nickel expanded metal 5 was spot-welded. A porous battery made of polypropylene was used as the separator 7, and after pouring the above-mentioned polymer electrolyte material, the positive electrode can 3 and the sealing plate 6 were combined via the gasket 8 to form a flat battery. next,
The battery assembled in this manner was heated at 25 ° C.
After repeating a charge / discharge cycle three times under the conditions of a current density of 0 mA / cm 2 , a discharge lower limit voltage of 2.0 V, and a charge upper limit voltage of 3.5 V, the battery is warmed to 80 ° C., and the polymer electrolyte material is cured in the battery. This was used as a polymer electrolyte. When some of the batteries were decomposed before and after the material for the polymer electrolyte was cured, the surface area of the lithium anode was 17000 cm 2 /
g, and it was confirmed that the polymer electrolyte and the lithium anode were integrated as in Example 1. Comparative Example 1 A battery was assembled in the same manner as in Example 2 except that the separator was impregnated with a material for a polymer electrolyte and a separator-polymer electrolyte integrated body previously cured at 80 ° C. was bonded to a lithium anode.
【0011】以上のように構成した実施例2の電池と比
較例1の電池を25℃において、2.0mA/cm2 の
電流密度、放電下限電圧2.0V、充電上限電圧3.5
Vの条件で充放電サイクルを繰り返し、各サイクル数に
おける放電容量を求め、放電容量が1サイクル目の容量
の半分になったところをサイクル寿命とした。図3は、
各サイクルにおける放電容量をプロットしたものであ
る。図3から、実施例2の電池は、比較例1の電池より
サイクル寿命が著しく改善されていることがわかる。こ
れは、本発明の電池では、充電時に負極上におけるデン
ドライトの発生が抑制され負極の充放電効率が向上し、
結果として、負極のサイクル寿命が伸びたためである。
比較例の電池のサイクル寿命が伸びなかったのは、あら
かじめ硬化したポリマー電解質をリチウム負極に貼り合
わせているため、それらの密着強度が小さく、充放電サ
イクルによりポリマー電解質とリチウム負極の界面がデ
ンドライトの発生により剥離し、電池内の抵抗が増加す
るためである。The batteries of Example 2 and Comparative Example 1 configured as described above were subjected to a current density of 2.0 mA / cm 2 , a discharge lower limit voltage of 2.0 V, and a charge upper limit voltage of 3.5 at 25 ° C.
The charge / discharge cycle was repeated under the condition of V, the discharge capacity at each cycle number was determined, and the point at which the discharge capacity became half of the capacity at the first cycle was defined as the cycle life. FIG.
It is a plot of the discharge capacity in each cycle. FIG. 3 shows that the battery of Example 2 had a significantly improved cycle life than the battery of Comparative Example 1. This is because, in the battery of the present invention, the generation of dendrites on the negative electrode during charging is suppressed, and the charge and discharge efficiency of the negative electrode is improved,
As a result, the cycle life of the negative electrode was extended.
The cycle life of the battery of the comparative example did not increase because the previously cured polymer electrolyte was bonded to the lithium anode, so that their adhesion strength was small, and the interface between the polymer electrolyte and the lithium anode was dendritic due to the charge / discharge cycle. This is because they are peeled off by the occurrence and the resistance inside the battery increases.
【0012】[実施例3]実施例2で用いた熱硬化開始
剤を添加したポリマー電解質用材料を用いて、実施例2
と同様な偏平型電池を構成した。この電池を25℃にお
いて、2.0mA/cm2 の電流密度、放電下限電圧
2.0V、充電上限電圧3.5Vの条件で充放電サイク
ルを3回繰り返した後、電池を80℃に温め、電池内で
ポリマー電解質用材料を硬化させポリマー電解質とし
た。 [比較例2]リチウム負極表面をステンレス鋼からなる
60メッシュの網で適宜押さえ、表面積が18000c
m2/g の凹凸状にし、電池の充放電サイクルを行わず
にポリマー電解質用材料を硬化させ、ポリマー電解質と
負極を一体化させた。Example 3 Example 2 was repeated using the material for a polymer electrolyte to which the thermosetting initiator used in Example 2 was added.
A flat battery similar to the above was constructed. The battery was subjected to three charge / discharge cycles at 25 ° C. under the conditions of a current density of 2.0 mA / cm 2, a lower discharge voltage of 2.0 V, and a upper charge voltage of 3.5 V, and then the battery was warmed to 80 ° C. The polymer electrolyte material was cured in the battery to obtain a polymer electrolyte. [Comparative Example 2] The surface of a lithium negative electrode was appropriately pressed with a 60-mesh net made of stainless steel to have a surface area of 18000c.
The polymer electrolyte material was cured without forming a concave / convex shape of m 2 / g without performing a charge / discharge cycle of the battery to integrate the polymer electrolyte and the negative electrode.
【0013】以上のように構成した実施例3の電池と比
較例2の電池を25℃において、2.0mA/cm2 の
電流密度、放電下限電圧2.0V、充電上限電圧3.5
Vの条件で充放電サイクルを繰り返し、各サイクル数に
おける放電容量を求めた。図4は、各サイクルにおける
電池の放電容量をプロットしたものである。図4から、
比較例2の電池は、ポリマー電解質を貼り合わせた比較
例1よりはサイクル特性が大幅に向上するものの、実施
例3の電池よりはサイクル特性が劣る。これは、実施例
の電池では、負極表面の凹凸は電気化学的な溶解で形成
されたものであり、その凹凸の分布や深さは比較的均一
であるために、充放電サイクルでのポリマー電解質と負
極との界面の分離が少なく、デンドライトの発生が抑制
されるためである。これに対し、比較例2の電池におけ
る負極表面の凹凸は、ばらつきが大きくポリマー電解質
と負極との界面の接着強度もまばらなため、デンドライ
トが強度の弱いところで発生し充放電効率が低下するた
めである。The batteries of Example 3 and Comparative Example 2 configured as described above were subjected to a current density of 2.0 mA / cm 2 , a discharge lower limit voltage of 2.0 V, and a charge upper limit voltage of 3.5 at 25 ° C.
The charge / discharge cycle was repeated under the condition of V, and the discharge capacity at each cycle number was determined. FIG. 4 plots the discharge capacity of the battery in each cycle. From FIG.
Although the cycle characteristics of the battery of Comparative Example 2 were significantly improved as compared with Comparative Example 1 in which the polymer electrolyte was bonded, the cycle characteristics were inferior to the battery of Example 3. This is because, in the battery of Example, the unevenness on the negative electrode surface was formed by electrochemical dissolution, and the distribution and depth of the unevenness were relatively uniform. This is because there is little separation at the interface between the anode and the negative electrode, and the generation of dendrites is suppressed. On the other hand, the unevenness on the surface of the negative electrode in the battery of Comparative Example 2 has a large variation and the adhesive strength at the interface between the polymer electrolyte and the negative electrode is sparse, so that the dendrite is generated at a low strength and the charge / discharge efficiency is reduced. is there.
【0014】[0014]
【発明の効果】以上のように本発明によれば、充電時に
負極上におけるデンドライトの発生が少なく充放電効率
が向上するので、サイクル寿命の長い、信頼性の大きい
非水電解質二次電池が得られる。また、電池構成後、予
備的な充放電サイクルを行うことで所定の表面積の凹凸
を有する負極とすることができ、ポリマー電解質用材料
をその時点で硬化させれば、通常の組み立て手順を大幅
に変えることなく容易にポリマー電解質電池を作製する
ことができる。As described above, according to the present invention, the generation of dendrites on the negative electrode during charging is small and the charge / discharge efficiency is improved, so that a highly reliable nonaqueous electrolyte secondary battery having a long cycle life can be obtained. Can be In addition, after the battery is constructed, a preliminary charge / discharge cycle can be performed to obtain a negative electrode having irregularities with a predetermined surface area.If the material for the polymer electrolyte is cured at that point, the normal assembly procedure can be greatly reduced. A polymer electrolyte battery can be easily manufactured without any change.
【図1】本発明の実施例における負極の表面積とポリマ
ー電解質の密着強度を表した図である。FIG. 1 is a diagram showing the surface area of a negative electrode and the adhesion strength of a polymer electrolyte in an example of the present invention.
【図2】本発明の実施例に用いた偏平型電池の縦断面図
である。FIG. 2 is a longitudinal sectional view of a flat type battery used in an example of the present invention.
【図3】実施例2および比較例1の電池の各サイクルに
おける放電容量をプロットした図である。FIG. 3 is a diagram plotting the discharge capacities of the batteries of Example 2 and Comparative Example 1 in each cycle.
【図4】実施例3および比較例2の電池の各サイクルに
おける放電容量をプロットした図である。FIG. 4 is a diagram in which the discharge capacities of the batteries of Example 3 and Comparative Example 2 in each cycle are plotted.
1 正極 2 正極集電体 3 正極缶 4 負極 5 負極集電体 6 封口板 7 セパレータ 8 ガスケット Reference Signs List 1 positive electrode 2 positive electrode current collector 3 positive electrode can 4 negative electrode 5 negative electrode current collector 6 sealing plate 7 separator 8 gasket
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−223159(JP,A) 特開 昭62−296376(JP,A) 特開 平2−295070(JP,A) 特表 平4−507171(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/04 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-223159 (JP, A) JP-A-62-296376 (JP, A) JP-A-2-295070 (JP, A) 507171 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02 H01M 4/04 H01M 10/40
Claims (3)
ルカリ金属箔および前記アルカリ金属箔の表面に密に一
体化した紫外線または熱によって硬化させるアルカリイ
オン伝導性ポリマー電解質を有する非水電解質二次電池
用負極。1. A non-aqueous electrolyte secondary battery comprising an alkali metal foil having a surface area of 10,000 cm 2 / g or more and an alkali ion conductive polymer electrolyte which is tightly integrated with the surface of the alkali metal foil and cured by ultraviolet light or heat. Negative electrode.
的に溶解して前記電極表面上に表面積が10000cm
2/g以上の凹凸を形成し、しかる後、紫外線または熱
によって硬化するポリマー電解質用材料を前記電極表面
上で硬化させることを特徴とする非水電解質二次電池用
負極の製造方法。2. An electrode made of an alkali metal foil is electrochemically dissolved to have a surface area of 10,000 cm on the electrode surface.
2 / g or more irregularities are formed, and then UV or heat
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising curing a material for a polymer electrolyte that cures on the electrode surface.
オン伝導性のポリマー電解質を有する負極を具備する非
水電解質二次電池。3. A positive electrode, and a nonaqueous electrolyte secondary battery having a negative electrode having a claim 1 A Rukariion conductive polymer electrolyte according.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22810994A JP3300168B2 (en) | 1994-09-22 | 1994-09-22 | Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22810994A JP3300168B2 (en) | 1994-09-22 | 1994-09-22 | Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0896795A JPH0896795A (en) | 1996-04-12 |
JP3300168B2 true JP3300168B2 (en) | 2002-07-08 |
Family
ID=16871352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22810994A Expired - Fee Related JP3300168B2 (en) | 1994-09-22 | 1994-09-22 | Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3300168B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69830712T2 (en) * | 1997-04-23 | 2005-12-15 | Japan Storage Battery Co. Ltd., Kyoto | ELECTRODE AND BATTERY |
JP3475759B2 (en) * | 1997-12-11 | 2003-12-08 | 松下電器産業株式会社 | Non-aqueous electrolyte secondary battery |
JP5598752B2 (en) * | 2010-03-26 | 2014-10-01 | 株式会社ニコン | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
KR101867805B1 (en) * | 2016-06-29 | 2018-06-15 | 한밭대학교 산학협력단 | Metal electrode with patterned surface morphology for batteries and preparation method the same |
CN112635842B (en) * | 2020-12-24 | 2024-08-02 | 蜂巢能源科技有限公司 | Solid-state battery and processing method thereof |
-
1994
- 1994-09-22 JP JP22810994A patent/JP3300168B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0896795A (en) | 1996-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2018444C (en) | Method for producing solid state electrochemical laminar cell utilizing cathode rolling step | |
JP3279091B2 (en) | Organic electrolyte lithium secondary battery and method for producing separator thereof | |
JP4014816B2 (en) | Lithium polymer secondary battery | |
US7273503B2 (en) | Lithium polymer secondary battery and method for manufacturing the same | |
CA2250565A1 (en) | Method of preparing electrodes | |
JPH08329983A (en) | Lithium battery | |
EP0777287B1 (en) | Non-aqueous electrolyte secondary battery | |
JP3854382B2 (en) | Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery | |
JP3312836B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH10241670A (en) | Electrode for nonaqueous electrolytic secondary battery and manufacture thereof | |
JP4163295B2 (en) | Gel-like solid electrolyte battery | |
JP2001236945A (en) | Lithium battery electrode, its manufacturing method, and battery using the same | |
JP3300168B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP3879140B2 (en) | Lithium polymer secondary battery | |
JP4193248B2 (en) | Gel electrolyte battery | |
JPH06260168A (en) | Lithium secondary battery | |
JPH06310126A (en) | Nonaquous electrolytic secondary battery | |
JP2004071405A (en) | Bipolar battery | |
JP2004039443A (en) | Battery and its manufacturing method | |
JP3622276B2 (en) | Polymer electrolyte / lithium battery and method of manufacturing the electrode | |
KR102406390B1 (en) | Method of preparing lithium metal negative electrode, lithium metal negative electrode prepared by the method, and lithium secondary battery comprising the smae | |
JPH10261437A (en) | Polymer electrolyte and lithium polymer battery using it | |
JP3407507B2 (en) | Polymer electrolyte and lithium battery | |
US5772702A (en) | Method of preparing electrochemical cells | |
JP3994496B2 (en) | Lithium ion secondary battery and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |