JP3279091B2 - Organic electrolyte lithium secondary battery and method for producing separator thereof - Google Patents

Organic electrolyte lithium secondary battery and method for producing separator thereof

Info

Publication number
JP3279091B2
JP3279091B2 JP21712994A JP21712994A JP3279091B2 JP 3279091 B2 JP3279091 B2 JP 3279091B2 JP 21712994 A JP21712994 A JP 21712994A JP 21712994 A JP21712994 A JP 21712994A JP 3279091 B2 JP3279091 B2 JP 3279091B2
Authority
JP
Japan
Prior art keywords
separator
lithium
organic electrolyte
electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21712994A
Other languages
Japanese (ja)
Other versions
JPH07220761A (en
Inventor
健一 森垣
紀子 兜
和典 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21712994A priority Critical patent/JP3279091B2/en
Publication of JPH07220761A publication Critical patent/JPH07220761A/en
Application granted granted Critical
Publication of JP3279091B2 publication Critical patent/JP3279091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムまたはリチウ
ム合金を負極活物質とする有機電解液リチウム二次電池
に関するものであり、詳しくは、この電池のセパレータ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte lithium secondary battery using lithium or a lithium alloy as a negative electrode active material, and more particularly to a separator for such a battery.

【0002】[0002]

【従来の技術】リチウムまたはリチウム合金を負極活物
質とし、有機電解液を用いるリチウム二次電池は、水溶
液系の二次電池に比べてエネルギー密度が高く、かつ低
温特性が優れていることから注目を集めている。
2. Description of the Related Art A lithium secondary battery using lithium or a lithium alloy as a negative electrode active material and using an organic electrolyte has attracted attention because of its high energy density and excellent low-temperature characteristics as compared with an aqueous secondary battery. Are gathering.

【0003】しかしながら、充電によって負極上に析出
する活性なリチウムが電解液である有機溶媒と反応する
ことや、析出したリチウムがデンドライト状に成長し、
溶媒と反応するために絶縁層が形成されて電子伝導性の
ないリチウムが生成する(R.Selim and Bro,J.Electroc
hem.Soc,121,1457(1974)など)ことにより、リチウム負
極の充放電効率が悪いという問題点がある。また、デン
ドライト状に成長したリチウムがセパレータを貫通して
電池の内部短絡を発生するなどの問題点があり、実用的
に十分なリチウム二次電池は得られていない。
However, active lithium deposited on the negative electrode upon charging reacts with an organic solvent as an electrolyte, or the deposited lithium grows in dendrite form,
An insulating layer is formed due to the reaction with the solvent to form lithium without electron conductivity (R. Selim and Bro, J. Electroc
hem. Soc, 121, 1457 (1974)), there is a problem that the charge and discharge efficiency of the lithium anode is poor. Further, there is a problem that lithium grown in a dendrite shape penetrates through the separator to cause an internal short circuit of the battery, and a practically sufficient lithium secondary battery has not been obtained.

【0004】デンドライト状のリチウムの発生は充電電
流密度と相関があり、充電電流密度が大きいとデンドラ
イト状のリチウムが発生しやすいことから、一般にリチ
ウム二次電池では充電電流密度を小さくするために極板
面積を大きくし、薄い極板とセパレータを渦巻き状に巻
回して電池構成が行われている。しかし、極板表面が平
滑でないことなどから反応の局在化が起こり、デンドラ
イト状のリチウムが発生することがある。このようなリ
チウム負極に発生したデンドライト状のリチウムは、薄
膜で多孔質なセパレータの微細な孔を貫通して内部短絡
状態となる。そのため、電池の性能が損われるばかりで
なく、最悪の場合には発熱、発火に至ることもある。
[0004] The generation of dendritic lithium has a correlation with the charging current density, and when the charging current density is large, dendritic lithium is easily generated. A battery configuration is performed by enlarging a plate area and spirally winding a thin electrode plate and a separator. However, the localization of the reaction may occur due to the uneven surface of the electrode plate and the like, and dendritic lithium may be generated. The dendrite-like lithium generated in such a lithium negative electrode penetrates the fine holes of the thin and porous separator to cause an internal short circuit. Therefore, not only the performance of the battery is impaired, but also in the worst case, heat generation and ignition may occur.

【0005】この問題を解決するために、極板の縁部か
らの短絡を防止する手段として、特開平3−12967
8号公報には正極の幅をリチウム負極の幅よりも広く
し、かつ負極の縁部に対面する正極の縁部をその厚みと
同じ厚みの絶縁性の部材で被覆することが提案されてい
る。また、特開平4−51473号公報には正極の周囲
を電解液に不溶性で、かつ電気絶縁性の物質でシールす
ることが開示されている。
To solve this problem, Japanese Patent Application Laid-Open No. HEI 3-129667 discloses a means for preventing a short circuit from an edge of an electrode plate.
No. 8 proposes making the width of the positive electrode wider than the width of the lithium negative electrode, and covering the edge of the positive electrode facing the edge of the negative electrode with an insulating member having the same thickness as that of the negative electrode. . Further, Japanese Patent Application Laid-Open No. 4-51473 discloses that the periphery of a positive electrode is sealed with a substance that is insoluble in an electrolytic solution and is electrically insulating.

【0006】しかしながら、上記の手法を用いることに
より、製造工程が複雑になること、活物質の充填容量が
小さくなること、さらに正極板の周辺部の密着強度の改
良が不十分であるため充放電サイクル中の正極合剤の脱
落による内部短絡を防止できないことなどの問題点があ
り、いずれも十分な改良に至っていない。
[0006] However, the use of the above method complicates the manufacturing process, reduces the filling capacity of the active material, and inadequately improves the adhesion strength at the periphery of the positive electrode plate. There are problems such as the inability to prevent an internal short circuit due to the drop of the positive electrode mixture during the cycle, and none of them has been sufficiently improved.

【0007】さらに、特開平1−319250号公報に
は、正極合剤微粒子がセパレータを貫通することを防止
するために、セパレータにポリアクリルアミドなどイオ
ン透過性高分子を塗布することが開示されている。しか
し、ポリアクリルアミドなどは有機電解液に溶解しやす
く、高分子層が蜜に形成されれば高抵抗となり、電池特
性に悪影響を与える。また、特開平2−162651号
公報には極板群を巻回する構成の電池において、構成時
の不良を低減することを目的として、極板上に固体高分
子電解質フィルムを一体形成することが開示されてい
る。しかし、固体高分子電解質フィルムの活物質である
リチウムやリチウム合金との反応性や機械的強度などの
点で問題がある。米国特許5,281,491号公報
に、物性の異なる多層のマイクロポーラスフィルムをセ
パレータとして用いることが開示されているが、電池構
成、工程上で複雑となる。
Further, JP-A-1-319250 discloses that an ion-permeable polymer such as polyacrylamide is applied to a separator in order to prevent fine particles of a positive electrode mixture from passing through the separator. . However, polyacrylamide and the like are easily dissolved in the organic electrolyte, and if the polymer layer is formed to be honey, the resistance becomes high, which adversely affects battery characteristics. Japanese Patent Application Laid-Open No. Hei 2-162652 discloses that a solid polymer electrolyte film is integrally formed on an electrode plate in a battery having a configuration in which an electrode group is wound, for the purpose of reducing defects in the configuration. It has been disclosed. However, there is a problem in terms of reactivity with lithium or a lithium alloy as an active material of the solid polymer electrolyte film, mechanical strength, and the like. U.S. Pat. No. 5,281,491 discloses that a multi-layered microporous film having different physical properties is used as a separator, but it becomes complicated in battery configuration and process.

【0008】一方、ポリマー電解質では、例えば特開平
2−291673号公報などに記載されているように、
可塑剤として有機電解液を含有させたゲル状の電解質と
することにより、イオン伝導性を飛躍的に改良できるよ
うになっている。
On the other hand, in the case of a polymer electrolyte, for example, as described in Japanese Patent Application Laid-Open No.
By using a gel electrolyte containing an organic electrolyte as a plasticizer, ionic conductivity can be dramatically improved.

【0009】またポリマー電解質の機械的強度を補強す
るために、ポリマー電解質とセパレータを複合化するこ
とも知られている。(例えば、特開平4−36959号
公報、公表特許公報平5−500880号公報など) しかしながら、ポリマー電解質を用いた場合は、正・負
極とポリマー電解質の界面が十分に接合しない、特に充
放電により、正・負極極板の膨張収縮が発生する場合
に、界面に「すき間」が生じるため、円滑な充放電反応
が進行しないという問題がある。
It is also known to combine a polymer electrolyte and a separator in order to reinforce the mechanical strength of the polymer electrolyte. However, when a polymer electrolyte is used, the interface between the positive / negative electrode and the polymer electrolyte is not sufficiently bonded, particularly due to charge / discharge. When the positive and negative electrode plates expand and contract, a "gap" is formed at the interface, which causes a problem that a smooth charge / discharge reaction does not proceed.

【0010】[0010]

【発明が解決しようとする課題】このように上記の手法
にも様々な問題点を有しており、デンドライトにより内
部短絡状態となることは防止できるが、イオン伝導性ゲ
ル電解質層単独で用いることは機械的強度が弱く、また
信頼性や低温でのイオン伝導性も不十分である点などか
ら、実用化には至っていない。
As described above, the above-mentioned method also has various problems. Although it is possible to prevent an internal short-circuit state due to dendrite, it is necessary to use the ion-conductive gel electrolyte layer alone. Has not been put into practical use due to its low mechanical strength, insufficient reliability and low-temperature ionic conductivity.

【0011】本発明はこのような問題点を解決するもの
で、リチウム負極に発生するデンドライト状のリチウム
が、セパレータを貫通して電池が内部短絡状態となるこ
とを防ぎ、安全で、信頼性の高い二次電池を提供するこ
とを目的とする。
The present invention solves such a problem, and prevents dendrite-like lithium generated in a lithium anode from penetrating through a separator to cause an internal short-circuit state of a battery, thereby ensuring safe and reliable operation. An object is to provide a high secondary battery.

【0012】[0012]

【課題を解決するための手段】これらの課題を解決する
ために本発明の有機電解液リチウム二次電池は、リチウ
ムまたはリチウム合金を活物質とする負極と、金属酸化
物を活物質とする正極と、有機電解液と、セパレータと
を電池容器内に密閉した電池において、セパレータに多
孔質薄膜を骨格としたイオン伝導性物質を用いたもので
あり、とくにオレフィン系多孔質樹脂膜とイオン伝導性
ゲル電解質とを一体化したものである。セパレータは多
孔質樹脂層とイオン伝導性ゲル電解質層の二層構造で、
セパレータの負極と接する面をイオン伝導性ゲル電解質
層とするものであっても良い。
To solve these problems, an organic electrolyte lithium secondary battery according to the present invention comprises a negative electrode using lithium or a lithium alloy as an active material and a positive electrode using a metal oxide as an active material. And an organic electrolyte solution and a separator in a battery container, wherein the separator uses an ion-conductive substance having a porous thin film as a skeleton. It is one in which a gel electrolyte is integrated. The separator has a two-layer structure of a porous resin layer and an ion-conductive gel electrolyte layer,
The surface in contact with the negative electrode of the separator may be an ion-conductive gel electrolyte layer.

【0013】また、界面活性剤で処理して親水性を有す
るセパレータ基材のマイクロポーラスな孔をイオン伝導
性ゲル電解質で埋め一体化されたものであっても良い。
The separator may be treated with a surfactant, and the microporous pores of the separator substrate having hydrophilicity may be integrated with an ion-conductive gel electrolyte.

【0014】また、本発明のセパレータの製造法は、紫
外線で重合可能な樹脂とリチウム塩を含む有機電解液と
の混合液を界面活性剤で処理したセパレータ基材に含浸
または塗布して、セパレータ基材の孔を前記混合液で充
填する工程と、前記混合液との接触面をフッ素樹脂でコ
ーティングしたガラス板を介して紫外線を照射して前記
樹脂を硬化させることにより、セパレータ基材とイオン
伝導性ゲル固体電解質とを一体化させる工程を含むこと
を特徴とする。
The method for producing a separator according to the present invention is characterized in that a mixture of an ultraviolet-polymerizable resin and an organic electrolyte containing a lithium salt is impregnated or coated on a separator substrate treated with a surfactant. Filling the pores of the base material with the mixed liquid, and irradiating ultraviolet rays through a glass plate coated on the contact surface with the mixed liquid with a fluororesin to cure the resin, whereby the separator base material and the ions are ionized. A step of integrating the conductive gel solid electrolyte with the conductive gel solid electrolyte.

【0015】ゲル化のための樹脂材料としては、有機電
解液に膨張あるいは溶解しにくいポリエチレンオキサイ
ド骨格、ポリオレフィン骨格の末端にアクリレート基を
有する構造のものが望ましい。紫外線で重合可能なモノ
マーとオリゴマー、光重合開始剤および有機電解液とを
混合した溶液を界面活性剤で処理した親水性セパレータ
基材に均一に含浸または塗布し、紫外線を照射して樹脂
を重合、硬化させることにより、セパレータ基材とイオ
ン伝導性ゲル電解質層とが一体化した薄型セパレータを
得ることができる。
As the resin material for gelling, those having a structure having an acrylate group at the end of a polyethylene oxide skeleton and a polyolefin skeleton which are hardly expanded or dissolved in an organic electrolyte solution are desirable. A solution in which a monomer and oligomer polymerizable with ultraviolet light, a photopolymerization initiator and an organic electrolyte are mixed is uniformly impregnated or applied to a hydrophilic separator substrate treated with a surfactant, and the resin is polymerized by irradiation with ultraviolet light. By curing, a thin separator in which the separator substrate and the ion-conductive gel electrolyte layer are integrated can be obtained.

【0016】紫外線硬化樹脂により100μm以下の薄
い層を形成するには、重合禁止剤として作用する酸素の
影響を除去することと、ポリエチレンなどの熱可塑性樹
脂製のセパレータ基材の孔が、紫外線照射時の熱により
変形し、閉塞されないように熱的影響を除去することが
重要である。そのために、液との接触面をフッ素樹脂で
コーティングしたガラス板を介して紫外線を照射し樹脂
を硬化させるのがよい。
In order to form a thin layer having a thickness of 100 μm or less using an ultraviolet curable resin, the influence of oxygen acting as a polymerization inhibitor is removed, and the pores of a thermoplastic resin such as polyethylene are irradiated with ultraviolet rays. It is important to remove the thermal effects so as not to be clogged by deformation due to the heat of the time. For this purpose, it is preferable that the resin is cured by irradiating ultraviolet rays through a glass plate whose contact surface with the liquid is coated with a fluororesin.

【0017】界面活性剤で処理しない疎水性セパレータ
基材を使用した場合、セパレータ基材がイオン伝導性ゲ
ル電解質溶液をはじくため孔に十分に含浸させることが
できないが、界面活性剤で処理した濡れ性のよい親水性
セパレータ基材を使用した場合には、イオン伝導性ゲル
電解質溶液がセパレータ基材の孔に入り込んで、孔を完
全に充填し、さらにセパレータ基材の両面を覆うことが
できる。
When a hydrophobic separator base material not treated with a surfactant is used, the separator base material repels an ion-conductive gel electrolyte solution, so that the pores cannot be sufficiently impregnated. When a hydrophilic separator substrate having good properties is used, the ion-conductive gel electrolyte solution can enter the pores of the separator substrate, completely fill the pores, and cover both surfaces of the separator substrate.

【0018】[0018]

【作用】セパレータ基材の微細な孔がイオン伝導性ゲル
電解質により充填され、一体化した薄型セパレータを使
用することにより、リチウムデンドライトがセパレータ
の孔を貫通して正極に達することによる内部短絡を防ぐ
ことができるため、安全性と信頼性に優れたリチウム二
次電池を提供することが可能となる。
The internal short circuit caused by the lithium dendrite penetrating through the separator hole and reaching the positive electrode is prevented by using an integrated thin separator in which the fine holes of the separator base material are filled with the ion-conductive gel electrolyte. Therefore, a lithium secondary battery having excellent safety and reliability can be provided.

【0019】[0019]

【実施例】以下、本発明の実施例について、図を参照し
ながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0020】セパレータ基材として、孔径0.27μ
m、空孔率60%、厚さ20〜22μmの微孔性ポリエ
チレンフィルム(セルガード、K878)を用いた。
The separator base material has a pore size of 0.27 μm.
m, a porosity of 60%, and a microporous polyethylene film (Celgard, K878) having a thickness of 20 to 22 μm.

【0021】一方、イオン伝導性ゲル電解質層は、有機
電解液と紫外線硬化樹脂とを重量比80:20で混合し
たものを用いる。有機電解液は、プロピレンカーボネイ
トとエチレンカーボネイトとを体積比50:50の割合
で混合した混合溶媒に、電解質として過塩素酸リチウム
LiClO4を1モル/dm3溶解したものである。紫外
線硬化樹脂は、脂肪族ポリエーテル系のオリゴマーと、
ポリエチレンオキサイドを骨格とし両端にアクリレート
基を有するモノマーとを重量比50:50の割合で混合
し、さらに光重合開始剤を1.0wt%添加したもので
ある。 そして、上記のポリエチレンフィルムをノニオ
ン系界面活性剤のポリエチレングリコールアルキルエー
テルで処理して十分親水性を付与した後、このフィルム
に前記の混合液を2.5μl/cm2となるように塗
布、含浸させた。次に、紫外線を照射させイオン伝導性
ゲル電解質層を形成させるが、薄い紫外線硬化樹脂皮膜
を形成する際には、酸素が重合禁止剤として作用する。
また、紫外線照射による熱によってフィルムが変形し孔
がつぶれる等の問題点がある。そこで、含浸させたフィ
ルムに、離型性を改良するために液との接触面をフッ素
樹脂でコーティングしたガラス板を密着させて酸素と熱
の影響を防いだうえで紫外線を照射した。このようにし
て図1に示すようにポリエチレンフィルム1の両面にイ
オン伝導性ゲル電解質2を一体化させた。
On the other hand, the ion-conductive gel electrolyte layer used is a mixture of an organic electrolytic solution and an ultraviolet curable resin at a weight ratio of 80:20. The organic electrolyte is obtained by dissolving 1 mol / dm 3 of lithium perchlorate LiClO 4 as an electrolyte in a mixed solvent obtained by mixing propylene carbonate and ethylene carbonate at a volume ratio of 50:50. UV-curable resin is an aliphatic polyether oligomer,
A monomer having a polyethylene oxide skeleton and having acrylate groups at both ends is mixed at a weight ratio of 50:50, and 1.0 wt% of a photopolymerization initiator is further added. After the above polyethylene film is treated with a nonionic surfactant polyethylene glycol alkyl ether to impart sufficient hydrophilicity, the film is coated and impregnated with the above mixture at a concentration of 2.5 μl / cm 2. I let it. Next, an ion conductive gel electrolyte layer is formed by irradiating ultraviolet rays. When a thin ultraviolet curable resin film is formed, oxygen acts as a polymerization inhibitor.
In addition, there is a problem that the film is deformed by heat due to the irradiation of ultraviolet rays and the holes are crushed. Therefore, in order to improve the releasability, the impregnated film was adhered to a glass plate whose contact surface with a liquid was coated with a fluororesin to prevent the effects of oxygen and heat, and then irradiated with ultraviolet rays. In this way, the ion conductive gel electrolyte 2 was integrated on both sides of the polyethylene film 1 as shown in FIG.

【0022】そして、ポリエチレンフィルムと、その孔
を塞いだイオン伝導性電解質層とからなる厚さ40μm
のセパレータを作成した。このセパレータをaとする。
Then, a thickness of 40 μm comprising a polyethylene film and an ion-conductive electrolyte layer closing the pores.
Was created. This separator is referred to as a.

【0023】また、セパレータ基材として、ポリプロピ
レン製の厚み25μm、長径0.125μm、短径0.
05μmの楕円孔を有する空孔率38%の微多孔膜セパ
レータ(セルガード、2400)を用いる。これをプラ
ズマ照射装置(日本真空製、EP4759)を用いて真
空度200Pa以下の空気雰囲気下で5分間処理するこ
とにより、セパレータを酸化し、親液性を改良した。そ
して、セパレータaと同様にこのセパレータ基材と前記
イオン伝導性ゲル電解質とを一体化させ、厚さ45μm
のセパレータを作成した。このセパレータをbとする。
The separator base material is made of polypropylene and has a thickness of 25 μm, a major axis of 0.125 μm, and a minor axis of 0.1 μm.
A microporous membrane separator (Celgard, 2400) having a porosity of 38% and having elliptical holes of 05 μm is used. This was treated for 5 minutes in an air atmosphere at a degree of vacuum of 200 Pa or less using a plasma irradiation device (manufactured by Nippon Vacuum, EP4759) to oxidize the separator and improve lyophilicity. Then, as in the case of the separator a, the separator base material and the ion-conductive gel electrolyte were integrated, and the thickness was 45 μm.
Was created. This separator is referred to as b.

【0024】また、セパレータ基材として、ポリエチレ
ン製の厚み25μm、最大孔径0.03μm、空孔率3
8%の微多孔膜セパレータ(東燃化学製)を用い、セパ
レータbと同様の方法でプラズマ照射処理することによ
りセパレータ表面を酸化し、親液性を改良した。そし
て、図2に示すようにセパレータの片面にのみゲル電解
質層を設けて紫外線硬化処理を行い、セパレータとイオ
ン伝導性ゲル電解質との二層構造を形成した。このゲル
電解質層を形成したセパレータの厚みは約30μmであ
った。このセパレータをcとする。
Further, as a separator substrate, a polyethylene made of 25 μm thick, a maximum pore diameter of 0.03 μm, and a porosity of 3
Using an 8% microporous membrane separator (manufactured by Tonen Kagaku), the surface of the separator was oxidized by plasma irradiation treatment in the same manner as for the separator b to improve the lyophilicity. Then, as shown in FIG. 2, a gel electrolyte layer was provided only on one side of the separator, and an ultraviolet curing treatment was performed to form a two-layer structure of the separator and the ion-conductive gel electrolyte. The thickness of the separator on which the gel electrolyte layer was formed was about 30 μm. This separator is denoted by c.

【0025】次に比較例として、微孔性ポリエチレンの
みを用いたセパレータをdとする。次に、上記本発明に
よるセパレータa、b、c、比較例のセパレータdをそ
れぞれ用いて図3のようなコイン型リチウム二次電池
A、B、CおよびDを構成して性能を比較した。
Next, as a comparative example, a separator using only microporous polyethylene is referred to as d. Next, using the separators a, b, and c according to the present invention and the separator d of the comparative example, coin-type lithium secondary batteries A, B, C, and D as shown in FIG.

【0026】図3において、3は正極であり、400℃
で焼成した正極活物質の二酸化マンガンと導電材のカー
ボンとバインダーのポリテトラフロロエチレン樹脂を重
量比90:5:5の割合で混合し、直径14.2mmの
円板に成型したものである。4はステンレス鋼製ケー
ス、5はセパレータである。6は負極活物質の金属リチ
ウム、7はステンレス鋼製封口板、8はポリプロピレン
製ガスケットである。電解液はプロピレンカーボネイト
と1,2−ジメトキシエタンとを体積比50:50の割
合で混合した混合溶媒に過塩素酸リチウムを1モル/d
3溶解したものである。
In FIG. 3, reference numeral 3 denotes a positive electrode,
The manganese dioxide as the positive electrode active material, the carbon as the conductive material, and the polytetrafluoroethylene resin as the binder were mixed at a weight ratio of 90: 5: 5 and molded into a disc having a diameter of 14.2 mm. Reference numeral 4 denotes a stainless steel case, and reference numeral 5 denotes a separator. Reference numeral 6 denotes metallic lithium as a negative electrode active material, 7 denotes a stainless steel sealing plate, and 8 denotes a polypropylene gasket. The electrolytic solution is a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 50:50 in which lithium perchlorate is 1 mol / d.
m 3 dissolved.

【0027】上記の電池A、B、C、およびDについ
て、充電電流1.8mA、電気量5.4mAhの定電流
・定電気量充放電試験(上限電圧3.8V、下限電圧
2.0V)を行ない、その結果を図4に示した。
For the above-mentioned batteries A, B, C and D, a charging / discharging test with a constant current / constant electric quantity of 1.8 mA and an electric quantity of 5.4 mAh (upper limit voltage 3.8 V, lower limit voltage 2.0 V) And the results are shown in FIG.

【0028】本発明の電池A、B、Cはいずれも、比較
例の電池Dよりも充放電サイクル特性が良いことが分か
る。特に、界面活性剤で処理した濡れ性の良い親液性の
セパレータ基材を使用することにより、セパレータ基材
の孔をイオン伝導性ゲル電解質で完全に、また均一に埋
めることができたため、デンドライトがセパレータの孔
を貫通することによる内部微少短絡を防ぐことができ、
電池Aのサイクル特性が最も良くなったと考えられる。
It can be seen that the batteries A, B, and C of the present invention all have better charge / discharge cycle characteristics than the battery D of the comparative example. In particular, by using a lyophilic separator substrate having good wettability treated with a surfactant, the pores of the separator substrate could be completely and uniformly filled with the ion-conductive gel electrolyte. Can prevent internal micro short circuit by penetrating through the hole of the separator,
It is considered that the cycle characteristics of Battery A became the best.

【0029】また、電池B、Cにおいても、電池Dより
サイクル特性が大きく改良されていることから、プラズ
マ照射によってセパレータ基材の孔をイオン伝導性ゲル
電解質で充填することにより、内部微少短絡による電池
の劣化を防ぐことができた。
Also, in the batteries B and C, since the cycle characteristics are greatly improved as compared with the battery D, the pores of the separator substrate are filled with the ion-conducting gel electrolyte by plasma irradiation, thereby causing an internal short circuit. Battery deterioration was prevented.

【0030】次に、本実施例に用いたゲル電解質の有機
電解液と紫外線硬化樹脂との配合比率を変化させ、25
℃でのイオン伝導度を測定した結果を図5に示した。た
だし、有機電解液比率85重量%以上では十分にゲル電
解質の硬化はできなかった。図からも解るように、ゲル
電解質のイオン伝導度は電解液比率に支配されており、
電解液比率が低下すると伝導度は急激に低下することか
ら、電解液比率は50重量%以上が望ましく、かつ機械
的強度を有するゲル電解質としては80重量%以下が望
ましい。また、樹脂のモノマーとオリゴマーの混合比率
により粘性が左右されるが、成膜に支障のない範囲で変
えてもよい。さらに、ゲル電解質の配合比率と厚みを調
整することにより、電池内部抵抗を変化させ、電極表
面、構造などを変えずに電池の短絡電流を変化させるこ
とが可能となり、外部短絡時にも安全な設計とすること
ができる。
Next, the mixing ratio of the organic electrolyte solution of the gel electrolyte used in the present embodiment and the ultraviolet curable resin was changed to
FIG. 5 shows the results of measuring the ionic conductivity at ° C. However, when the ratio of the organic electrolyte was 85% by weight or more, the gel electrolyte could not be sufficiently cured. As can be seen from the figure, the ionic conductivity of the gel electrolyte is governed by the electrolyte ratio,
Since the conductivity sharply decreases as the electrolyte solution ratio decreases, the electrolyte solution ratio is desirably 50% by weight or more, and the gel electrolyte having mechanical strength is desirably 80% by weight or less. In addition, although the viscosity depends on the mixing ratio of the monomer and the oligomer of the resin, the viscosity may be changed within a range that does not hinder the film formation. Furthermore, by adjusting the compounding ratio and thickness of the gel electrolyte, it is possible to change the internal resistance of the battery, and to change the short-circuit current of the battery without changing the electrode surface and structure. It can be.

【0031】以上の結果から、本発明の多孔質薄膜のオ
レフィン系樹脂セパレータの微細な孔をイオン伝導性ゲ
ル電解質により充填した構造のセパレータを用いること
により、デンドライト状のリチウムがセパレータを貫通
し内部短絡が発生することを防止できることが確認でき
た。
From the above results, by using a separator having a structure in which the fine pores of the olefin resin separator of the porous thin film of the present invention are filled with an ion-conductive gel electrolyte, the dendritic lithium penetrates through the separator and is It was confirmed that the occurrence of a short circuit could be prevented.

【0032】なお、本実施例ではコイン型電池を用いた
が、ゲル電解質を一体化した本発明のセパレータは十分
な柔軟性と薄さを有しており、極板群を巻回した円筒形
電池に用いることも可能である。また、紫外線硬化樹
脂、電解液、正極活物質とも本実施例で用いた以外のも
のを用いることが可能である。
In this embodiment, a coin-type battery was used. However, the separator of the present invention in which the gel electrolyte was integrated had sufficient flexibility and thinness, and had a cylindrical shape in which the electrode group was wound. It can also be used for batteries. Further, it is possible to use other than those used in this embodiment for the ultraviolet curing resin, the electrolytic solution, and the positive electrode active material.

【0033】[0033]

【発明の効果】以上のようにセパレータの微細な孔をイ
オン伝導性ゲル電解質で充填し、充電時にリチウム負極
に析出するデンドライト状のリチウムがセパレータを貫
通し内部短絡することが防止できた。また、ゲル電解質
の配合比率、厚みなどを制御することにより、電池の内
部抵抗を制御することが可能となり、短絡電流を小さく
することも可能である。
As described above, the fine pores of the separator were filled with the ion-conductive gel electrolyte, and the dendritic lithium deposited on the lithium negative electrode during charging was prevented from penetrating the separator and causing an internal short circuit. Further, by controlling the mixing ratio, the thickness, and the like of the gel electrolyte, the internal resistance of the battery can be controlled, and the short-circuit current can be reduced.

【0034】この結果、充放電サイクル中に内部短絡が
発生しない、信頼性および安全性の優れたリチウム二次
電池を得ることができる。
As a result, it is possible to obtain a highly reliable and safe lithium secondary battery in which no internal short circuit occurs during a charge / discharge cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセパレータの模式断面図FIG. 1 is a schematic sectional view of a separator of the present invention.

【図2】本発明のセパレータの他の例を示す模式断面図FIG. 2 is a schematic sectional view showing another example of the separator of the present invention.

【図3】コイン型リチウム二次電池の断面図FIG. 3 is a cross-sectional view of a coin-type lithium secondary battery.

【図4】電池の充放電サイクル寿命特性図FIG. 4 is a charge / discharge cycle life characteristic diagram of a battery.

【図5】ゲル電解質の有機電解液の比率とイオン伝導度
との関係を示す図
FIG. 5 is a diagram showing the relationship between the ratio of the organic electrolyte solution of the gel electrolyte and the ionic conductivity.

【符号の説明】[Explanation of symbols]

1 ポリエチレンフィルム 2 ゲル電解質 3 正極 4 ケース 5 セパレータ 6 負極 7 封口板 8 ガスケット DESCRIPTION OF SYMBOLS 1 Polyethylene film 2 Gel electrolyte 3 Positive electrode 4 Case 5 Separator 6 Negative electrode 7 Sealing plate 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−82457(JP,A) 特開 平5−190208(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 2/16 H01M 2/18 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-82457 (JP, A) JP-A-5-190208 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 2/16 H01M 2/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムまたはリチウム合金を活物質と
する負極と、金属酸化物を活物質とする正極と、有機電
解液と、オレフィン系多孔質樹脂製のセパレータとを電
池容器内に密閉したリチウム二次電池であって、前記セ
パレータは、多孔質樹脂層とイオン伝導性ゲル電解質層
との二層構造をもち、かつセパレータの負極と接する面
がイオン伝導性ゲル電解質層からなり、かつイオン伝導
性ゲル電解質は、50〜80重量%の有機電解液と20
〜50重量%の紫外線硬化樹脂とからなる有機電解液リ
チウム二次電池。
1. A lithium battery comprising a negative electrode containing lithium or a lithium alloy as an active material, a positive electrode containing metal oxide as an active material, an organic electrolyte, and a separator made of an olefin-based porous resin sealed in a battery container. a secondary battery, the separator has a two-layer structure of the porous resin layer and the ion-conductive gel electrolyte layer, and Ri surface in contact with the negative electrode of the separator Do from an ion conducting gel electrolyte layer and the ion transmission
The neutral gel electrolyte contains 50 to 80% by weight of an organic electrolyte and 20% by weight.
An organic electrolyte lithium secondary battery comprising about 50% by weight of an ultraviolet curable resin .
【請求項2】 紫外線で重合可能な樹脂とリチウム塩を
含む有機電解液との混合液を界面活性剤で処理した微孔
性のセパレータ基材に含浸または塗布して、セパレータ
基材の孔を前記混合液で充填する工程と、前記混合液と
の接触面をフッ素樹脂でコーティングしたガラス板を介
して紫外線を照射して前記樹脂を硬化させることによ
り、セパレータ基材とイオン伝導性ゲル電解質とを一体
化させる工程を含むことを特徴とする有機電解液リチウ
ム二次電池用セパレータの製造法。
2. A microporous separator substrate treated with a surfactant is impregnated or coated with a mixture of an ultraviolet-polymerizable resin and an organic electrolyte solution containing a lithium salt to form pores in the separator substrate. The step of filling with the mixed solution, and curing the resin by irradiating ultraviolet rays through a glass plate coated with a fluororesin on the contact surface of the mixed solution, the separator substrate and the ion-conductive gel electrolyte A method for producing a separator for an organic electrolyte lithium secondary battery, comprising a step of integrating the same.
【請求項3】 オレフィン系の多孔質樹脂製セパレータ
に、微量の酸素を含む雰囲気中でプラズマ照射を行って
セパレータの表面を酸化した後、有機電解液と紫外線硬
化樹脂からなる溶液を塗布して薄膜層を形成し、ついで
紫外線を照射することにより紫外線硬化樹脂を硬化して
有機電解液ゲル層をセパレータと一体化するかまたはセ
パレータとの二層構造とする有機電解液リチウム二次電
池用セパレータの製造法。
3. An olefin-based porous resin separator is subjected to plasma irradiation in an atmosphere containing a trace amount of oxygen to oxidize the surface of the separator, and then coated with a solution comprising an organic electrolytic solution and an ultraviolet curable resin. A separator for an organic electrolyte lithium secondary battery, in which a thin film layer is formed and then the ultraviolet curable resin is cured by irradiating ultraviolet rays to cure the organic electrolyte gel layer with the separator or to have a two-layer structure with the separator. Manufacturing method.
JP21712994A 1993-10-07 1994-09-12 Organic electrolyte lithium secondary battery and method for producing separator thereof Expired - Fee Related JP3279091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21712994A JP3279091B2 (en) 1993-10-07 1994-09-12 Organic electrolyte lithium secondary battery and method for producing separator thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5-277829 1993-10-07
JP27782993 1993-10-07
JP30638393 1993-12-07
JP5-306383 1993-12-07
JP21712994A JP3279091B2 (en) 1993-10-07 1994-09-12 Organic electrolyte lithium secondary battery and method for producing separator thereof

Publications (2)

Publication Number Publication Date
JPH07220761A JPH07220761A (en) 1995-08-18
JP3279091B2 true JP3279091B2 (en) 2002-04-30

Family

ID=27329986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21712994A Expired - Fee Related JP3279091B2 (en) 1993-10-07 1994-09-12 Organic electrolyte lithium secondary battery and method for producing separator thereof

Country Status (1)

Country Link
JP (1) JP3279091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306707A4 (en) * 2015-05-29 2019-02-06 Rekrix Co., Ltd. Separation membrane capable of selective ion migration, and secondary battery comprising same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899566B2 (en) 1996-11-25 2007-03-28 セイコーエプソン株式会社 Manufacturing method of organic EL display device
US6322923B1 (en) * 1998-01-30 2001-11-27 Celgard Inc. Separator for gel electrolyte battery
TW431009B (en) 1998-05-22 2001-04-21 Teijin Ltd Electrolytic-solution-supporting polymer film and secondary battery
JP4193248B2 (en) * 1998-11-10 2008-12-10 ソニー株式会社 Gel electrolyte battery
JP2000215875A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
US6358651B1 (en) * 1999-02-26 2002-03-19 Reveo, Inc. Solid gel membrane separator in rechargeable electrochemical cells
KR100406689B1 (en) * 2001-03-05 2003-11-21 주식회사 엘지화학 Multicomponent composite film for electrochemical device and method for preparing the same
KR20020064590A (en) * 2001-02-02 2002-08-09 주식회사 엘지화학 Multicomponent composite membrane and method for preparing the same
KR100431966B1 (en) * 2002-01-03 2004-05-22 김동원 Multi-layered Gelling Separators and Rechargeable Lithium Batteries Using Same
JP4132945B2 (en) * 2002-04-26 2008-08-13 日東電工株式会社 Nonaqueous electrolyte lithium ion battery and separator therefor
JP4581547B2 (en) * 2004-08-05 2010-11-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery
KR20080044738A (en) * 2006-11-16 2008-05-21 한국전자통신연구원 Aqueous electrolyte composition and sealed primary film battery having electrolytic layer obtained from the aqueous electrolyte composition
CN103384928A (en) * 2012-02-23 2013-11-06 株式会社日立制作所 Separator for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell
KR101348810B1 (en) * 2012-07-09 2014-01-10 국립대학법인 울산과학기술대학교 산학협력단 Separator for lithium-sulfur battery, method for manufacturing the same and lithium-sulfur battery including the same
WO2020117001A1 (en) * 2018-12-06 2020-06-11 주식회사 엘지화학 Solid electrolyte membrane, method for manufacturing same, and all-solid-state battery comprising same
JPWO2021132203A1 (en) * 2019-12-27 2021-07-01

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306707A4 (en) * 2015-05-29 2019-02-06 Rekrix Co., Ltd. Separation membrane capable of selective ion migration, and secondary battery comprising same
US10461295B2 (en) 2015-05-29 2019-10-29 Rekrix Co., Ltd. Separator capable of selective ion migration, and secondary battery comprising same

Also Published As

Publication number Publication date
JPH07220761A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
JP3279091B2 (en) Organic electrolyte lithium secondary battery and method for producing separator thereof
US5691005A (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
US5436091A (en) Solid state electrochemical cell having microroughened current collector
JP3872768B2 (en) Lithium secondary battery in which decomposition reaction of electrolyte is suppressed and method for manufacturing the same
US6686095B2 (en) Gel electrolyte precursor and chemical battery
JP2002512430A (en) Composite polymer electrolyte for rechargeable lithium batteries
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
WO2002061874A1 (en) A multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
US6372388B1 (en) Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery
JPH08329983A (en) Lithium battery
KR20030002072A (en) Lithium battery and process for preparing the same
JP4163295B2 (en) Gel-like solid electrolyte battery
JPH1032019A (en) Polymer electrolyte and lithium polymer battery using polymer electrolyte
JP4193248B2 (en) Gel electrolyte battery
JPH09306543A (en) Lithium polymer secondary battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4197804B2 (en) Method for manufacturing lithium secondary battery
WO1999063609A1 (en) Cross-linked polymeric components of rechargeable solid lithium batteries and methods for making same
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP3300168B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP3407507B2 (en) Polymer electrolyte and lithium battery
JPH0935705A (en) Polymer electrolyte-lithium battery and manufacture of its electrode
JP2002158037A5 (en)
JP2004200176A (en) Lithium polymer secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees