JPH0280564A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH0280564A
JPH0280564A JP23232788A JP23232788A JPH0280564A JP H0280564 A JPH0280564 A JP H0280564A JP 23232788 A JP23232788 A JP 23232788A JP 23232788 A JP23232788 A JP 23232788A JP H0280564 A JPH0280564 A JP H0280564A
Authority
JP
Japan
Prior art keywords
target
substrate
shield
mask
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23232788A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Aida
合田 倫佳
Yoshinori Honda
好範 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23232788A priority Critical patent/JPH0280564A/en
Publication of JPH0280564A publication Critical patent/JPH0280564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce the dispersion of the change in film-thickness distribution on a substrate with the lapse of time by providing a shielding mask in which the size of an opening part can be freely changed between a target and a substrate to be treated in a planar magnetron sputtering device. CONSTITUTION:In a planar magnetron sputtering device having a magnetic field-impressing mechanism, such as magnet, on the rear of a target, an upper shielding plate 1, a lower shielding plate 2, a side shielding plate (right) 3, and a side shielding plate (left) 4 are disposed between a target and a substrate to be subjected to thin film formation, and these plates are set so that they are movable vertically and horizontally on rails 5 by means of drive motors 6. By the movement of the above four shielding plates 1-4, the size of a shield opening part can be arbitrarily controlled and only the circular or eliptical part in the central part can be locally sputtered, by which the distribution of the thickness of a thin film to be formed can be prevented from increasing with the lapse of time and the quality and the yield of the substrate on which the film is formed can be remarkably improved within the period of the service life of the target.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスパッタリング装置に係り、特にプレーナマグ
ネトロンカソードを有するスパッタリング装置を用いて
基板に成膜するためのシールドマスクの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sputtering apparatus, and more particularly to the structure of a shield mask for forming a film on a substrate using a sputtering apparatus having a planar magnetron cathode.

〔従来の技術〕[Conventional technology]

従来より、スパッタ法で薄膜を形成する技術の中には、
高速で基板温度上昇の少ないプレーナマグネトロン方式
のスパッタリング法がある。プレーナマグネトロン方式
は、ターゲット後方に磁場印加機構を設け、ターゲット
表面のプラズマ密度を局部的に高めて、効率良くスパッ
タリングを行う方式である。しかし、この方法はスパッ
タリング速度及び効率は高いが、円形、楕円形の局部的
な部分でのみスパッタリングが行われるため、ターゲッ
トと基板の位置関係より、基板上に膜厚の分布を生じや
すく、基板の有効面積に制限を受けやすい、これを改善
するために、特開昭60−19786号公報に記載され
ているようにターゲットと基体との間にシールドマスク
を挿入したり、特開昭60−19407号公報に記載の
ように膜厚を一様化するようなシールドマスク形状を特
定したりしている。また、特開昭60−202543号
公報に記載のように二ロージJン領域に変更をかけたり
、特開昭60−200962号公報に記載のように成膜
速度をターゲット形状を変えることにより変化させ、−
様な膜を付けることを行ってきている。
Traditionally, some of the techniques for forming thin films by sputtering include:
There is a planar magnetron sputtering method that is fast and causes little rise in substrate temperature. The planar magnetron method is a method in which a magnetic field application mechanism is provided behind the target to locally increase the plasma density on the target surface to perform sputtering efficiently. However, although this method has a high sputtering speed and efficiency, sputtering is performed only in local circular or elliptical areas, which tends to cause film thickness distribution on the substrate depending on the positional relationship between the target and the substrate. In order to improve this problem, a shield mask is inserted between the target and the substrate as described in JP-A-60-19786, and JP-A-60-19786 As described in Japanese Patent No. 19407, a shield mask shape that makes the film thickness uniform is specified. In addition, the film formation rate can be changed by changing the two-row region as described in JP-A-60-202543, or by changing the target shape as described in JP-A-60-200962. Let,-
We have been applying various types of membranes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術において、シールドマスク、ターゲットの
一定形状選定による方法では、経時変化つまりターゲッ
トの寿命範囲内経時侵食によって生ずる膜厚分布が成膜
速度の変化に追従できないため、−様な膜厚の成膜が困
難になることについて、考慮されていなかった。
In the above-mentioned conventional technology, with the method of selecting a shield mask and a constant shape of the target, the film thickness distribution caused by changes over time, that is, erosion over time within the life span of the target, cannot follow changes in the film formation rate. No consideration was given to the fact that the membrane would become difficult.

そこで、本発明の目的は、上記問題点をなくし−様なタ
ーゲット寿命範囲において可能なシールドマスクの構造
を有するスパッタリング装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a sputtering apparatus having a shield mask structure that eliminates the above-mentioned problems and is possible within a target life span.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために1本発明のスパッタリング装
置では形状可変型シールドマスクを適用する。つまり、
上下左右の4点から構成されるシールドマスクにより、
開口部のサイズを任意に4系統の駆動系により制御する
ことで、ターゲット寿命内における成膜速度、膜厚分布
の変動を解消するものである。
In order to achieve the above object, a shape-variable shield mask is used in the sputtering apparatus of the present invention. In other words,
The shield mask consists of four points: top, bottom, left, and right.
By arbitrarily controlling the size of the opening using four drive systems, fluctuations in film formation rate and film thickness distribution within the target life can be eliminated.

〔作 用〕 形状可変型マスクは1通常の定形型シールドマスクの形
状を基本とし、膜形成初期時には1例えば膜厚分布を均
一にするようなマスク形状を持つ。
[Function] The variable-shape mask is basically shaped like a normal regular shield mask, and at the initial stage of film formation, has a mask shape that makes the film thickness distribution uniform, for example.

これは、ターゲット中央部では膜厚が厚く、外周部では
薄いために外側の領域を大きく取った形状になっている
。この場合において、マスクは薄膜を均一にするために
最適な形状となっている。膜形状により、ターゲットに
経時変化が起こり二ロージョンが進行すると、外周部の
成膜速度は落ちる。この場合、マスク形状をその外周部
領域を広げたものとし、成膜の相対速度を経時変化に伴
なわないように変化させる。これにより、膜厚の均一性
、成膜速度は最適な状態に保持される。
This is because the film is thick at the center of the target and thin at the outer periphery, so the outer area is larger. In this case, the mask has an optimal shape to make the thin film uniform. Due to the shape of the film, when the target changes over time and the second region progresses, the film formation rate at the outer periphery decreases. In this case, the mask shape is made such that its outer peripheral region is widened, and the relative speed of film formation is changed so as not to change over time. Thereby, the uniformity of the film thickness and the film formation rate are maintained at an optimum state.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明のシールドマスクの構成図の一例である
。第1図に示すように、シールドマスクは上部シールド
板1.下部シールド板2、横シールド板(右)3、横シ
ールド板(左)4で構成される。上下、左右のシールド
板で構成されるシールドマスク開口部形状は、直線また
は曲線または直線と曲線により定められる。本実施例は
、直線構成の開口部形状を持つシールドマスクである。
FIG. 1 is an example of a configuration diagram of a shield mask of the present invention. As shown in FIG. 1, the shield mask consists of an upper shield plate 1. It is composed of a lower shield plate 2, a horizontal shield plate (right) 3, and a horizontal shield plate (left) 4. The shape of the shield mask opening formed by the upper and lower, left and right shield plates is determined by a straight line, a curved line, or a straight line and a curved line. This example is a shield mask having an opening shape of a linear configuration.

上下のシールド板は縦方向に可動し、左右シールド板は
横方向に可動する。また、シールド板は可動部の収納領
域確保のために、一部シャッター構造となっている。ま
た、それぞれのシールド板はガイドレール3を持ち、シ
ールド板を円滑に直線的に動くように導びく、また、各
シールド板シャッター巻部には駆動モータが組合わされ
、各シールド板はそれぞれ独立に動くようチャンバー外
のコントローラにつながっている。コントローラはシー
ルド板の位置決めを行えるようになっている。
The upper and lower shield plates move vertically, and the left and right shield plates move laterally. Additionally, the shield plate has a partially shuttered structure to ensure a storage area for the movable parts. In addition, each shield plate has a guide rail 3, which guides the shield plate to move smoothly and linearly. Also, each shield plate shutter winding portion is combined with a drive motor, and each shield plate can be operated independently. It is connected to a controller outside the chamber for movement. The controller is capable of positioning the shield plate.

シールドマスクは第2図に示すように、ターゲットと基
体との間に位置する。
The shield mask is located between the target and the substrate, as shown in FIG.

成膜初期状態では、膜厚を設定値±2%以下になるよう
にマスク形状を定める。その後、ターゲット使用状況に
より膜厚±2%をはずれないようにシールド板をコント
ローラにて動かすことにより、ターゲット使用限界まで
良品を生産することができる。
In the initial state of film formation, the mask shape is determined so that the film thickness is within ±2% of the set value. Thereafter, by moving the shield plate using the controller so as not to deviate from the film thickness of ±2% depending on the target usage conditions, it is possible to produce good products up to the target usage limit.

基本シールドマスク開口形状及びシールドマスク構成板
枚数は、スパッタリング装置及び使用するターゲツト材
に応じて最適化することにより、膜厚の均一化をねらう
、第3図に各種シールド開口形状及び構成枚数の例を示
す。シールド板の構成枚数は任意であるが、その−例と
して4枚板で構成されている場合と、6枚板で構成され
ている場合を示す。ターゲット形状によりシールドマス
ク関口形状は異なるが、ターゲット形状が長方形の場合
、シールドマスク開口形状は外周部に大きなスパッタリ
ング領域をもうけるのが良い。
The basic shield mask opening shape and the number of shield mask constituent plates are optimized according to the sputtering equipment and the target material used to achieve uniform film thickness. Figure 3 shows examples of various shield mask opening shapes and the number of constituent plates. shows. Although the number of shield plates is arbitrary, examples will be shown in which the shield plates are made up of four plates and the shield plates are made up of six plates. The shape of the shield mask entrance varies depending on the target shape, but when the target shape is rectangular, the shield mask opening shape should preferably have a large sputtering area on the outer periphery.

また、ターゲットの二ローション領域とシールドマスク
の位置関係により、上下、左右方向のシールド板形状は
非対称ともなる。
Further, due to the positional relationship between the two lotion areas of the target and the shield mask, the shape of the shield plate in the vertical and horizontal directions is also asymmetrical.

本装置を使用することにより、ターゲットの磁石は強磁
性体ターゲットに使用するS、−C0などや非磁性体タ
ーゲットに使用する一般永久磁石についても膜厚の均一
化に有効な結果を得る。
By using this device, effective results can be obtained in making the film thickness uniform for target magnets such as S, -C0, etc. used for ferromagnetic targets and general permanent magnets used for non-magnetic targets.

また、スパッタ電源はRF、DC共に使用可能である。Further, both RF and DC can be used as the sputtering power source.

以下に示す実施例においては、第1図に示した開口形状
のシールドマスクを用い、長方形型ターゲツト材につい
て成膜を行った。スパッタリング条件は、DCN源を用
い、チャンバー内真空圧力I X 10’Torr以下
にて、メタルターゲットではArガス圧I Q m T
orr、カーボンターゲットではArガス圧1.5mT
orrで各種ターゲットに表に示す投入電力にて成膜を
行った。
In the examples shown below, a shield mask having the opening shape shown in FIG. 1 was used to form a film on a rectangular target material. The sputtering conditions are: using a DCN source, chamber vacuum pressure I x 10' Torr or less, and Ar gas pressure I Q m T for the metal target.
orr, Ar gas pressure 1.5mT for carbon target
Films were formed on various targets at the power input shown in the table.

膜厚分布は平均膜厚に対するばらづき量をパーセントで
表示した。
The film thickness distribution was expressed as a percentage of variation with respect to the average film thickness.

尚、比較のために、従来技術の固定開口シールドマスク
で同一条件により評価を行い、比較例として第1表に示
した。
For comparison, evaluation was conducted under the same conditions using a conventional fixed aperture shield mask, and the results are shown in Table 1 as a comparative example.

第1表より1本発明による膜厚分布は、ターゲットの使
用開始直後の状態で約2%、ターゲット寿命終了直前で
2〜3%と、安定した膜厚分布を得ることができる。
From Table 1, it is possible to obtain a stable film thickness distribution according to the present invention, which is approximately 2% immediately after the start of use of the target and 2 to 3% immediately before the end of the target life.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、膜厚分布は従来の経時変化によるばら
つきで±10%であったものが約2%以下にでき、性能
及び歩留りを大幅に向上させる効果がある。
According to the present invention, the film thickness distribution can be reduced from the conventional variation of ±10% due to aging to about 2% or less, which has the effect of significantly improving performance and yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のスパッタリング用形状可変
型シールドマスクの構成図、第2図はそのシールドマス
クの構成配置図、第3図はシールドマスクの各種開口部
形状及びシールド板4枚と6枚とで構成されるシールド
マスクの一例の説明図である。 1・・・上シールド板、 2・・・下シールド板。 3・・・横シールド板(右)。 4・・・横シールド板(左)、 5・・・ガイドレール
、6・・・駆動モータ、  7・・・コントローラ。 第   1  図
Fig. 1 is a configuration diagram of a shape variable shield mask for sputtering according to an embodiment of the present invention, Fig. 2 is a configuration diagram of the shield mask, and Fig. 3 shows various opening shapes of the shield mask and four shield plates. FIG. 4 is an explanatory diagram of an example of a shield mask composed of six sheets. 1... Upper shield plate, 2... Lower shield plate. 3...Horizontal shield plate (right). 4...Horizontal shield plate (left), 5...Guide rail, 6...Drive motor, 7...Controller. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)真空排気系、真空チャンバ、スパッタリングカソ
ード、シールドマスク、スパッタ電源、イナートガス供
給装置及び基板からなるスパッタリング装置において、
該シールドマスクが2点以上の品目から構成され、かつ
それぞれが横または縦方向に動作する機構及び駆動系を
有し、基板上の膜厚分布を真空中で制御できる機構とな
っていることを特徴とするスパッタリング装置。
(1) In a sputtering device consisting of an evacuation system, a vacuum chamber, a sputtering cathode, a shield mask, a sputtering power source, an inert gas supply device, and a substrate,
The shield mask is composed of two or more items, each of which has a mechanism and drive system that moves horizontally or vertically, and has a mechanism that can control the film thickness distribution on the substrate in vacuum. Characteristic sputtering equipment.
JP23232788A 1988-09-19 1988-09-19 Sputtering device Pending JPH0280564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23232788A JPH0280564A (en) 1988-09-19 1988-09-19 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23232788A JPH0280564A (en) 1988-09-19 1988-09-19 Sputtering device

Publications (1)

Publication Number Publication Date
JPH0280564A true JPH0280564A (en) 1990-03-20

Family

ID=16937457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23232788A Pending JPH0280564A (en) 1988-09-19 1988-09-19 Sputtering device

Country Status (1)

Country Link
JP (1) JPH0280564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126848A1 (en) * 2005-10-07 2010-05-27 Tohoku University Magnetron sputtering apparatus
US8470142B2 (en) * 2005-06-13 2013-06-25 Lg Display Co., Ltd. Sputtering apparatus and driving method thereof
US20220208534A1 (en) * 2020-12-24 2022-06-30 Tokyo Electron Limited Sputtering apparatus and method of controlling sputtering apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470142B2 (en) * 2005-06-13 2013-06-25 Lg Display Co., Ltd. Sputtering apparatus and driving method thereof
US20100126848A1 (en) * 2005-10-07 2010-05-27 Tohoku University Magnetron sputtering apparatus
US20220208534A1 (en) * 2020-12-24 2022-06-30 Tokyo Electron Limited Sputtering apparatus and method of controlling sputtering apparatus
US12002667B2 (en) * 2020-12-24 2024-06-04 Tokyo Electron Limited Sputtering apparatus and method of controlling sputtering apparatus

Similar Documents

Publication Publication Date Title
US6235164B1 (en) Low-pressure processing system for magnetic orientation of thin magnetic film
US4784739A (en) Method of producing a thin film by sputtering and an opposed target type sputtering apparatus
CN105568240A (en) Magnetron sputtering device and magnetron sputtering method
US7943016B2 (en) Magnetron sputtering apparatus
JPH0280564A (en) Sputtering device
EP1873809A1 (en) Sputtering device
JPH0234780A (en) Magnetic circuit for magnetron sputtering
JPH0881769A (en) Sputtering device
JP2000104167A (en) Magnetron sputtering device
JP3254782B2 (en) Double-sided sputter film forming method and apparatus, and sputter film forming system
JP3908407B2 (en) Thin film deposition method
JP4312400B2 (en) Sputtering equipment
JPH03260067A (en) Sputtering device
JPH10102247A (en) Sputtering device and method
JPS58199862A (en) Magnetron type sputtering device
JPS63103066A (en) Sputtering device of planar magnetron system
CN205999470U (en) Radical occlusion device and vacuum sputtering machines
JPS6361387B2 (en)
JPS6217174A (en) Production of thin film by dc magnetron sputtering device
JPS6249974B2 (en)
JP3784203B2 (en) Magnetron sputtering method and apparatus
CN211897094U (en) Hardware configuration and system for physical sputtering
JPH05339726A (en) Magnetron sputtering device
JPS63277758A (en) Magnetron sputtering device
JP2980266B2 (en) Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film