JPH0280185A - Device and method for laser beam machining - Google Patents

Device and method for laser beam machining

Info

Publication number
JPH0280185A
JPH0280185A JP63232177A JP23217788A JPH0280185A JP H0280185 A JPH0280185 A JP H0280185A JP 63232177 A JP63232177 A JP 63232177A JP 23217788 A JP23217788 A JP 23217788A JP H0280185 A JPH0280185 A JP H0280185A
Authority
JP
Japan
Prior art keywords
machining
processing
laser
workpiece
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63232177A
Other languages
Japanese (ja)
Other versions
JP2566296B2 (en
Inventor
Kaoru Katayama
薫 片山
Hideaki Sasaki
秀昭 佐々木
Mamoru Kobayashi
守 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63232177A priority Critical patent/JP2566296B2/en
Publication of JPH0280185A publication Critical patent/JPH0280185A/en
Application granted granted Critical
Publication of JP2566296B2 publication Critical patent/JP2566296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To uniformize a machining state of the surface of material to be machined by measuring scattered light from the surface of the material to be machined and controlling a machining time or an irradiated area of a laser beam for machining. CONSTITUTION:When the scattered light beam intensity 13 of a visible laser beam is measured at points A and B of the machining positions before machining is performed by the short-wavelength laser beam, the intensity of the scattered light beam led to a light receiver 16 is reduced at the point B of the machining position than at the point A of the machining position when a warp of the material to be machined is large. This information is processed by a computer 18 and an opening area of an aperture 4 is controlled so as to be reduced at the position point B than at the position point A. At the same time, the extent of movement of an X-Y stage 20 is also controlled stepwise corresponding to the irradiated area reduced by aperture control and the energy density change of the short-wavelength laser beam for machining is reduced. While a shutter 15 is opened and the scattered light beam 13 from the machining surface is measured for a prescribed time in the course of time except during machining, machining is then performed. When the scattered light beam intensity attains the desired intensity, machining is finished and machining of the next position is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属、セラミックスの表面加工等に用いるレ
ーザ加工装置及びレーザ加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser processing apparatus and a laser processing method used for surface processing of metals, ceramics, etc.

〔従来の技術〕[Conventional technology]

従来、レーザによる表面加工は、レーザ技術読本(日刊
工業新聞社、 1985年)第186頁及び第193頁
から第195頁又は続・レーザ加工(開発社。
Conventionally, surface processing by laser has been described in Laser Technology Reader (Nikkan Kogyo Shimbun, 1985), pages 186 and 193 to 195, or the sequel Laser Processing (Kyakusha).

1982年)第164頁から166頁に記載されている
ように、金属表面のクリーニング、酸化膜の除去、焼入
れ1合金層の形成又はグレージングといわれる非晶質構
造の形成、セラミックスの表面のクリーニング等に適用
されていた。
1982), pages 164 to 166, cleaning of metal surfaces, removal of oxide films, formation of a hardened 1 alloy layer or formation of an amorphous structure called glazing, cleaning of ceramic surfaces, etc. was applied to.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、被加工物表面にうねりや反りがある場
合について配慮がされておらず、うねりや反りのある被
加工物を加工する場合、被加工物表面に合わせた焦点の
位置が変動し、その為被加工物の加工面におけるエネル
ギ密度が変化し、被加工物全面に均一な加工を行なうこ
とが困難であるという問題があった。
The above conventional technology does not take into consideration the case where the workpiece surface has undulations or warps, and when processing a workpiece with undulations or warps, the position of the focal point that matches the workpiece surface changes. Therefore, there is a problem in that the energy density on the machined surface of the workpiece changes, making it difficult to uniformly process the entire surface of the workpiece.

本発明の目的は、うねりや反りのある被加工物に対して
も、均一な加工状態を得ることができるレーザ加工装置
及び加工方法を提供することにある。
An object of the present invention is to provide a laser processing apparatus and a processing method that can obtain a uniform processing state even for a workpiece having undulations or warps.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、(1)被加工物を搭載するための。 The above purpose is (1) to mount a workpiece.

移動可能なステージと、該ステージ上に搭載された被加
工物を照射するための加工用レーザと、該加工用レーザ
からのレーザ光の照射面積を制御するためのアパーチャ
ーと、第2の照射光源と、該第2の照射光源からの照射
光を上記被加工物表面の上記加工用レーザによる照射位
置に照射させるための光学系と、上記第2の照射光源か
らの照射光による被加工物からの散乱光の強度を測定す
る検出器と、該強度に基づき上記加工用レーザと上記ア
パーチャーとを制御するための制御手段を有することを
特徴とするレーザ加工装置、(2)レーザ光を被加工物
に照射し、被加工物表面を加工するレーザ加工方法にお
いて、上記被加工物表面の上記レーザ光の照射位置を該
レーザ光の非照射時に第2の照射光により照射し、該第
2の照射光の散乱光強度を測定し、該強度に基づいて上
記レーザ光を制御することを特徴とするレーザ加工方法
によって達成される。
A movable stage, a processing laser for irradiating a workpiece mounted on the stage, an aperture for controlling the irradiation area of the laser light from the processing laser, and a second irradiation light source. and an optical system for irradiating the irradiation light from the second irradiation light source to the irradiation position of the processing laser on the surface of the workpiece, and the irradiation light from the second irradiation light source from the workpiece. A laser processing apparatus comprising: a detector for measuring the intensity of scattered light; and a control means for controlling the processing laser and the aperture based on the intensity; In a laser processing method of irradiating an object to process the surface of the workpiece, the irradiation position of the laser beam on the surface of the workpiece is irradiated with a second irradiation light when the laser beam is not irradiated, This is achieved by a laser processing method characterized by measuring the intensity of scattered light of irradiated light and controlling the laser beam based on the intensity.

加工用レーザとしては短波長レーザが好ましく、例えば
エキシマレーザ(波長190nm〜360n m )を
用いることができる。特にKrFレーザ(248nm)
とXeCΩレーザ(308n m )が金属表面の加工
に適している。その他前記従来例記載のレーザを用いる
ことができる。加工用レーザはパルス状に照射し、その
休止中に加工面をwt察することが好ましい。なお、あ
る一定時間まで連続して照射し、その後パルス状に照射
する等の方法も用いられる。
As the processing laser, a short wavelength laser is preferable, and for example, an excimer laser (wavelength: 190 nm to 360 nm) can be used. Especially KrF laser (248nm)
and XeCΩ laser (308 nm) are suitable for processing metal surfaces. Other lasers described in the prior art example can also be used. It is preferable that the processing laser is irradiated in a pulsed manner and the processed surface is inspected during a pause. Note that a method such as continuous irradiation for a certain period of time and then pulsed irradiation is also used.

第2の照射光源としては、例えば可視光レーザを用いる
ことができる。可視光レーザは1例えば加工面にスポッ
ト照射され、加工面からの散乱光の強度は受光器により
、加工用レーザによる加工中を除き測定されている。加
工用レーザ照射時間の変化に従い加工面へ照射している
可視光レーザの散乱光強度が変化する。この散乱光の強
度変化を利用し、加工用レーザの照射を制御し、被加工
物表面で常に同一の加工状態を得る。
As the second irradiation light source, for example, a visible light laser can be used. For example, a visible light laser is spot irradiated onto a processing surface, and the intensity of scattered light from the processing surface is measured by a light receiver except during processing using a processing laser. As the processing laser irradiation time changes, the scattered light intensity of the visible laser beam irradiating the processing surface changes. Utilizing changes in the intensity of this scattered light, the irradiation of the processing laser is controlled to always obtain the same processing condition on the surface of the workpiece.

また、被加工物表面の反りが非常に大きく、可視光レー
ザの散乱光強度が弱い場合には、加工用レーザの照射面
積を小さくし、ステップ状に照射を繰り返すことにより
、加工状態を均一化することができる。
In addition, if the surface of the workpiece is extremely warped and the scattered light intensity of the visible light laser is weak, the processing state can be made uniform by reducing the irradiation area of the processing laser and repeating the irradiation in steps. can do.

〔作用〕[Effect]

従来、被加工物の表面にうねりや反りがある場合、加工
用レーザの焦点位置が変わり、均一な加工エネルギ密度
が得られず、加工状態も不均一となってしまう1本発明
においては、第2の照射光を加工面上にスポット照射し
、そこから得られる散乱光強度を測定して、加工用レー
ザの照射面積(加工面積)や加工時間を変えることによ
り、被加工物の表面上で均一な加工状態を得ることがで
きる。
Conventionally, when the surface of the workpiece has undulations or warps, the focal position of the processing laser changes, making it impossible to obtain uniform processing energy density and resulting in uneven processing conditions. The irradiation light of step 2 is spot-irradiated onto the processing surface, the intensity of the scattered light obtained from it is measured, and by changing the irradiation area (processing area) and processing time of the processing laser, it is possible to Uniform machining conditions can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.

第1図は、本発明のレーザ加工装置の一例の概略を示し
たものである。短波長パルスレーザのエキシマレーザ1
により発振するレーザ光2は、全反射ミラー3により直
角に折り返され、任意に面積が変えられるアパーチャー
4を通り、結像レンズ5で、被加工物6の照射面ヘアパ
ーチャー形状を結像する。また、光軸合わせ、IH%用
さらに被加工物の加工面からの散乱光を得る為の第2の
照射光源に用いる可視光レーザのHe−Neレーザ7か
ら発振する可視光8は、ハーフミラ−9により、一方が
レーザ光と同じ光路となるように直角に折り返され、他
方は、直進後、全反射ミラー10によリレーザ光の光軸
と平行となるように直角に折り返される。その後、集光
レンズ11及び、全反射ミラー12により、被加工物6
の加工面上で集光する。
FIG. 1 schematically shows an example of a laser processing apparatus according to the present invention. Excimer laser 1 of short wavelength pulsed laser
The laser beam 2 oscillated by is reflected at right angles by a total reflection mirror 3, passes through an aperture 4 whose area can be changed arbitrarily, and forms an image of the hair aperture shape of the irradiated surface of a workpiece 6 by an imaging lens 5. In addition, the visible light 8 oscillated from the He-Ne laser 7 of the visible light laser used as the second irradiation light source for optical axis alignment, IH%, and obtaining scattered light from the processing surface of the workpiece is a half mirror. 9, one side is bent at a right angle so as to follow the same optical path as the laser beam, and the other, after traveling straight, is turned back at a right angle by a total reflection mirror 10 so as to be parallel to the optical axis of the laser beam. Thereafter, the workpiece 6 is
The light is focused on the processed surface.

被加工物6の加工面からの散乱光13は、結像レンズ1
4で、シャッター15を介し受光器16へと導かれる。
Scattered light 13 from the processing surface of the workpiece 6 is transmitted through the imaging lens 1
4, the light is guided to a light receiver 16 via a shutter 15.

シャッター15は、レーザ光で加工中に発生する蛍光を
受光器16へ導かないように、紫外パルスレーザのエキ
シマレーザ1の発振と同期をとって開閉する。受光器1
6の受ける散乱光の強度は、光電変換によって電流に変
換され、A−D変換によってデジタル信号に変換され、
信号線17を介してコンピュータI8に入力される。コ
ンピュータ18は、信号線19を介してエキシマレーザ
1を制御する。
The shutter 15 opens and closes in synchronization with the oscillation of the excimer laser 1, which is an ultraviolet pulse laser, so as not to guide the fluorescence generated during processing with the laser beam to the light receiver 16. Receiver 1
The intensity of the scattered light received by 6 is converted into a current by photoelectric conversion, converted into a digital signal by A-D conversion,
It is input to the computer I8 via the signal line 17. Computer 18 controls excimer laser 1 via signal line 19 .

また、被加工物は、X−Y加工ステージ20の上に取り
付けられている。加工ステージ20は、信号線21を介
し、NCコントローラ22とコンピュータ18により制
御される。コンピュータ18は、信号線23を介し、N
Cコントローラ24によりアパーチャー4の開孔面積も
制御可能である。
Further, the workpiece is mounted on an XY processing stage 20. The processing stage 20 is controlled by an NC controller 22 and a computer 18 via a signal line 21. The computer 18 connects to N via the signal line 23.
The opening area of the aperture 4 can also be controlled by the C controller 24.

つぎにこの装置を用いて反りのある被加工物を加工する
場合について説明する。第2図に示すように被加工面に
反りがある場合、加工位置A点とB点では単位面積当た
りのエネルギ量が異なる。
Next, a case will be described in which this apparatus is used to process a warped workpiece. As shown in FIG. 2, when the surface to be processed is warped, the amount of energy per unit area is different between the processing positions A and B.

すなわち、加工位置B点の方がエネルギ密度が大きくな
る。このような場合、加工位置B点における照射時間は
加工位置A点の照射時間よりも短くする必要がある。さ
らに被加工物の反りが大きい場合は、加工位置B点の照
射面内でもエネルギ密度が変化する。そのため加工位置
B点における照射面積を加工位置A点のそれより小さく
して照射面内でのエネルギ密度変化を少なくすることが
好ましい。
That is, the energy density is greater at the processing position B. In such a case, the irradiation time at processing position B needs to be shorter than the irradiation time at processing position A. Furthermore, if the warp of the workpiece is large, the energy density also changes within the irradiation surface at the processing position B. Therefore, it is preferable to make the irradiation area at processing position B smaller than that at processing position A to reduce changes in energy density within the irradiation surface.

そこで、短波長レーザ光で加工する前に、可視光レーザ
の散乱光強度13を加工位置A点とB点で測定すると、
被加工物の反りが大きい場合には、受光器16へ導かれ
る散乱光の強度は、第5図に示すように加工位置A点よ
り、加工位置B点の方が小さくなる。この情報は、コン
ピュータ18で処理さ九、アパーチャー4の開孔面積は
、加工位置A点より加工位lB点の方が小さくなるよう
に制御される。同時に、X−Yステージ20の移動量も
、アパーチャー制御により小さくなった照射面積と対応
して第6図に示すようなステップ状に制御し、照射面内
での加工用短波長レーザ光のエネルギ密度変化を少なく
する。
Therefore, before processing with a short wavelength laser beam, when the scattered light intensity 13 of the visible light laser is measured at processing positions A and B,
When the warp of the workpiece is large, the intensity of the scattered light guided to the light receiver 16 will be smaller at the processing position B than at the processing position A, as shown in FIG. This information is processed by the computer 18, and the opening area of the aperture 4 is controlled so that it is smaller at the machining position IB than at the machining position A. At the same time, the amount of movement of the X-Y stage 20 is also controlled in steps as shown in FIG. 6, corresponding to the irradiation area reduced by the aperture control, and the energy of the short wavelength laser beam for processing within the irradiation surface is controlled. Reduce density changes.

つぎに、第3図に示すように、短波長レーザ光で被加工
物表面の加工中を除いた時間Δtの間に、シャッタ15
を開き、加工面からの散乱光13を一定時間測定しなが
ら加工を行なう、この時散乱光強度は第4図のように増
加する。散乱光強度が所望の強度になった時加工を終了
し、つぎの位置の加工を行なう、このようにして被加工
物にうねりやそりがある場合でも均一な加工が行なえる
Next, as shown in FIG. 3, during a time Δt excluding the period during which the surface of the workpiece is being processed with the short wavelength laser beam, the shutter 15 is
is opened and processing is performed while measuring the scattered light 13 from the processing surface for a certain period of time. At this time, the intensity of the scattered light increases as shown in FIG. When the intensity of the scattered light reaches the desired intensity, the machining is finished and the next position is machined. In this way, uniform machining can be performed even if the workpiece has undulations or warps.

第7図は、コンピュータ18の処理機能のフローチャー
トを示したものである。短波長レーザ照射前に、被加工
物の加工面からの散乱光強度を測定し、その後シャッタ
ーを閉じる。コンピュータは散乱光強度に合った最適照
射面積にアパーチャーの開孔量を制御する。次に短波長
エキシマレーザの照射が行なわれ、シャッタが開けられ
る。加工後加工面での散乱光強度が測定され、シャッタ
ーが閉じられ、先に測定した散乱光強度が最適か判断さ
れ、最適散乱強度になるまで、加工用短波長エキシマレ
ーザの照射が繰り返される。最適散乱光量になりしだい
、X−Yステージが移動し再び加工が行なわれる。
FIG. 7 shows a flowchart of the processing functions of the computer 18. Before irradiating the short wavelength laser, the intensity of scattered light from the processed surface of the workpiece is measured, and then the shutter is closed. The computer controls the amount of opening of the aperture to the optimum irradiation area that matches the intensity of the scattered light. Next, irradiation with a short wavelength excimer laser is performed, and the shutter is opened. After processing, the scattered light intensity on the processed surface is measured, the shutter is closed, it is determined whether the previously measured scattered light intensity is optimal, and irradiation with the short wavelength excimer laser for processing is repeated until the optimal scattered light intensity is reached. As soon as the optimum amount of scattered light is reached, the XY stage moves and processing is performed again.

本装置によりNiメツキ上にAuメツキを施した金属表
面を加工し、合金化を行なったところ均一に加工するこ
とができた。
Using this device, a metal surface with Au plating on Ni plating was processed and alloyed, and it was possible to process it uniformly.

以上本発明を用いることにより、被加工物の表面にうね
りや反りがある場合にでも、均一な加工を行なうことが
可能となる。
As described above, by using the present invention, it is possible to perform uniform processing even when the surface of the workpiece has undulations or warps.

なお、本発明は本実施例に限定されることな〈発明の効
果を脱しない範囲でどのような組み合わせを用いても良
い。
Note that the present invention is not limited to this embodiment; any combination may be used without departing from the effects of the invention.

また、第3図の加工面からの散乱光測定時間は、加工用
短パルスレーザの加工パルス間隔範囲内であればいくら
でも良い。
Further, the time for measuring the scattered light from the processed surface shown in FIG. 3 may be any value as long as it is within the processing pulse interval range of the short pulse laser for processing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被加工物の加工表面にうねりや反りが
ある場合でも、被加工物表面からの散乱光を測定し、加
工用レーザの加工時間制御や照射面積を制御し、被加工
物表面の加工状態を均一にする効果がある。
According to the present invention, even if the surface of the workpiece has undulations or warps, the scattered light from the surface of the workpiece is measured, the processing time and irradiation area of the processing laser are controlled, and the workpiece is It has the effect of making the surface finish uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の概略図、第2図は、被加
工物にうねりや反りがある場合それぞれの加工面でエネ
ルギ密度変化が生じることを示した説明図、第3図は、
被加工物の加工面からの散乱光測定時間を示した説明図
、第4図は、最適加工時間と散乱光強度の関係を示した
図、第5図は。 被加工物に大きな反りがある場合の加工前の散乱光強度
の違いを示した図、第6図は、被加工物に大きな反りが
ある場合の加工状態を示した説明図、第7図は、コンピ
ュータによる制御フローを示した図である。 1・・・エキシマレーザ 2・・・レーザ光3 、10
.12・・・全反射ミラー 4・・・アパーチャー  5,14・・・結像レンズ6
・・・被加工物    7・・・He−Neレーザ8・
・・可視光     9・・・ハーフミラ−11・・・
集光レンズ   13・・・散乱光15・・・シャッタ
ー   16・・・受光器17、19.21.23・・
・信号線 18・・・コンピュータ  20・・・X−22、24
・・・NCコントローラ A、B・・・被加工物の加工点 Δt・・・短波長レーザの出力パルス間隔Yステージ
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram showing that energy density changes occur on each machined surface when the workpiece has waviness or warp, and Fig. 3 teeth,
FIG. 4 is an explanatory diagram showing the measurement time of scattered light from the processing surface of the workpiece, and FIG. 5 is a diagram showing the relationship between the optimum processing time and the scattered light intensity. Figure 6 shows the difference in scattered light intensity before processing when the workpiece has a large warp. Figure 6 is an explanatory diagram showing the processing state when the workpiece has a large warp. , is a diagram showing a control flow by a computer. 1... Excimer laser 2... Laser light 3, 10
.. 12... Total reflection mirror 4... Aperture 5, 14... Imaging lens 6
...Workpiece 7...He-Ne laser 8.
...Visible light 9...Half mirror 11...
Condenser lens 13... Scattered light 15... Shutter 16... Light receiver 17, 19.21.23...
・Signal line 18... Computer 20... X-22, 24
...NC controllers A, B...Processing point Δt of workpiece...Short wavelength laser output pulse interval Y stage

Claims (1)

【特許請求の範囲】 1、被加工物を搭載するための、移動可能なステージと
、該ステージ上に搭載された被加工物を照射するための
加工用レーザと、該加工用レーザからのレーザ光の照射
面積を制御するためのアパーチャーと、第2の照射光源
と、該第2の照射光源からの照射光を上記被加工物表面
の上記加工用レーザによる照射位置に照射させるための
光学系と、上記第2の照射光源からの照射光による被加
工物からの散乱光の強度を測定する検出器と、該強度に
基づき上記加工用レーザと上記アパーチャーとを制御す
るための制御手段を有することを特徴とするレーザ加工
装置。 2、レーザ光を被加工物に照射し、被加工物表面を加工
するレーザ加工方法において、上記被加工物表面の上記
レーザ光の照射位置を該レーザ光の非照射時に第2の照
射光により照射し、該第2の照射光の散乱光強度を測定
し、該強度に基づいて上記レーザ光を制御することを特
徴とするレーザ加工方法。
[Claims] 1. A movable stage for mounting a workpiece, a processing laser for irradiating the workpiece mounted on the stage, and a laser beam from the processing laser. an aperture for controlling the irradiation area of light, a second irradiation light source, and an optical system for irradiating the irradiation position of the processing laser on the surface of the workpiece with the irradiation light from the second irradiation light source. and a detector for measuring the intensity of scattered light from the workpiece due to the irradiation light from the second irradiation light source, and a control means for controlling the processing laser and the aperture based on the intensity. A laser processing device characterized by the following. 2. In a laser processing method in which a workpiece is irradiated with a laser beam to process the surface of the workpiece, the irradiation position of the laser beam on the surface of the workpiece is irradiated with a second irradiation light when the laser beam is not irradiated. A laser processing method comprising: emitting the second irradiation light, measuring the scattered light intensity of the second irradiation light, and controlling the laser beam based on the intensity.
JP63232177A 1988-09-19 1988-09-19 Laser processing apparatus and processing method Expired - Fee Related JP2566296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232177A JP2566296B2 (en) 1988-09-19 1988-09-19 Laser processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232177A JP2566296B2 (en) 1988-09-19 1988-09-19 Laser processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JPH0280185A true JPH0280185A (en) 1990-03-20
JP2566296B2 JP2566296B2 (en) 1996-12-25

Family

ID=16935213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232177A Expired - Fee Related JP2566296B2 (en) 1988-09-19 1988-09-19 Laser processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP2566296B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634884U (en) * 1992-09-30 1994-05-10 オリンパス光学工業株式会社 Laser processing equipment
US6531681B1 (en) * 2000-03-27 2003-03-11 Ultratech Stepper, Inc. Apparatus having line source of radiant energy for exposing a substrate
WO2015050665A3 (en) * 2013-10-04 2015-06-11 Siemens Energy, Inc. Method of melting a surface by laser using programmed beam size adjustment
JP2019058917A (en) * 2017-09-25 2019-04-18 ダイセルポリマー株式会社 Method for roughening metal molding surface
WO2022075158A1 (en) * 2020-10-06 2022-04-14 ファナック株式会社 Workpiece end position detection device and workpiece end position detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157830A (en) * 1980-05-08 1981-12-05 Toshiba Corp Laser machining apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157830A (en) * 1980-05-08 1981-12-05 Toshiba Corp Laser machining apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634884U (en) * 1992-09-30 1994-05-10 オリンパス光学工業株式会社 Laser processing equipment
US6531681B1 (en) * 2000-03-27 2003-03-11 Ultratech Stepper, Inc. Apparatus having line source of radiant energy for exposing a substrate
WO2015050665A3 (en) * 2013-10-04 2015-06-11 Siemens Energy, Inc. Method of melting a surface by laser using programmed beam size adjustment
JP2019058917A (en) * 2017-09-25 2019-04-18 ダイセルポリマー株式会社 Method for roughening metal molding surface
WO2022075158A1 (en) * 2020-10-06 2022-04-14 ファナック株式会社 Workpiece end position detection device and workpiece end position detection method

Also Published As

Publication number Publication date
JP2566296B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JP4218209B2 (en) Laser processing equipment
US6285002B1 (en) Three dimensional micro machining with a modulated ultra-short laser pulse
JPH04229821A (en) Region shaping method for surface of optical member using aberration of excimer laser light
JP2008203434A (en) Scanning mechanism, method of machining material to be machined and machining apparatus
JPH0280185A (en) Device and method for laser beam machining
JPH0647575A (en) Optical scanning type laser beam machine
CN117359092A (en) Laser processing method and device
JP3381885B2 (en) Laser processing method and laser processing apparatus
KR100498831B1 (en) A method and an apparatus for automatically adjusting irradiation distance
KR0177005B1 (en) Laser processing apparatus, laber processing method and pam bar processing method
JPH0438833B2 (en)
JP2004174539A (en) Laser beam machining method
JPH10286683A (en) Excimer laser machining equipment and method therefor
JPH026093A (en) Automatic focal length adjusting device
JP4092256B2 (en) Metal surface treatment method
JPH058062A (en) Laser beam machine
CN112643056A (en) Surface scanning type laser additive manufacturing device based on double-pulse light source illumination
JPH0321276B2 (en)
JP3827865B2 (en) LASER PROCESSING DEVICE AND METHOD FOR CONTROLLING THE LASER PROCESSING DEVICE
JP6931064B2 (en) Operation method and equipment of pulse laser shutter
JP2000176661A (en) Laser beam machining method and its device
CN113732488B (en) Method and system for processing metal oxide nano grating by femtosecond laser
JP2003311457A (en) Laser beam machining method and device
JPS6224886A (en) Laser beam machine
JPH08172063A (en) Laser repairing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees