JPH0438833B2 - - Google Patents

Info

Publication number
JPH0438833B2
JPH0438833B2 JP58161576A JP16157683A JPH0438833B2 JP H0438833 B2 JPH0438833 B2 JP H0438833B2 JP 58161576 A JP58161576 A JP 58161576A JP 16157683 A JP16157683 A JP 16157683A JP H0438833 B2 JPH0438833 B2 JP H0438833B2
Authority
JP
Japan
Prior art keywords
laser
light
laser beam
coherence
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58161576A
Other languages
Japanese (ja)
Other versions
JPS6052822A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58161576A priority Critical patent/JPS6052822A/en
Publication of JPS6052822A publication Critical patent/JPS6052822A/en
Publication of JPH0438833B2 publication Critical patent/JPH0438833B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (1) 発明の属する分野 本発明はレーザ装置に係り、特に被照射基板の
高精度な位置合わせが可能なレーザCVD装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a laser device, and particularly to a laser CVD device capable of highly accurate positioning of a substrate to be irradiated.

(2) 従来技術の説明 レーザCVD技術は、近年光エネルギーを利用
したCVD技術の一つとして注目されている。こ
の方法はシリコン基板などの基板をモノシラン
(SiH4)などの雰囲気中に置き、アルゴンレーザ
などで局所的に加熱して基板の酸化膜(SiO2
上にアモルフアスシリコン膜を選択的に形成する
ものである。
(2) Description of prior art Laser CVD technology has recently attracted attention as one of the CVD technologies that utilize light energy. In this method, a substrate such as a silicon substrate is placed in an atmosphere of monosilane (SiH 4 ), etc., and the oxide film (SiO 2 ) on the substrate is heated locally using an argon laser or the like.
An amorphous silicon film is selectively formed thereon.

従来、このレーザCVD装置は第1図に示すよ
うな構成となつていた。すなわち、レーザ発振器
1からのレーザ光は偏向プリズム2、1/4波長板
3を経てXステージ18上のプリズム4でその方
向が変えられ、しかる後にYステージ19上に導
びかれてアパーチヤ5を経てハーフミラー6で99
%程度のレーザ光が反射されてメカニカルシヤツ
タ7、投影レンズ8を経てチヤンバ9内のシリコ
ン基板10上に照射される。その際にシリコン基
板10上でのレーザ光の位置およびスポツト径の
制御(Z軸方向)の制御は極めて重要あるので、
シリコン基板10上に予め位置合わせマークを設
け、レーザ照射の際にXステージ18、Yステー
ジ19、投影レンズ8を制御してスポツトの調整
を行なう。
Conventionally, this laser CVD apparatus had a configuration as shown in FIG. That is, the laser beam from the laser oscillator 1 passes through the deflection prism 2 and the 1/4 wavelength plate 3, has its direction changed by the prism 4 on the X stage 18, and is then guided onto the Y stage 19 to pass through the aperture 5. 99 with half mirror 6
% of the laser light is reflected, passes through the mechanical shutter 7 and the projection lens 8, and is irradiated onto the silicon substrate 10 in the chamber 9. At this time, it is extremely important to control the position of the laser beam on the silicon substrate 10 and the spot diameter (in the Z-axis direction).
Positioning marks are provided on the silicon substrate 10 in advance, and the spot is adjusted by controlling the X stage 18, Y stage 19, and projection lens 8 during laser irradiation.

この調整は、ハーフミラー6を透過したシリコ
ン基板10からの反射光を第1のミラー11、集
光レンズ12、第2のミラー13、マイクロスコ
ープレンズ14に導き、テレビカメラ15でその
パターン、すなわち位置合わせマークのパターン
を検出することにより行なう。ここで、この反射
光を作る光源として前記レーザ光を用いると入射
光と反射光のおのおのもしくは相互の散乱光によ
つてスペツクルパターンなどを生じ、第3図のよ
うに位置合わせパターンが見えなくなり、したが
つて高精度な位置合わせが困難であつた。
In this adjustment, the reflected light from the silicon substrate 10 that has passed through the half mirror 6 is guided to the first mirror 11, the condensing lens 12, the second mirror 13, and the microscope lens 14, and the television camera 15 captures the pattern, i.e. This is done by detecting a pattern of alignment marks. Here, if the laser beam is used as a light source to create this reflected light, a speckle pattern will occur due to the scattered light of the incident light and the reflected light, or each other, and the alignment pattern will become invisible as shown in Figure 3. Therefore, highly accurate positioning is difficult.

そこで、Yステージ上にさらに白色光源16、
可動ミラー17を設けて、位置合わせの際にこの
可動ミラー17を動かしてハーフミラー6に白色
光を入射させることによつて位置合わせを行なつ
ていた。しかしながら、このような方法では不所
望な発熱による位置精度の低下、位置合わせ用の
光とCVDに使用する光の波長の違いなどによる
精度の低下が生じるので、高精度なレーザCVD
装置は実現できなかつた。
Therefore, a white light source 16 is added on the Y stage.
A movable mirror 17 is provided, and during positioning, the movable mirror 17 is moved to allow white light to enter the half mirror 6, thereby performing positioning. However, with this method, there is a decrease in positional accuracy due to undesired heat generation, and a decrease in accuracy due to the difference in wavelength between the alignment light and the light used for CVD.
The device could not be realized.

(3) 発明の目的 本発明の目的は、かかる従来の欠点のない、容
易に高精度な位置合わせが可能なレーザCVD装
置を提供することにある。
(3) Object of the Invention An object of the present invention is to provide a laser CVD apparatus that does not have the above-mentioned drawbacks of the conventional art and can easily perform highly accurate positioning.

(4) 発明の特徴 本発明の特徴は、レーザ光を所定の導光路を経
て所定のガス雰囲気中に設けられた基板に照射し
て選択的に膜形成を行うレーザCVD装置におい
て、前記レーザ光照射範囲内の位置を光学的に位
置検出する手段と、前記導光路に選択移動可能に
設けられた前記レーザ光のコヒーレンス低下手段
とが設けられ、膜形成時と位置検出時とでレーザ
光のコヒーレンスを変えられるように構成したこ
とにある。そして、このコヒーレンス低下手段は
レーザビームの各点での位相を分布させる散乱
板、たとえば任意の各点で厚みが異なるガラス板
(すりガラス)、所定のパターンにカツトされたガ
ラス板、網、特に金属網などであることが好まし
い。さらにこの散乱板を振動させて、位相の乱れ
を平均化することが好ましい。
(4) Features of the Invention A feature of the present invention is that in a laser CVD apparatus that selectively forms a film by irradiating laser light onto a substrate provided in a predetermined gas atmosphere through a predetermined light guide path, A means for optically detecting a position within the irradiation range, and a means for reducing the coherence of the laser beam, which is selectively movably provided in the light guide path, are provided to reduce the coherence of the laser beam during film formation and during position detection. The reason lies in the fact that it is structured in such a way that the coherence can be changed. This coherence reducing means can be a scattering plate that distributes the phase at each point of the laser beam, such as a glass plate (ground glass) whose thickness differs at each arbitrary point, a glass plate cut into a predetermined pattern, a mesh, or especially a metal plate. Preferably, it is a net or the like. Furthermore, it is preferable to vibrate this scattering plate to average out the phase disturbance.

(5) 発明の効果 本発明によれば、1つのレーザ光源からの光
を、膜形成時におけるコヒーレント光と、位置合
わせ時におけるインコヒーレント光に切り替え、
精度良く位置合わせでき、かつ、従来用いられて
いた位置合わせ用の光源を削減することができ
る。また、コヒーレンス低下手段を導光路から除
くことによつて成膜時におけるレーザ光の損失を
防止することができる。
(5) Effects of the Invention According to the present invention, the light from one laser light source can be switched into coherent light during film formation and incoherent light during alignment,
Positioning can be performed with high precision, and the number of light sources for positioning that have been conventionally used can be reduced. Furthermore, by removing the coherence reducing means from the light guide path, loss of laser light during film formation can be prevented.

(6) 実施例 以下、図面を用いて本発明の一実施例を説明す
る。
(6) Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例のレーザCVD装置
である。第1図の従来例と同様にレーザ発振器1
からのレーザ光は偏向プリズム2、1/4波長板3
を経てXステージ18上のプリズム4でその方向
が変えられ、しかる後にYステージ19上に導び
かれてアパーチヤ5を経てハーフミラー6で99%
程度のレーザ光が反射されてメカニカルシヤツタ
7、投影レンズ8を経てチヤンバ9内のシリコン
基板10上に照射される。その際にシリコン基板
10上でのレーザ光の位置およびスポツト径の制
御(Z軸方向)の制御はシリコン基板10上に予
め位置合わせマークを設け、レーザ照射の際にX
ステージ18、Yステージ19、投影レンズ8を
制御してスポツトの調整を行なう。
FIG. 2 shows a laser CVD apparatus according to an embodiment of the present invention. Laser oscillator 1 as in the conventional example shown in Figure 1.
The laser beam from
Its direction is changed by the prism 4 on the
The reflected laser light passes through the mechanical shutter 7 and the projection lens 8 and is irradiated onto the silicon substrate 10 in the chamber 9. At that time, the position of the laser beam on the silicon substrate 10 and the control of the spot diameter (in the Z-axis direction) are controlled by providing positioning marks on the silicon substrate 10 in advance, and
The stage 18, Y stage 19, and projection lens 8 are controlled to adjust the spot.

この調整は、ハーフミラー6を透過したシリコ
ン基板10からの反射光を第1のミラー11、集
光レンズ12、第2のミラー13、マイクロスコ
ープレンズ14に導びき、テレビカメラ15でそ
のパターン、すなわち位置合わせマークのパター
ンを検出することにより行なう。ここで位置合わ
せ時に散乱板20をハーフミラー6と偏向プリズ
ム4との間に設ける。この散乱板20によつてレ
ーザ光はインコヒーレント光となり、位置合わせ
パターンは第4図のようになつて見かけ上の精度
が大幅に向上する。さらにこの散乱板20をレー
ザ光に対して垂直方向に動かすことによつて散乱
は一層平均化され第5図のように位置合わせパタ
ーンの視認性は一層向上する。
In this adjustment, the reflected light from the silicon substrate 10 that has passed through the half mirror 6 is guided to the first mirror 11, the condensing lens 12, the second mirror 13, and the microscope lens 14, and the television camera 15 captures the pattern. That is, this is done by detecting the pattern of alignment marks. Here, during alignment, a scattering plate 20 is provided between the half mirror 6 and the deflection prism 4. The scattering plate 20 turns the laser beam into incoherent light, and the alignment pattern becomes as shown in FIG. 4, greatly improving the apparent accuracy. Furthermore, by moving the scattering plate 20 in a direction perpendicular to the laser beam, the scattering is further averaged and the visibility of the alignment pattern is further improved as shown in FIG.

なお、この動かす速さは散乱板の表面の変動の
一周期、すなわち同じ位置における変化の周期が
目視した場合にちらつかない程度で十分であり、
散乱板20に金属線間隔300μm以下の金属網を
用いた場合には2.0mm/秒以上で十分である。
The speed of this movement is sufficient so that one period of fluctuation on the surface of the scattering plate, that is, the period of change at the same position, does not flicker when visually observed.
When a metal mesh with a metal wire interval of 300 μm or less is used for the scattering plate 20, a speed of 2.0 mm/sec or more is sufficient.

なお、プラステイツク網などでも十分な効果が
得られる。
Note that a plastic net or the like can also be used with sufficient effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレーザCVD装置の概略図、第
2図は本発明の一実施例のレーザCVD装置の概
略図、第3図は散乱板を用いない場合の位置合わ
せパターン像、第4図は散乱板を用いた場合の位
置合わせパターン像、第5図は散乱板を振動させ
た場合の位置合わせパターン像、である。 なお、図において、1……レーザ発振器、2…
…偏向プリズム、3……1/4波長板、4……プリ
ズム、5……アパーチヤ、6……ハーフミラー、
7……メカニカルシヤツタ、8……投影レンズ、
9……チヤンバ、10……シリコン基板、11…
…第1のミラー、12……集光レンズ、13……
第2のミラー、14……マイクロスコープレン
ズ、15……テレビカメラ、18……Xステー
ジ、19……Yステージ、20……散乱板、であ
る。
Fig. 1 is a schematic diagram of a conventional laser CVD device, Fig. 2 is a schematic diagram of a laser CVD device according to an embodiment of the present invention, Fig. 3 is an alignment pattern image when no scattering plate is used, and Fig. 4 5 is an alignment pattern image when a scattering plate is used, and FIG. 5 is an alignment pattern image when the scattering plate is vibrated. In addition, in the figure, 1... laser oscillator, 2...
... Deflection prism, 3 ... 1/4 wavelength plate, 4 ... Prism, 5 ... Aperture, 6 ... Half mirror,
7... Mechanical shutter, 8... Projection lens,
9...Chamber, 10...Silicon substrate, 11...
...First mirror, 12... Condensing lens, 13...
Second mirror, 14... Microscope lens, 15... Television camera, 18... X stage, 19... Y stage, 20... Scattering plate.

Claims (1)

【特許請求の範囲】 1 レーザ光を所定の導光路を経て所定のガス雰
囲気中に設けられた基板に照射して選択的に膜形
成を行うレーザCVD装置において、 前記レーザ光照射範囲内の位置を光学的に位置
検出する手段と、 前記導光路に選択移動可能に設けられた前記レ
ーザ光のコヒーレンス低下手段とが設けられ、 膜形成時と位置検出時とでレーザ光のコヒーレ
ンスを変えられるように構成したことを特徴とす
るレーザCVD装置。
[Claims] 1. In a laser CVD apparatus that selectively forms a film by irradiating laser light onto a substrate provided in a predetermined gas atmosphere through a predetermined light guide path, a position within the laser light irradiation range is provided. means for optically detecting the position of the laser beam, and a means for reducing the coherence of the laser beam that is selectively movable in the light guide path, so that the coherence of the laser beam can be changed between film formation and position detection. A laser CVD device characterized by having the following configuration.
JP58161576A 1983-09-02 1983-09-02 Laser device Granted JPS6052822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161576A JPS6052822A (en) 1983-09-02 1983-09-02 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161576A JPS6052822A (en) 1983-09-02 1983-09-02 Laser device

Publications (2)

Publication Number Publication Date
JPS6052822A JPS6052822A (en) 1985-03-26
JPH0438833B2 true JPH0438833B2 (en) 1992-06-25

Family

ID=15737740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161576A Granted JPS6052822A (en) 1983-09-02 1983-09-02 Laser device

Country Status (1)

Country Link
JP (1) JPS6052822A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08879B2 (en) * 1985-03-15 1996-01-10 株式会社クラレ Water resistant composition
JP2677860B2 (en) * 1989-03-20 1997-11-17 三菱電機株式会社 Laser light irradiation device
KR100480435B1 (en) * 2002-07-05 2005-04-06 민성욱 Device to chase automatically marking-position of laser marking system
WO2009019973A1 (en) 2007-08-09 2009-02-12 Konica Minolta Opto, Inc. Laser projector and image projection method
US9981457B2 (en) * 2013-09-18 2018-05-29 Semiconductor Emergy Laboratory Co., Ltd. Manufacturing apparatus of stack
US11123822B2 (en) * 2016-03-31 2021-09-21 AGC Inc. Manufacturing method for glass substrate, method for forming hole in glass substrate, and apparatus for forming hole in glass substrate
JP6753347B2 (en) * 2016-03-31 2020-09-09 Agc株式会社 A method for manufacturing a glass substrate, a method for forming holes in a glass substrate, and a device for forming holes in a glass substrate.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068347A (en) * 1973-10-22 1975-06-07
JPS5565940A (en) * 1978-11-13 1980-05-17 Matsushita Electric Ind Co Ltd Laser image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068347A (en) * 1973-10-22 1975-06-07
JPS5565940A (en) * 1978-11-13 1980-05-17 Matsushita Electric Ind Co Ltd Laser image display device

Also Published As

Publication number Publication date
JPS6052822A (en) 1985-03-26

Similar Documents

Publication Publication Date Title
US4132479A (en) Pattern transfer optical system
US4819033A (en) Illumination apparatus for exposure
JPS62138819A (en) Scanning type laser microscope
JPH0151801B2 (en)
Koronkevich et al. Fabrication of diffractive optical elements by direct laser-writing with circular scanning
JPH0438833B2 (en)
JP2004295066A (en) Method for manufacturing optical waveguide
JPH0826451B2 (en) Sputtering method
JPH0812843B2 (en) Optical imaging apparatus and method
CN108227407B (en) Digital light forming method based on coherent image feedback
JP2725769B2 (en) Optical device
JPH0290119A (en) Condensing optical device for laser drawing machine
JP3371406B2 (en) Scanning exposure method
JP2616576B2 (en) Laser processing equipment
JPH0919784A (en) Device and method for laser patterning
JPH04302131A (en) Projection exposure system
JPH0280185A (en) Device and method for laser beam machining
JP2555650B2 (en) Laser annealing method
JP2000057638A (en) Exposure method, exposure device and manufacture of metallic mold
GB2372107A (en) Reconstructing an image from a total internal reflection hologram
JP3813634B2 (en) Scanning slit exposure device
JPH0262940B2 (en)
JPS54106206A (en) Optical recorder
JP2847915B2 (en) Projection exposure apparatus and its exposure method
JP2788434B2 (en) Projection exposure method and apparatus