JPH027939B2 - - Google Patents

Info

Publication number
JPH027939B2
JPH027939B2 JP56106660A JP10666081A JPH027939B2 JP H027939 B2 JPH027939 B2 JP H027939B2 JP 56106660 A JP56106660 A JP 56106660A JP 10666081 A JP10666081 A JP 10666081A JP H027939 B2 JPH027939 B2 JP H027939B2
Authority
JP
Japan
Prior art keywords
water
concentration
reaction
catalyst
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56106660A
Other languages
Japanese (ja)
Other versions
JPS588050A (en
Inventor
Hiromichi Tanaka
Masaaki Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP56106660A priority Critical patent/JPS588050A/en
Publication of JPS588050A publication Critical patent/JPS588050A/en
Publication of JPH027939B2 publication Critical patent/JPH027939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はアクリロニトリルを水和してアクリル
アミドを製造する方法に関するものである。さら
に詳しくは、チタンと亜鉛とからなる酸化物触媒
の存在下、アクリロニトリルを水和して、アクリ
ルアミドを製造するに当り、反応液中の水の濃度
を特定の範囲に保持する方法に関するものであ
る。 アクリルアミドの製造方法として、アクリロニ
トリルを金属銅含有触媒の存在下に水と反応させ
る方法が知られている。ところが、金属銅系触媒
を使用する場合、反応液中のニトリル濃度を高く
するとアミドへの反応速度が低下するので、通常
ニトリル濃度は30%程度以下の希薄なものが用い
られている(特公昭55―27898号公報による)。 本発明者らは先にチタンを含有する複合酸化物
触媒がニトリルの水和反応に対して良好な触媒作
用を示すことを見出した。その後、チタンと亜鉛
とからなる酸化物触媒を用いて反応条件と、アミ
ド収量との関係等について鋭意研究を進めた結
果、ニトリルが高濃度の領域の方が低濃度領域に
くらべて一定温度のもとで単位時間、単位触媒重
量当りのアミド収量が高くなり、かつ、アクリル
酸やエチレンシアンヒドリン等の望ましくない副
生物への選択率が著しく低下するというおどろく
べき事実を見出し、本発明を完成させるに至つ
た。 本発明は、ニトリルを水和して対応するアミド
を製造するための工業的に有用な方法を提供する
ことを目的としたものである。かかる目的は、本
発明に従い、アクリロニトリルをチタンと亜鉛と
からなる酸化物触媒の存在下、水和してアクリル
アミドを製造するに当り、反応器内における反応
液中の水の濃度を該反応液に対して15重量%以
下、0.1重量%以上に保持することにより極めて
容易に達成される。 次に本発明を更に詳細に説明する。 本発明方法で用いられるチタンと亜鉛とからな
る酸化物触媒は、必須成分としてチタンと亜鉛の
酸化物を含有せしめたものであり、固溶体および
非化学量論的酸化物をも包含する。これは単一酸
化物、たとえば、二酸化チタンと酸化亜鉛などの
物理的混合物をも包含する。また「酸化物」なる
語は水和された状態の含水酸化物または水酸化物
を包含するものと定義する。 本発明で使用する酸化物触媒はこの種の触媒調
製に採用され得る合目的な任意の態様で調製する
ことができる。調製法としては沈澱法が好んで採
用され得る。すなわちチタンと亜鉛の塩類、たと
えば硫酸塩、硝酸塩、酸素酸塩、ハロゲン酸塩、
有機酸塩等の溶液、特に水溶液にアルカリ性物質
としてアンモニア水、水酸化アルカリ、炭酸アル
カリ、有機アミン類等の溶液、特に水溶液を加え
るか、または尿素などの存在下に加熱撹拌する、
いわゆる均一沈澱法などにより、相当する金属の
水酸化物または含水酸化物の沈澱を生成させ、得
られた沈澱を適当な温度で焼成する方法が繁用さ
れる。 このようにして得られた酸化物触媒は焼成によ
り触媒構造の安定化を図ることが好ましい。上記
触媒の焼成温度としては50℃から600℃の範囲、
より好ましくは100℃から300℃の範囲が選ばれ
る。 このような酸化物触媒は、この種の触媒に慣用
されているように、担体に担持させて使用するこ
とができる。従つて、適当な担体たとえばシリ
カ、アルミナ、シリカ/アルミナ、ケイソウ土、
アランダム、コランダム、活性炭、天然産ケイ酸
塩類等を前記した触媒調製過程の任意の段階にお
いて金属化合物に担持させることができる。 アクリロニトリルの水和反応は上記触媒の存在
下、固定床又は懸濁床にて行われる。反応器の型
式により反応器内の水の濃度に空間的または時間
的な分布が生ずることがある。例えば、固定床反
応器であれば、入口水分濃度は出口水分濃度より
も高い。また、バツチ反応の場合には反応器の型
式にかかわらず、水の濃度は時間と共に変化す
る。水の濃度が空間的または時間的に変化する場
合、本発明でいう水の濃度は、反応器内における
最高水分濃度、またはバツチ反応の場合には初期
水分濃度、を指すものとする。このように定義し
た水の濃度は反応液の15重量%以下とするのが好
ましく、さらに好ましい濃度は7重量%以下であ
る。水の濃度が15重量%をこえると、触媒の活
性、および選択性は低下する。また、遊離した水
相の存在は選択性を低下させるので反応温度にお
ける水の溶解度以下の水濃度とするのが望まし
い。水の濃度が低すぎる場合にも十分に高い反応
速度が達成できない。したがつて、水濃度は少な
くとも0.1重量%以上とすることが必要である。 本発明方法によるニトリルの水和反応は、上述
の触媒を用いて通常室温ないし300℃の温度で行
われるが、反応速度の増大および副反応の抑制の
面から20℃ないし150℃で行うことが特に好まし
い。 反応は通常は液相で行われる。 反応中の重合を抑制するため、適当な重合防止
剤たとえばハイドロキノン、フエノチアジン、p
―tert―ブチルカテコール等を必要に応じて添加
することができる。また反応供給液中に酸素を溶
存させることにより重合を抑制することも可能で
ある。 本発明方法を実施するに当つては、水と共に反
応温度での使用に耐える安定な溶媒を用いること
もできる。本発明に用いられる溶媒としてアルコ
ール、ケトン、アミド、スルホキシドなどがあ
り、具体例としてメタノール、エタノール、イソ
プロパノール、アセトン、ジメチルホルムアミ
ド、ジメチルスルホキシド、ホルムアミド、アセ
トアミド等が挙げられる。 次に本発明を実施例にて説明するが、これら実
施例は本発明を限定するものではない。 (触媒調製) 四塩化チタンTiCl42.5モルを500mlのイオン交
換水に氷冷しつつゆつくりと滴下する。塩化亜鉛
ZnCl22.5モルを1のイオン交換水に溶解する。 両溶液を5のセパラブルフラスコに加え、さ
らに尿素1Kgとイオン交換水2を加える。撹拌
しつつ内容液の温度を92℃まで上げる。その状態
を約10時間、内溶液のPHが6.5になるまで保持す
る。撹拌を停止し、一夜静置する。 生成した沈澱は吸引ろ過しつつ、塩素イオンが
検出されなくなるまで多量のイオン交換水で洗浄
し、空気中、110℃で10時間焼成する。これを粉
砕して微粉末としたものを触媒として使用する。 実施例 1 上記方法で調製した触媒5g、アクリロニトリ
ル97gおよび水3gをリービツヒ冷却器付の内容
200mlのフラスコに入れ、大気圧下で撹拌しなが
ら70℃で2時間加熱した。 反応後、反応混合液をろ過して触媒を除去し、
ガスクロマトグラフイーにより分析したところ、
ろ液中にアクリルアミド11.8g(水の転化率100
%)が含まれることを確認した。他に微量のエチ
レンシアンヒドリンが検出された。 実施例 2〜4 仕込液量は100gで一定とし、アクリロニトリ
ルと水の比率を変えた他は実施例1と同様の方法
でアクリロニトリルの水和反応を実施した。結果
を第1表に示す。 比較例 1〜2 仕込液量は100gで一定とし、水の濃度をより
高くした他は実施例1と同様の方法でアクリロニ
トリルの水和反応を実施した。結果を第1表に示
す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing acrylamide by hydrating acrylonitrile. More specifically, it relates to a method for maintaining the concentration of water in a reaction solution within a specific range when producing acrylamide by hydrating acrylonitrile in the presence of an oxide catalyst consisting of titanium and zinc. . As a method for producing acrylamide, a method is known in which acrylonitrile is reacted with water in the presence of a metal copper-containing catalyst. However, when using a metallic copper-based catalyst, increasing the nitrile concentration in the reaction solution reduces the reaction rate to amide, so a dilute nitrile concentration of about 30% or less is usually used (Tokuko Showa). (According to Publication No. 55-27898). The present inventors have previously discovered that a composite oxide catalyst containing titanium exhibits a good catalytic effect on the hydration reaction of nitrile. After that, we conducted intensive research on the relationship between reaction conditions and amide yield using an oxide catalyst consisting of titanium and zinc, and found that the region with high nitrile concentration was better than the region with low concentration at a constant temperature. We have discovered the surprising fact that the yield of amide increases per unit time and per unit catalyst weight, and the selectivity to undesirable by-products such as acrylic acid and ethylene cyanohydrin decreases significantly. I was able to complete it. The present invention aims to provide an industrially useful method for hydrating nitriles to produce the corresponding amides. According to the present invention, when acrylonitrile is hydrated in the presence of an oxide catalyst consisting of titanium and zinc to produce acrylamide, the concentration of water in the reaction solution in the reactor is adjusted to the concentration of water in the reaction solution. This can be achieved very easily by keeping the content at 15% by weight or less and 0.1% by weight or more. Next, the present invention will be explained in more detail. The oxide catalyst composed of titanium and zinc used in the method of the present invention contains oxides of titanium and zinc as essential components, and includes solid solutions and non-stoichiometric oxides. This also includes physical mixtures of single oxides, such as titanium dioxide and zinc oxide. The term "oxide" is also defined to include hydrated oxides or hydroxides. The oxide catalyst used in the present invention can be prepared in any convenient manner that can be employed in the preparation of catalysts of this type. As a preparation method, a precipitation method can be preferably employed. i.e. salts of titanium and zinc, such as sulfates, nitrates, oxylates, halogenates,
Adding a solution, especially an aqueous solution, of an alkaline substance such as aqueous ammonia, alkali hydroxide, alkali carbonate, organic amines, etc. to a solution of an organic acid salt, especially an aqueous solution, or heating and stirring in the presence of urea, etc.
A commonly used method is to generate a precipitate of a corresponding metal hydroxide or hydrous oxide by a so-called homogeneous precipitation method, and to sinter the resulting precipitate at an appropriate temperature. The oxide catalyst thus obtained is preferably calcined to stabilize the catalyst structure. The firing temperature of the above catalyst is in the range of 50℃ to 600℃,
More preferably, the temperature range is from 100°C to 300°C. Such an oxide catalyst can be used by being supported on a carrier, as is customary for this type of catalyst. Therefore, suitable supports such as silica, alumina, silica/alumina, diatomaceous earth,
Alundum, corundum, activated carbon, naturally occurring silicates, etc. can be supported on the metal compound at any stage of the catalyst preparation process described above. The hydration reaction of acrylonitrile is carried out in a fixed bed or suspended bed in the presence of the above catalyst. Depending on the type of reactor, there may be a spatial or temporal distribution of the water concentration within the reactor. For example, in a fixed bed reactor, the inlet moisture concentration is higher than the outlet moisture concentration. Furthermore, in the case of a batch reaction, the concentration of water changes with time, regardless of the type of reactor. When the water concentration changes spatially or temporally, the water concentration in the present invention refers to the maximum water concentration in the reactor, or the initial water concentration in the case of a batch reaction. The concentration of water defined in this way is preferably 15% by weight or less of the reaction solution, and more preferably 7% by weight or less. When the water concentration exceeds 15% by weight, the activity and selectivity of the catalyst decreases. Furthermore, since the presence of a free aqueous phase reduces selectivity, it is desirable that the water concentration be below the solubility of water at the reaction temperature. Sufficiently high reaction rates cannot also be achieved if the water concentration is too low. Therefore, it is necessary that the water concentration be at least 0.1% by weight. The hydration reaction of nitrile according to the method of the present invention is usually carried out at a temperature of room temperature to 300°C using the above-mentioned catalyst, but it may be carried out at a temperature of 20°C to 150°C in order to increase the reaction rate and suppress side reactions. Particularly preferred. The reaction is usually carried out in the liquid phase. In order to inhibit polymerization during the reaction, suitable polymerization inhibitors such as hydroquinone, phenothiazine, p
-tert-butylcatechol etc. can be added as necessary. It is also possible to suppress polymerization by dissolving oxygen in the reaction feed solution. In carrying out the method of the present invention, a stable solvent that can withstand use at the reaction temperature can also be used together with water. Examples of solvents used in the present invention include alcohols, ketones, amides, sulfoxides, and specific examples include methanol, ethanol, isopropanol, acetone, dimethylformamide, dimethylsulfoxide, formamide, acetamide, and the like. Next, the present invention will be explained using Examples, but these Examples do not limit the present invention. (Catalyst Preparation) Slowly drop 2.5 mol of titanium tetrachloride (TiCl 4 ) into 500 ml of ion-exchanged water while cooling with ice. zinc chloride
2.5 moles of ZnCl 2 are dissolved in 1 part of ion-exchanged water. Add both solutions to the separable flask in Step 5, and then add 1 kg of urea and 2 ounces of ion-exchanged water. While stirring, raise the temperature of the contents to 92°C. Maintain this state for approximately 10 hours until the pH of the internal solution reaches 6.5. Stop stirring and let stand overnight. The generated precipitate is filtered under suction, washed with a large amount of ion-exchanged water until no chlorine ions are detected, and then calcined in air at 110°C for 10 hours. This is ground into fine powder and used as a catalyst. Example 1 5 g of the catalyst prepared by the above method, 97 g of acrylonitrile and 3 g of water were placed in a container with a Liebig condenser.
The mixture was placed in a 200 ml flask and heated at 70° C. for 2 hours with stirring under atmospheric pressure. After the reaction, the reaction mixture is filtered to remove the catalyst,
When analyzed by gas chromatography,
11.8 g of acrylamide in the filtrate (conversion rate of water 100
%) was confirmed to be included. Trace amounts of ethylene cyanohydrin were also detected. Examples 2 to 4 The hydration reaction of acrylonitrile was carried out in the same manner as in Example 1, except that the amount of the charged liquid was kept constant at 100 g and the ratio of acrylonitrile to water was changed. The results are shown in Table 1. Comparative Examples 1-2 The hydration reaction of acrylonitrile was carried out in the same manner as in Example 1, except that the amount of liquid to be charged was kept constant at 100 g and the concentration of water was increased. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリルをチタンと亜鉛とからなる
酸化物触媒の存在下、水和してアクリルアミドを
製造するに当り、反応器内における反応液中の水
の濃度を該反応液に対して15重量%以下、0.1重
量%以上とすることを特徴とするアクリルアミド
の製造方法。
1. When producing acrylamide by hydrating acrylonitrile in the presence of an oxide catalyst consisting of titanium and zinc, the concentration of water in the reaction solution in the reactor should be 15% by weight or less based on the reaction solution. A method for producing acrylamide, characterized in that the content is 0.1% by weight or more.
JP56106660A 1981-07-07 1981-07-07 Preparation of acrylamide Granted JPS588050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56106660A JPS588050A (en) 1981-07-07 1981-07-07 Preparation of acrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56106660A JPS588050A (en) 1981-07-07 1981-07-07 Preparation of acrylamide

Publications (2)

Publication Number Publication Date
JPS588050A JPS588050A (en) 1983-01-18
JPH027939B2 true JPH027939B2 (en) 1990-02-21

Family

ID=14439240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56106660A Granted JPS588050A (en) 1981-07-07 1981-07-07 Preparation of acrylamide

Country Status (1)

Country Link
JP (1) JPS588050A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849347A (en) * 1981-09-17 1983-03-23 Sumitomo Chem Co Ltd Purification of acrylamide

Also Published As

Publication number Publication date
JPS588050A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
US3767706A (en) Hydration of aliphatic nitriles to amides using copper metal catalysts
CA2265513C (en) Process for the manufacture of aliphatic alpha, omega amino nitriles
JP2003192647A (en) Method for producing primary amine
JPH027939B2 (en)
JPH0446618B2 (en)
CA1167868A (en) Method for the production of acrylamide
JP2722645B2 (en) Process for producing carboxylic esters and formamides
KR20230093017A (en) Method for producing methionine
JP3951006B2 (en) Process for producing alkylene carbonate and catalyst used therefor
EP0056994B1 (en) Process for preparation of oxalic acid diesters
JP4024388B2 (en) Method for producing aliphatic nitrile
JPH10511669A (en) Method for producing aliphatic α, ω-aminonitrile in gas phase
JPH0782226A (en) Production of amide compound
JPS62258335A (en) Production of methyl isobutyl ketone
USRE32640E (en) Hydration of aliphatic nitriles to amides using copper metal catalysts
JPS5950664B2 (en) Production method of unsaturated amide
JPS5918384B2 (en) Method for producing unsaturated amide
JP2998377B2 (en) Method for producing methacrylamide
JPS5950665B2 (en) Production method of unsaturated amide
JPS6140218B2 (en)
JPH0776563A (en) Production of alpha-hydroxyisobutyric acid amide
CN112939874A (en) Preparation method of etravirine intermediate
JP2997113B2 (en) Method for regenerating hydration catalyst of methacrylonitrile
JPH0153864B2 (en)
JP3058512B2 (en) Acetic acid production method