JPH0153864B2 - - Google Patents

Info

Publication number
JPH0153864B2
JPH0153864B2 JP58185874A JP18587483A JPH0153864B2 JP H0153864 B2 JPH0153864 B2 JP H0153864B2 JP 58185874 A JP58185874 A JP 58185874A JP 18587483 A JP18587483 A JP 18587483A JP H0153864 B2 JPH0153864 B2 JP H0153864B2
Authority
JP
Japan
Prior art keywords
reaction
diethanolamine
iminodiacetate
catalyst
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58185874A
Other languages
Japanese (ja)
Other versions
JPS6078949A (en
Inventor
Hideyuki Nishibayashi
Hiromi Yokoyama
Takakyo Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58185874A priority Critical patent/JPS6078949A/en
Priority to GB08425097A priority patent/GB2148287B/en
Publication of JPS6078949A publication Critical patent/JPS6078949A/en
Priority to US06/863,718 priority patent/US4782183A/en
Publication of JPH0153864B2 publication Critical patent/JPH0153864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はジエタノールアミンからイミノジ酢酸
塩を製造する新規な方法に関する。さらに詳しく
はジエタノールアミンをアルカリ金属の水酸化物
の存在下、反応させて、イミノジ酢酸塩を製造す
るに際しての特徴ある反応条件、添加物および触
媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new process for producing iminodiacetate from diethanolamine. More specifically, the present invention relates to characteristic reaction conditions, additives, and catalysts for producing iminodiacetate by reacting diethanolamine in the presence of an alkali metal hydroxide.

ジエタノールアミンよりイミノジ酢酸ソーダの
生成はたとえば次に示すような反応式〔1〕に従
つて進み、イミノジ酢酸ソーダよりイミノジ酢酸
の生成は反応式〔2〕に従つて進む。
For example, the production of sodium iminodiacetate from diethanolamine proceeds according to reaction formula [1] shown below, and the production of iminodiacetic acid from sodium iminodiacetate proceeds according to reaction formula [2].

イミノジ酢酸塩は通常中和してイミノジ酢酸と
し、キレート作用を利用した種々の用途のほか、
農薬、医薬等の原料として幅広く使用されてい
る。
Iminodiacetate is usually neutralized to form iminodiacetic acid, and in addition to various uses that utilize its chelating action,
It is widely used as a raw material for agricultural chemicals, medicines, etc.

イミノジ酢酸塩の工業的製法として、今日、青
酸とホルムアルデヒドを主原料とした方法が一般
的に知られている。しかしながら、青酸は猛毒ガ
スであるため製造設備、取扱い、立地面で大きな
制約を受け、しかも青酸の大半がアクリロニトリ
ル製造時の副生物として得られるため原料の安定
確保の面でも大きな問題があつた。
As an industrial method for producing iminodiacetates, a method using hydrocyanic acid and formaldehyde as main raw materials is generally known today. However, since hydrocyanic acid is a highly poisonous gas, there are major restrictions in terms of manufacturing equipment, handling, and location.Furthermore, since most of the hydrocyanic acid is obtained as a by-product during the production of acrylonitrile, there are also major problems in securing a stable supply of raw materials.

一方、ジエタノールアミンを苛性アルカリ中で
酸化的脱水素してイミノジ酢酸塩を製造する方法
は、米国特許2384817号および米国特許3842081号
等に開示されている。米国特許第2384817号は1
級アルコール類を強アルカリで脱水素してカルボ
ン酸塩を作る方法においてカドミウムを触媒とし
て使用する特許である。
On the other hand, a method for producing iminodiacetate by oxidative dehydrogenation of diethanolamine in a caustic alkali is disclosed in US Pat. No. 2,384,817 and US Pat. No. 3,842,081. U.S. Patent No. 2384817 is 1
This patent uses cadmium as a catalyst in a method of dehydrogenating alcohols with a strong alkali to produce carboxylic acid salts.

又、米国特許第3842081号実施例1で開示され
ている方法は、ジエタノールアミンを酸化カドミ
ウム触媒存在下で、高温、短時間反応を行うこと
によりイミノジ酢酸ソーダの収率を84.5%得てい
る。
Further, in the method disclosed in Example 1 of US Pat. No. 3,842,081, a yield of sodium iminodiacetate of 84.5% is obtained by reacting diethanolamine in the presence of a cadmium oxide catalyst at high temperature for a short period of time.

しかしながら、両特許は共に触媒としてカドミ
ウムを使用するため、有毒物であるカドミウムが
製品中に混入したり、あるいは廃水として河川に
流出した場合には大きな社会問題を引き起こすた
め、カドミウムを工業用触媒として使用するには
問題がある。
However, since both patents use cadmium as a catalyst, cadmium, which is a toxic substance, may mix into products or cause major social problems if it flows into rivers as wastewater, so cadmium is not used as an industrial catalyst. I have a problem using it.

本発明者らは、青酸を使用しないイミノジ酢酸
塩の製造方法として、ジエタノールアミンの酸化
的脱水素法について鋭意研究した結果、毒性面で
問題のあるカドミウム化合物を使用せずに高収率
でイミノジ酢酸塩を製造する新規な方法を見い出
し、本願発明を完成した。
As a method for producing iminodiacetate that does not use hydrocyanic acid, the present inventors have conducted intensive research on the oxidative dehydrogenation method of diethanolamine. As a result, the present inventors have found that iminodiacetic acid can be produced in high yield without using cadmium compounds, which have toxicity problems. We have discovered a new method for producing salt and completed the present invention.

本発明は、ジエタノールアミンをアルカリ金属
の水酸化物、水および銅とジルコニウム含有触媒
の存在下で反応させることを特徴とするイミノジ
酢酸塩の製造方法に関するものである。
The present invention relates to a method for producing iminodiacetate, which comprises reacting diethanolamine with an alkali metal hydroxide, water and copper in the presence of a zirconium-containing catalyst.

本発明の特徴は、ジエタノールアミンからイミ
ノジ酢酸塩を製造するに際し、カドミウム触媒を
使用せずに、安全な銅とジルコニウムを含有する
触媒を使用する点にある。
A feature of the present invention is that when producing iminodiacetate from diethanolamine, a safe catalyst containing copper and zirconium is used without using a cadmium catalyst.

銅含有触媒は酸化ジルコニウムに担持しなくと
も、120〜220℃という非常に温和な条件で使用す
ることにより、イミノジ酢酸塩収率をジエタノー
ルアミン基準で90〜95モル%とすることができ
る。しかし、銅とジルコニウムを含有する触媒は
耐熱性が向上し、触媒の寿命が長くなるという効
果だけでなく、選択率及び触媒活性が向上し、イ
ミノジ酢酸塩収率で90〜96モル%、反応温度で10
〜20℃下げることが可能となつた。本願発明の実
施により、従来法と比較して、イミノジ酢酸塩の
収率向上、反応時間の短縮、温和な反応条件等が
可能となつた。その結果、イミノジ酢酸塩の大巾
な製造コストの削減が可能となり、工業的実施が
容易なジエタノールアミンの酸化的脱水素法によ
る画期的なイミノジ酢酸塩製造法を完成したもの
である。
Even if the copper-containing catalyst is not supported on zirconium oxide, by using it under very mild conditions of 120 to 220°C, the yield of iminodiacetate can be 90 to 95 mol % based on diethanolamine. However, the catalyst containing copper and zirconium not only has the effect of improved heat resistance and longer catalyst life, but also improves selectivity and catalytic activity, resulting in an iminodiacetate yield of 90-96 mol%, 10 in temperature
It became possible to lower the temperature by ~20℃. By carrying out the present invention, it has become possible to improve the yield of iminodiacetate, shorten the reaction time, and use milder reaction conditions as compared to conventional methods. As a result, we have completed a revolutionary method for producing iminodiacetate using oxidative dehydrogenation of diethanolamine, which enables a significant reduction in the production cost of iminodiacetate and is easy to implement industrially.

本発明の一実施態様を示せば、本発明の方法に
用いれる触媒は銅およびジルコニウムを必須成分
として含有するものである。触媒は、そのまま又
は耐アルカリ性の担体に担持して使用することが
できる。触媒の使用量はジエタノールアミンに対
して1〜70重量%、好ましくは10〜30重量%の範
囲である。
In one embodiment of the present invention, the catalyst used in the method of the present invention contains copper and zirconium as essential components. The catalyst can be used as it is or supported on an alkali-resistant carrier. The amount of catalyst used ranges from 1 to 70% by weight, preferably from 10 to 30% by weight, based on diethanolamine.

本発明の銅およびジルコニウム含有触媒は、銅
またはジルコニウムの原料化合物として硝酸塩、
硫酸塩、炭酸塩、酸化物、ハロゲン化物、水酸化
物等の無機塩および酢酸塩、シユウ酸塩、クエン
酸塩、乳酸塩等の有機塩などが挙げられる。特に
水溶性の大きい塩が好ましい。
The copper- and zirconium-containing catalyst of the present invention uses nitrate as a raw material compound of copper or zirconium,
Examples include inorganic salts such as sulfates, carbonates, oxides, halides, and hydroxides, and organic salts such as acetates, oxalates, citrates, and lactates. In particular, highly water-soluble salts are preferred.

触媒の形態は特に限定するものではないが、銅
化合物とジルコニウム化合物を水に溶解した溶液
へアルカリ水溶液を添加し、水酸化物を沈澱せし
め、この沈澱物を水洗し、乾燥後空気中または酸
素中で酸化した後、水素雰囲気中で還元処理した
銅およびジルコニウム含有触媒が好適である。ま
た、酸化ジルコニウムに銅化合物水溶液を含浸さ
せ、乾燥後空気中または酸素中で酸化した後水素
雰囲気中で還元処理した銅を酸化ジルコニウムに
担持した触媒が好適に用いられる。
Although the form of the catalyst is not particularly limited, an alkaline aqueous solution is added to a solution of a copper compound and a zirconium compound dissolved in water to precipitate the hydroxide, the precipitate is washed with water, and after drying, it is exposed to air or oxygen. Copper- and zirconium-containing catalysts that have been oxidized in a hydrogen atmosphere and then reduced in a hydrogen atmosphere are preferred. Moreover, a catalyst in which zirconium oxide is impregnated with an aqueous solution of a copper compound, dried, oxidized in air or oxygen, and then reduced in a hydrogen atmosphere and supported on zirconium oxide is preferably used.

触媒は通常反応による活性低下が低いので、く
り返し使用が可能であるが、一過で使用すること
もできる。
Since the activity of the catalyst usually decreases little due to reaction, it can be used repeatedly, but it can also be used once.

本発明の反応での水は、当初イミノ基の分解を
促進すると考えられていたが、本願発明の温和な
反応条件ではイミノ基の分解が非常に少なく、む
しろジエタノールアミンとアルカリ金属の水酸化
物を均一系で反応できるメリツトがあり、高収率
のイミノジ酢酸塩を得るために不可欠なものであ
る。反応に用いられる水量はジエタノールアミン
に対し10重量%以上、好ましくは100〜500重量%
の範囲である。
Water in the reaction of the present invention was initially thought to promote the decomposition of imino groups, but under the mild reaction conditions of the present invention, the decomposition of imino groups was very small, and rather it promoted the decomposition of diethanolamine and alkali metal hydroxide. It has the advantage of being able to react in a homogeneous system, which is essential for obtaining iminodiacetates in high yields. The amount of water used in the reaction is 10% by weight or more, preferably 100 to 500% by weight based on diethanolamine.
is within the range of

本発明で使用するアルカリ金属の水酸化物とし
ては、水酸化リチウム、水酸化ナトリウム、水酸
化カリウム、水酸化ルビジウム、水酸化セシウム
を含む。これらの中で特に水酸化ナトリウムおよ
び水酸化カリウムが好適に使用される。アルカリ
金属の水酸化物の使用量は反応に使用するジエタ
ノールアミンの転化率相当当量以上、好ましくは
1.0〜2.0当量の範囲である。アルカリ金属の水酸
化物はフレーク、粉末、ペレツト等およびそれら
の水溶液のいずれも用いることができるが、一般
に取扱い面で有利なアルカリ金属の水溶液が好適
に使用される。
The alkali metal hydroxide used in the present invention includes lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, sodium hydroxide and potassium hydroxide are particularly preferably used. The amount of alkali metal hydroxide used is at least the equivalent equivalent to the conversion rate of diethanolamine used in the reaction, preferably
It is in the range of 1.0 to 2.0 equivalents. As the alkali metal hydroxide, any of flakes, powders, pellets, etc. and aqueous solutions thereof can be used, but aqueous solutions of alkali metals are generally preferably used because they are convenient in terms of handling.

ジエタノールアミンはイミノジ酢酸塩への不純
物の混入を避けるため高純度のものが好ましい。
純度について特に限定するものではないが、通常
96重量%以上、好ましくは99重量%以上のものが
用いられる。
Diethanolamine is preferably of high purity in order to avoid contamination of the iminodiacetate with impurities.
There are no particular restrictions on purity, but usually
The amount used is 96% by weight or more, preferably 99% by weight or more.

反応温度はジエタノールアミンのNH基、イ
ミノジ酢酸塩のNH基の熱分解及び水素化分解
を防ぐため220℃以下の温度、通常120〜200℃、
好ましくは140〜190℃の温度範囲で行なわれる。
又、銅およびジルコニウム触媒は220℃を超えた
温度から一部表面がシンタリングを起こし、表面
積が減少して触媒活性が低下しはじめるため、触
媒をくり返し使用する場合には220℃以下の温度
がより好ましい。
The reaction temperature is 220°C or less, usually 120 to 200°C, to prevent thermal decomposition and hydrogenolysis of the NH group of diethanolamine and the NH group of iminodiacetate.
Preferably, the temperature range is 140 to 190°C.
Additionally, some of the surfaces of copper and zirconium catalysts begin to sinter at temperatures exceeding 220°C, reducing the surface area and decreasing catalytic activity. More preferred.

反応圧力は、酸化的脱水素反応であるため、で
きるだけ反応圧力を下げる方が反応速度の面から
好ましい。通常、反応を液相で進めるための最低
圧以上、好ましくは0〜20Kg/cm2Gさらに好まし
くは5〜15Kg/cm2Gの範囲である。
Since the reaction is an oxidative dehydrogenation reaction, it is preferable to lower the reaction pressure as much as possible from the viewpoint of reaction rate. Usually, the pressure is higher than the minimum pressure for proceeding the reaction in a liquid phase, preferably in the range of 0 to 20 kg/cm 2 G, more preferably 5 to 15 kg/cm 2 G.

反応時間は適宜に選べるが、反応温度、触媒
量、反応圧力によつて決る。例えば、反応温度
155℃、反応圧力10Kg/cm2G、ジエタノールアミ
ンに対し10重量%の触媒量の場合には3〜5時間
である。
The reaction time can be selected as appropriate and depends on the reaction temperature, amount of catalyst, and reaction pressure. For example, reaction temperature
In the case of 155° C., reaction pressure of 10 Kg/cm 2 G, and a catalyst amount of 10% by weight based on diethanolamine, the reaction time is 3 to 5 hours.

反応形式はバツチ、セミバツチ、連続反応いず
れの方法も用いることができる。
As for the reaction format, any of batch, semi-batch and continuous reaction methods can be used.

以下、実施例をあげて、本発明の実施の態様を
具体的に例示して説明する。本発明はこれらの実
施例に限定されるものではない。
EXAMPLES Hereinafter, embodiments of the present invention will be specifically illustrated and explained with reference to Examples. The present invention is not limited to these examples.

ここでジエタノールアミンの転化率、イミノジ
酢酸塩の選択率は次の式から導き出される。
Here, the conversion rate of diethanolamine and the selectivity of iminodiacetate are derived from the following equation.

ジエタノールアミンの転化率(%)=反応したジエタノ
ールアミンのモル数/反応に供したジエタノールアミン
のモル数×100 イミノジ酢酸塩の選択率(%)=生成したイミノジ酢酸
塩のモル数/反応したジエタノールアミンのモル数×10
0 実施例 1 ジエタノールアミン80.0g、水酸化ナトリウム
64.0g、水170.0gおよび触媒としてオキシ塩化
ジルコニウム24.8gと硝酸銅4.0gを水300mlに溶
解した溶液へ水酸化ナトリウム水溶液を添加し水
酸化物を沈澱せしめ、この沈澱を水洗し乾燥後、
空気中500℃、3時間加熱処理し、水素気流中230
℃、6時間還元処理して得られた銅およびジルコ
ニウム含有触媒8.0gを500mlのオートクレーブに
仕込み、水素ガスで3回内部置換した後、反応温
度160℃、反応圧力9Kg/cm2gで水素の発生がな
くなるまで反応を行なつた。反応に要した時間は
160℃に昇温後4.0時間であつた。反応終了後、反
応液を取り出し分析を行なつたところ、ジエタノ
ールアミンの転化率は97.7モル%、イミノジ酢酸
塩の選択率は96.0モル%であつた。
Conversion rate of diethanolamine (%) = Number of moles of diethanolamine reacted / Number of moles of diethanolamine subjected to reaction x 100 Selectivity of iminodiacetate (%) = Number of moles of iminodiacetate produced / Number of moles of diethanolamine reacted ×10
0 Example 1 Diethanolamine 80.0g, sodium hydroxide
To a solution of 64.0 g, 170.0 g of water, and 24.8 g of zirconium oxychloride and 4.0 g of copper nitrate as catalysts dissolved in 300 ml of water, an aqueous sodium hydroxide solution was added to precipitate the hydroxide, and the precipitate was washed with water and dried.
Heat treated in air at 500℃ for 3 hours, heated to 230℃ in hydrogen stream
8.0 g of the copper- and zirconium-containing catalyst obtained by reduction treatment at 160°C for 6 hours was charged into a 500ml autoclave, and the interior was replaced with hydrogen gas three times. The reaction was continued until no generation occurred. The time required for the reaction is
The temperature was 4.0 hours after the temperature was raised to 160°C. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of diethanolamine was 97.7 mol%, and the selectivity of iminodiacetate was 96.0 mol%.

実施例 2 ジエタノールアミン80.0g、水酸化ナトリウム
64.0g、水170.0gおよび触媒として、酸化ジル
コニウム10gに硝酸銅4.2gを含む水溶液を含浸
させ、乾燥後、空気中500℃、3時間加熱処理し、
水素気流中230℃、6時間還元処理して得られた
銅を酸化ジルコニウムに担持した触媒8.0gを500
ml、オートクレーブに仕込み、水素ガスで3回内
部置換した後、反応温度160℃、反応圧力9Kg/
cm2gで水素の発生がなくなるまで反応を行なつ
た。反応に要した時間は160℃に昇温後4.2時間で
あつた。反応終了後、反応液を取り出し分析を行
なつたところジエタノールアミンの転化率97.7モ
ル%、イミノジ酢酸塩の選択率は95.7モル%であ
つた。
Example 2 Diethanolamine 80.0g, sodium hydroxide
64.0 g, 170.0 g of water, and 10 g of zirconium oxide as a catalyst were impregnated with an aqueous solution containing 4.2 g of copper nitrate, and after drying, heat treated in air at 500°C for 3 hours,
8.0 g of a catalyst obtained by reducing copper on zirconium oxide at 230°C in a hydrogen stream for 6 hours was
ml, was charged into an autoclave, and after internal purge with hydrogen gas three times, the reaction temperature was 160℃, and the reaction pressure was 9Kg/
The reaction was carried out until no more hydrogen was produced at cm 2 g. The time required for the reaction was 4.2 hours after the temperature was raised to 160°C. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of diethanolamine was 97.7 mol%, and the selectivity of iminodiacetate was 95.7 mol%.

実施例 3 触媒のくり返し活性をみるため、実施例1と同
様の反応条件で、くり返し実験を行なつたところ
10回目に要した反応時間は、昇温後5.0時間であ
つた。反応終了後、反応液を取り出し分析を行な
つたところ、ジエタノールアミンの転化率は96.2
モル%、イミノジ酢酸塩の選択率は94.2モル%で
あつた。
Example 3 In order to check the repeated activity of the catalyst, repeated experiments were conducted under the same reaction conditions as in Example 1.
The reaction time required for the 10th reaction was 5.0 hours after the temperature was raised. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of diethanolamine was 96.2.
The selectivity of iminodiacetate was 94.2 mol%.

Claims (1)

【特許請求の範囲】[Claims] 1 ジエタノールアミンをアルカリ金属の水酸化
物、水および銅とジルコニウム含有触媒の共存下
で反応させることを特徴とするイミノジ酢酸塩の
製造方法。
1. A method for producing iminodiacetate, which comprises reacting diethanolamine with an alkali metal hydroxide, water, and copper in the coexistence of a zirconium-containing catalyst.
JP58185874A 1983-10-05 1983-10-06 Production of iminodiacetate Granted JPS6078949A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58185874A JPS6078949A (en) 1983-10-06 1983-10-06 Production of iminodiacetate
GB08425097A GB2148287B (en) 1983-10-05 1984-10-04 Preparation of aminocarboxylic acid salts from amino alcohols
US06/863,718 US4782183A (en) 1983-10-05 1986-05-16 Method for manufacture of amino-carboxylic acid salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185874A JPS6078949A (en) 1983-10-06 1983-10-06 Production of iminodiacetate

Publications (2)

Publication Number Publication Date
JPS6078949A JPS6078949A (en) 1985-05-04
JPH0153864B2 true JPH0153864B2 (en) 1989-11-15

Family

ID=16178386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185874A Granted JPS6078949A (en) 1983-10-05 1983-10-06 Production of iminodiacetate

Country Status (1)

Country Link
JP (1) JPS6078949A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69407082T2 (en) * 1993-04-12 1998-07-02 Monsanto Co Process for the production of carboxylic acids
JP2804877B2 (en) * 1993-09-20 1998-09-30 株式会社日本触媒 Production method of aminocarboxylate
AR043078A1 (en) * 1998-09-14 2005-07-20 Dow Agrosciences Llc PROCESSES TO PREPARE CARBOXYL ACIDS

Also Published As

Publication number Publication date
JPS6078949A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
US4782183A (en) Method for manufacture of amino-carboxylic acid salts
JP2916256B2 (en) Method for producing aminocarboxylate
JPWO2018021010A1 (en) Method for producing glycine
CN112441966A (en) Method for producing 2-chloro-3-trifluoromethylpyridine from 2,3, 6-trichloro-5-trifluoromethylpyridine
JPH03857B2 (en)
JPH0153864B2 (en)
JPH0153863B2 (en)
JPS61136902A (en) Manufacture of chlorine
JPH0441137B2 (en)
JPH0237911B2 (en)
JPH0153866B2 (en)
JP4026350B2 (en) Method for producing alkyl nitrite
JPH0441136B2 (en)
US3944622A (en) Method for producing ketones
JP2804877B2 (en) Production method of aminocarboxylate
JPS6097945A (en) Production of nitrilotriacetic acid salt
JPS6039349B2 (en) Method for producing 2-cyanophenol derivatives
JPS61189247A (en) Production of oxydicarboxylic acid salt
JPS6010016B2 (en) Method for producing hydroxyacetic acid
JPS61291551A (en) Production of aromatic secondary amino compound
KR20220037501A (en) Bismuth molybdate-based catalyst, process for its preparation and use of this catalyst in the oxidation of propene to acrolein
JPH053401B2 (en)
JP2005035894A (en) Method for producing quinoline compound
JPH05213926A (en) Production of 2-furancarboxylic acid
JPS5918384B2 (en) Method for producing unsaturated amide