JPH0441136B2 - - Google Patents

Info

Publication number
JPH0441136B2
JPH0441136B2 JP58149158A JP14915883A JPH0441136B2 JP H0441136 B2 JPH0441136 B2 JP H0441136B2 JP 58149158 A JP58149158 A JP 58149158A JP 14915883 A JP14915883 A JP 14915883A JP H0441136 B2 JPH0441136 B2 JP H0441136B2
Authority
JP
Japan
Prior art keywords
reaction
monoethanolamine
glycine
hydroxide
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58149158A
Other languages
Japanese (ja)
Other versions
JPS6041644A (en
Inventor
Hideyuki Nishibayashi
Hiromi Yokoyama
Takakyo Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58149158A priority Critical patent/JPS6041644A/en
Publication of JPS6041644A publication Critical patent/JPS6041644A/en
Publication of JPH0441136B2 publication Critical patent/JPH0441136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はモノエタノールアミンからグリシン塩
を製造する新規な方法に関する。さらに詳しくは
モノエタノールアミンをアルカリ金属および/ま
たはアルカリ土類の水酸化物の存在下、反応させ
て、グリシン塩を製造するに際しての特徴ある反
応条件、添加物および触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new process for producing glycine salts from monoethanolamine. More specifically, the present invention relates to characteristic reaction conditions, additives, and catalysts for producing glycine salts by reacting monoethanolamine in the presence of alkali metal and/or alkaline earth hydroxides.

モノエタノールアミンよりグリシンソーダの生
成はたとえば次に示すような反応式(1)に従つて進
み、グリシンソーダよりグリシンの生成は反応式
(2)に従つて進む。
For example, the production of glycine soda from monoethanolamine proceeds according to the reaction formula (1) shown below, and the production of glycine from glycine soda proceeds according to the reaction formula
Proceed according to (2).

H2NCH2CH2OH+NaOH水、触媒 ――――→ 2COONa+2H2 (1) H2NCH2COONa+1/2H2SO4→H2NCH2COOH+1/2Na2SO4 (2) グリシン塩は通常中和してグリシンとし食肉加
工、清涼飲料、インスタント食品、その他加工食
品の食品添加剤として広く使用されている。また
医薬品、農薬、アミノ酸の原料等の広い分野にも
使用されている。
H 2 NCH 2 CH 2 OH + NaOH water, catalyst --- → 2COONa + 2H 2 (1) H 2 NCH 2 COONa + 1/2H 2 SO 4 →H 2 NCH 2 COOH + 1/2Na 2 SO 4 (2) Glycine salt is usually neutralized Glycine is widely used as a food additive in meat processing, soft drinks, instant foods, and other processed foods. It is also used in a wide range of fields including medicines, agricultural chemicals, and raw materials for amino acids.

グリシン塩の工業的製法として、今日、青酸と
ホルムアルデヒドを主原料としたストレツカー法
が一般的に知られている。しかしながら、青酸は
猛毒ガスであるため製造設備、取扱い、立地面で
大きな制約を受け、しかも青酸の大半がアクリロ
ニトリル製造時の副生物として得られるため原料
の安定確保の面でも大きな問題があつた。
As an industrial method for producing glycine salts, the Stretzker method, which uses prussic acid and formaldehyde as main raw materials, is generally known today. However, since hydrocyanic acid is a highly poisonous gas, there are major restrictions in terms of manufacturing equipment, handling, and location.Furthermore, since most of the hydrocyanic acid is obtained as a by-product during the production of acrylonitrile, there are also major problems in securing a stable supply of raw materials.

一方、モノエタノールアミンを苛性アルカリ中
で酸化的脱水素してグリシン塩を製造する方法は
米国特許第2384816号および米国特許第2384817号
等に開示されている。米国特許第2384816号実施
例1で開示されている方法はモノエタノールアミ
ンと水酸化カリウムを無触媒下で反応させている
ため、反応時間が長くしかもグリシン収率は約33
%である。又、水の存在はアミノ基の攻撃を促進
すると記載されており、苛性アルカリもモノエタ
ノールアミンに対する溶解性のよい水酸化カリウ
ムが使用されている。一方、米国特許第2384817
号実施例1および2で開示されている方法はモノ
エタノールアミンとフレーク状の水酸化カリウム
を有毒物である酸化カドミウム触媒の存在下で
160〜185℃まで昇温させながら反応を行つている
が、この場合にもグリシン収率は約6.5%である。
On the other hand, a method for producing glycine salt by oxidative dehydrogenation of monoethanolamine in a caustic alkali is disclosed in US Pat. No. 2,384,816 and US Pat. No. 2,384,817. The method disclosed in Example 1 of U.S. Patent No. 2,384,816 involves reacting monoethanolamine and potassium hydroxide without a catalyst, so the reaction time is long and the glycine yield is approximately 33%.
%. It is also stated that the presence of water promotes the attack of amino groups, and potassium hydroxide, which has good solubility in monoethanolamine, is used as a caustic alkali. Meanwhile, US Patent No. 2384817
The method disclosed in Examples 1 and 2 of this issue involves the addition of monoethanolamine and flaked potassium hydroxide in the presence of a toxic cadmium oxide catalyst.
The reaction is carried out while raising the temperature to 160-185°C, and in this case too, the glycine yield is about 6.5%.

このように、従来技術は無触媒反応では収率が
低すぎるし、酸化カドミウムを触媒とする反応で
は有毒物であるアドミウム化合物が反応生成物中
に混入する危険性があるため食品添加剤用として
のグリシン塩の製造には適しておらずしかも低収
率であるため、これまでストレツカー法と競合し
うる技術にはなりえなかつた。
In this way, the yield of conventional techniques is too low in non-catalyzed reactions, and in reactions using cadmium oxide as a catalyst, there is a risk that admium compounds, which are toxic substances, may be mixed into the reaction product, so they are not suitable for use as food additives. Since this method is not suitable for producing glycine salts and has a low yield, it has not been possible to compete with the Stretzker method until now.

本発明者らは、このストレツカー法と交替しう
るグリシン塩の製造方法として、モノエタノール
アミンの酸化的脱水素法について、鋭意研究した
結果、毒性面で問題のあるカドミウム化合物を使
用せずに高収率でグリシン塩を製造する新規な方
法を見い出し、本願発明を完成した。
As a result of extensive research into the oxidative dehydrogenation method of monoethanolamine as a method for producing glycine salts that can replace the Stretzker method, the present inventors have found that a method for producing glycine salts that can be produced without using cadmium compounds, which has toxicity problems, has been developed. We have discovered a new method for producing glycine salts with high yield and completed the present invention.

本発明はモノエタノールアミンをアルカリ金属
および/またはアルカリ土類金属の水酸化物、銅
含有触媒および水の存在下で反応せしめ、グリシ
ン塩を高収率で製造する方法に関するものであ
る。
The present invention relates to a method for producing glycine salts in high yield by reacting monoethanolamine in the presence of an alkali metal and/or alkaline earth metal hydroxide, a copper-containing catalyst, and water.

本発明の特徴は、モノエタノールアミンからグ
リシン塩を製造するに際し、カドミウム触媒を使
用せずに、安全な銅含有触媒をアルカリ金属およ
び/またはアルカリ土類金属の水酸化物の水溶液
中で120〜220℃という非常に温和な条件で使用す
ることにより、グリシン塩収率をモノエタノール
アミン基準で92〜97モル%まで高めた点にある。
本願発明の実施により、従来法と比較して、グリ
シン塩の収率向上、反応時間の短縮、温和な反応
条件等が可能となつた。その結果、グリシン塩の
大巾な製造コストの削減が可能となり、工業的実
施が容易なモノエタノールアミンの酸化的脱水素
法による画期的なグリシン塩製造法を完成したも
のである。
A feature of the present invention is that when producing glycine salts from monoethanolamine, a safe copper-containing catalyst is used in an aqueous solution of alkali metal and/or alkaline earth metal hydroxides at By using it under extremely mild conditions of 220°C, the glycine salt yield was increased to 92 to 97 mol% based on monoethanolamine.
By carrying out the present invention, it has become possible to improve the yield of glycine salt, shorten the reaction time, and use milder reaction conditions as compared to conventional methods. As a result, the production cost of glycine salts can be drastically reduced, and an innovative method for producing glycine salts using oxidative dehydrogenation of monoethanolamine, which is easy to implement industrially, has been completed.

本発明の一実施態様を示せば、本発明の方法に
用いられる触媒は銅を必須成分として含有するも
のである。触媒は、そのまま又は耐アルカリ性の
担体に担持して使用することができる。触媒の使
用量はモノエタノールアミンに対して1〜70重量
%、好ましくは10〜30重量%の範囲である。触媒
の形態は特に限定するものではないが、金属銅を
空気、酸素中又は適当な酸化剤で表面を酸化した
後、水素雰囲気で還元したもの、ラネー銅をアル
カリで展開した後、水洗したもの、蟻酸銅その他
の銅塩を熱分解して作つたもの等の銅を活性化し
たものが好適に用いられる。
In one embodiment of the present invention, the catalyst used in the method of the present invention contains copper as an essential component. The catalyst can be used as it is or supported on an alkali-resistant carrier. The amount of catalyst used ranges from 1 to 70% by weight, preferably from 10 to 30% by weight, based on monoethanolamine. The form of the catalyst is not particularly limited, but metal copper whose surface has been oxidized in air, oxygen or with an appropriate oxidizing agent and then reduced in a hydrogen atmosphere, and Raney copper which has been developed with an alkali and then washed with water. Copper activated materials, such as those made by thermally decomposing copper formate and other copper salts, are preferably used.

触媒は通常反応による活性低下が低いので、く
り返し使用が可能であるが、一過で使用すること
もできる。
Since the activity of the catalyst usually decreases little due to reaction, it can be used repeatedly, but it can also be used once.

本発明の反応での水は、従来アミノ基の分解を
促進すると考えられていたが、本願発明の温和な
反応条件ではアミノ基の分解が非常に少なく、む
しろモノエタノールアミンとアルカリ金属およ
び/またはアルカリ土類金属の水酸化物を均一系
で反応できるメリツトがあり、高収率のグリシン
塩を得るために不可欠なものである。反応に用い
られる水量はモノエタノールアミンに対し10重量
%以上、好ましくは100〜500重量%の範囲であ
る。
Water in the reaction of the present invention was conventionally thought to promote the decomposition of amino groups, but under the mild reaction conditions of the present invention, the decomposition of amino groups was very small, and rather, the water used in the reaction of monoethanolamine and alkali metals and/or It has the advantage of being able to react alkaline earth metal hydroxides in a homogeneous system, and is essential for obtaining high yields of glycine salts. The amount of water used in the reaction is at least 10% by weight, preferably in the range of 100 to 500% by weight, based on monoethanolamine.

本発明で使用するアルカリ金属の水酸化物とし
ては、水酸化リチウム、水酸化ナトリウム、水酸
化カリウム、水酸化ルビジウム、水酸化セシウム
を含む。またアルカリ土類金属の水酸化物は水酸
化ベリリウム、水酸化マグネシウム、水酸化カル
シウム、水酸化バリウム等を含む。これらの中で
特に水酸化ナトリウムおよび水酸化カリウムが好
適に使用される。アルカリ金属および/またはア
ルカリ土類金属の水酸化物の使用量は反応に使用
するモノエタノールアミンの当量以上、好ましく
は1.0〜2.0当量の範囲である。アルカリ金属およ
び/またはアルカリ土類金属の水酸化物はフレー
ク、粉末、ペレツト等およびそれらの水溶液のい
ずれも用いることができるが、一般に取扱い面で
有利なアルカリ金属の水溶液が好適に使用され
る。
The alkali metal hydroxide used in the present invention includes lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Further, alkaline earth metal hydroxides include beryllium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, and the like. Among these, sodium hydroxide and potassium hydroxide are particularly preferably used. The amount of alkali metal and/or alkaline earth metal hydroxide used is at least the equivalent of monoethanolamine used in the reaction, preferably in the range of 1.0 to 2.0 equivalents. As the alkali metal and/or alkaline earth metal hydroxide, any of flakes, powders, pellets, etc. and aqueous solutions thereof can be used, but aqueous solutions of alkali metals are generally preferably used because of their ease of handling.

モノエタノールアミンはグリシン塩への不純物
の混入を避けるため高純度のものが好ましい。純
度について特に限定するものではないが、通常96
重量%以上、好ましくは99重量%以上のものが用
いられる。
Monoethanolamine is preferably of high purity in order to avoid contamination of the glycine salt with impurities. Although there is no particular restriction on purity, it is usually 96
The amount used is at least 99% by weight, preferably at least 99% by weight.

反応温度はモノエタノールアミンのNH2基、
グリシン塩のNH2基の熱分解及び水素化分解を
防ぐため220℃以下の温度、通常120〜220℃、好
ましくは140〜190℃の温度範囲で行なわれる。
又、銅触媒は220℃を超えた温度から一部表面が
シンタリングを起し、表面積が減少して触媒活性
が低下しはじめるため、触媒をくり返し使用する
場合には220℃以下の温度がより好ましい。
The reaction temperature is NH2 group of monoethanolamine,
In order to prevent thermal decomposition and hydrogenolysis of the NH 2 groups of the glycine salt, the reaction is carried out at a temperature of 220°C or lower, usually in the range of 120 to 220°C, preferably in the range of 140 to 190°C.
Additionally, at temperatures above 220°C, some of the surfaces of copper catalysts begin to sinter, the surface area decreases, and catalytic activity begins to decline. preferable.

反応圧力は、酸化的脱水素反応であるため、で
きるだけ反応圧力を下げる方が反応速度の面から
好ましい。通常、反応を液相で進めるための最低
圧以上、好ましくは0〜20Kg/cm2Gさらに好まし
くは5〜15Kg/cm2Gの範囲である。
Since the reaction is an oxidative dehydrogenation reaction, it is preferable to lower the reaction pressure as much as possible from the viewpoint of reaction rate. Usually, the pressure is higher than the minimum pressure for proceeding the reaction in a liquid phase, preferably in the range of 0 to 20 kg/cm 2 G, more preferably 5 to 15 kg/cm 2 G.

反応時間は適宜に選べるが、反応温度、触媒
量、反応圧力によつて決まる。例えば、反応温度
160℃、反応圧力10Kg/cm2G、モノエタノールア
ミンに対し10重量%の触媒量の場合には4〜6時
間である。
The reaction time can be selected as appropriate and is determined by the reaction temperature, amount of catalyst, and reaction pressure. For example, reaction temperature
In the case of 160° C., reaction pressure of 10 Kg/cm 2 G, and a catalyst amount of 10% by weight based on monoethanolamine, the reaction time is 4 to 6 hours.

反応形式はバツチ、セミバツチ、連続反応いず
れの方法も用いることができる。
As for the reaction format, any of batch, semi-batch and continuous reaction methods can be used.

以下、実施例をあげて、本発明の実施の態様を
具体的に例示して説明する。本発明はこれらの実
施例に限定されるものではない。
Hereinafter, embodiments of the present invention will be specifically illustrated and explained with reference to Examples. The present invention is not limited to these examples.

ここでモノエタノールアミンの転化率、グリシ
ン塩の選択率は次の式から導き出される。
Here, the conversion rate of monoethanolamine and the selectivity of glycine salt are derived from the following equation.

モノエタノールアミンの転化率(%)=反応したモノエ
タノールアミンのモル数/反応に供したモノエタノール
アミンのモル数×100 グリシン塩の選択率(%)=生成したグリシン塩のモル
数/反応したモノエタノールアミンのモル数×100 実施例 1 モノエタノールアミン79.3g、水酸化ナトリウ
ム56g、水135.3gおよび展開ラネー銅8.0gを
500mlのオートクレーブに仕込み、水素ガスで3
回内部置換した後、反応温度160℃、反応圧力9
Kg/cm2Gで、水素の発生がなくなるまで反応を行
つた。反応に要した時間は160℃に昇温後4時間
であつた。反応終了後、反応液を取り出し分析を
行つたところ、モノエタノールアミンの転化率は
98.1モル%、グリシン塩の選択率は97.2モル%で
あつた。
Conversion rate of monoethanolamine (%) = Number of moles of reacted monoethanolamine/Number of moles of monoethanolamine subjected to reaction x 100 Selectivity of glycine salt (%) = Number of moles of glycine salt produced/Number of reacted monoethanolamine Number of moles of monoethanolamine x 100 Example 1 79.3g of monoethanolamine, 56g of sodium hydroxide, 135.3g of water and 8.0g of developed Raney copper
Pour into a 500ml autoclave and heat with hydrogen gas for 3 minutes.
After internal displacement, reaction temperature 160℃, reaction pressure 9
The reaction was carried out at Kg/cm 2 G until no hydrogen was generated. The time required for the reaction was 4 hours after the temperature was raised to 160°C. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of monoethanolamine was found to be
The selectivity for glycine salt was 98.1 mol% and 97.2 mol%.

実施例 2 モノエタノールアミン79.3g、水酸化ナトリウ
ム56g、水135.3gおよびギ酸銅を水素気流中200
℃3時間熱分解して得た金属銅8.0gを500mlのオ
ートクレーブに仕込み、水素ガスで3回内部置換
した後、反応温度160℃、反応圧力9Kg/cm2Gで、
水素の発生がなくなるまで反応を行つた。反応に
要した時間は160℃に昇温後6時間であつた。反
応終了後、反応液を取り出し分析を行つたところ
モノエタノールアミンの転化率97.5モル%、グリ
シン塩の選択率は95.1モル%であつた。
Example 2 79.3 g of monoethanolamine, 56 g of sodium hydroxide, 135.3 g of water, and copper formate were heated at 200 g in a hydrogen stream.
8.0 g of metallic copper obtained by thermal decomposition for 3 hours at ℃ was placed in a 500 ml autoclave, and after internal displacement with hydrogen gas three times, the reaction temperature was 160 ℃ and the reaction pressure was 9 Kg/cm 2 G.
The reaction was continued until no hydrogen was generated. The time required for the reaction was 6 hours after the temperature was raised to 160°C. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion of monoethanolamine was 97.5 mol%, and the selectivity of glycine salt was 95.1 mol%.

実施例 3 モノエタノールアミン79.3g、水酸化カリウム
78.5g、水135.3gおよび展開ラネー銅8.0gを500
mlのオートクレーブに仕込み、水素ガスで3回内
部置換した後、反応温度160℃、反応圧力9Kg/
cm2Gで、水素の発生がなくなるまで反応を行つ
た。反応に要した時間は160℃に昇温後4時間で
あつた。反応終了後、反応液を取り出し分析を行
つたところ、モノエタノールアミンの転化率は
98.2モル%、グリシン塩の選択率は96.5モル%で
あつた。
Example 3 Monoethanolamine 79.3g, potassium hydroxide
78.5g, water 135.3g and expanded Raney copper 8.0g to 500
ml autoclave, and after internal purge with hydrogen gas three times, the reaction temperature was 160℃, and the reaction pressure was 9Kg/
The reaction was carried out at cm 2 G until no more hydrogen was produced. The time required for the reaction was 4 hours after the temperature was raised to 160°C. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of monoethanolamine was found to be
The selectivity for glycine salt was 98.2 mol% and 96.5 mol%.

Claims (1)

【特許請求の範囲】 1 モノエタノールアミンをアルカリ金属およ
び/またはアルカリ土類金属の水酸化物、水およ
び銅含有触媒の共存下で反応させることを特徴と
するグリシン塩の製造方法。 2 反応を120〜220℃の温度で行なう特許請求の
範囲第1項記載の方法。 3 反応を0〜20Kg/cm2Gの圧力で行なう特許請
求の範囲第1項記載の方法。 4 アルカリ金属の水酸化物が水酸化ナトリウム
である特許請求の範囲第1項記載の方法。 5 アルカリ金属の水酸化物が水酸化カリウムで
ある特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A method for producing a glycine salt, which comprises reacting monoethanolamine in the coexistence of an alkali metal and/or alkaline earth metal hydroxide, water, and a copper-containing catalyst. 2. The method according to claim 1, wherein the reaction is carried out at a temperature of 120 to 220°C. 3. The method according to claim 1, wherein the reaction is carried out at a pressure of 0 to 20 kg/cm 2 G. 4. The method according to claim 1, wherein the alkali metal hydroxide is sodium hydroxide. 5. The method according to claim 1, wherein the alkali metal hydroxide is potassium hydroxide.
JP58149158A 1983-08-17 1983-08-17 Preparation of glycine salt Granted JPS6041644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149158A JPS6041644A (en) 1983-08-17 1983-08-17 Preparation of glycine salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149158A JPS6041644A (en) 1983-08-17 1983-08-17 Preparation of glycine salt

Publications (2)

Publication Number Publication Date
JPS6041644A JPS6041644A (en) 1985-03-05
JPH0441136B2 true JPH0441136B2 (en) 1992-07-07

Family

ID=15469055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149158A Granted JPS6041644A (en) 1983-08-17 1983-08-17 Preparation of glycine salt

Country Status (1)

Country Link
JP (1) JPS6041644A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2074486C (en) * 1990-11-27 2002-04-02 Yoshiaki Urano Process for producing aminocarboxylic acid salt
JP6553988B2 (en) * 2015-08-28 2019-07-31 株式会社日本触媒 Method for producing aminocarboxylic acid salt

Also Published As

Publication number Publication date
JPS6041644A (en) 1985-03-05

Similar Documents

Publication Publication Date Title
US4088682A (en) Oxalate hydrogenation process
JP2916256B2 (en) Method for producing aminocarboxylate
AU780040B2 (en) Process for the preparation of carboxylic acid salts from primary alcohols
JPH0373531B2 (en)
WO1996037458A1 (en) Process for the preparation of a halosubstituted aromatic acid
JPH0441136B2 (en)
JPH0153863B2 (en)
US4048236A (en) Process for preparing o-alkoxy-p-allylphenols
JPH0441137B2 (en)
JPH03857B2 (en)
US4110371A (en) Preparation of oxydicarboxylic acid salts
JPS5945666B2 (en) Method for producing aminocarboxylic acids
JPH0153864B2 (en)
JPH0153865B2 (en)
JPH10147557A (en) Production of n-alkyl-substituted aminoalkyne using heterogeneous reaction catalyst
JPH0153866B2 (en)
JPS6129331B2 (en)
JPS6239542A (en) Production of malonic acid
EP0032784B1 (en) Production of hydrazobenzene-3,3'-disulphonic acid
JPS6193146A (en) Production of ethylenediaminetetraacetate
US4014928A (en) Process for purifying α-amino acids
EP1035108A2 (en) Preparation of solutions of betaine
JP4087494B2 (en) Process for producing 1-amino-1-methyl-3 (4) -aminomethylcyclohexane
KR820000327B1 (en) Process for the preparation of methyl ephedrine hydrochloride
JPS6168472A (en) Production of unsaturated hydantoin