JPS6041644A - Preparation of glycine salt - Google Patents

Preparation of glycine salt

Info

Publication number
JPS6041644A
JPS6041644A JP58149158A JP14915883A JPS6041644A JP S6041644 A JPS6041644 A JP S6041644A JP 58149158 A JP58149158 A JP 58149158A JP 14915883 A JP14915883 A JP 14915883A JP S6041644 A JPS6041644 A JP S6041644A
Authority
JP
Japan
Prior art keywords
monoethanolamine
reaction
hydroxide
metal hydroxide
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58149158A
Other languages
Japanese (ja)
Other versions
JPH0441136B2 (en
Inventor
Hideyuki Nishibayashi
秀幸 西林
Hiromi Yokoyama
博美 横山
Takakiyo Goto
後藤 隆清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58149158A priority Critical patent/JPS6041644A/en
Publication of JPS6041644A publication Critical patent/JPS6041644A/en
Publication of JPH0441136B2 publication Critical patent/JPH0441136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a glycine salt useful as a raw material for a food additive, agricultural chemical, drug, and amino acid in a shortened reaction time in high yield, by reacting monoethanolamine with alkaline (earth)metal hydroxide in the presence of water and a copper-containing catalyst. CONSTITUTION:Monoethanolamine is reacted with an aqueous solution of an alkali metal hydroxide and/or an alkaline earth metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, magnesium hydroxide, etc.) in the presence of a safe copper-containing catalyst under mild conditions at 120-220 deg.C at 0-20 kg/cm<2>G, to give the desired glycine salt. The amounts of the alkali metal or alkaline earth metal hydroxide used is <= the equivalent amount of monoethanolamine, preferably 1.0-2.0 equivalents.

Description

【発明の詳細な説明】 本発明はモノエタノールアミンからグリシン塩を製造す
る新規な方法に関する。さらに詳しくはモノエタノール
アミンをアルカリ金属および/まだはアルカリ土類の水
酸化物の存在下。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new process for producing glycine salts from monoethanolamine. More specifically, monoethanolamine in the presence of alkali metal and/or alkaline earth hydroxides.

反応させて、グリシン塩を製造するに際しての特徴ある
反応条件、添加物および触媒に関する。
This article relates to characteristic reaction conditions, additives, and catalysts for producing glycine salts.

モノエタノールアミンよりグリシンソーダの生成はたと
えば次に示すような反応式(1)に従って進み、グリシ
ンソーダよりグリ7ンの生成は反応式(2)に従って進
む。
The production of glycine soda from monoethanolamine proceeds according to the following reaction formula (1), and the production of glycine 7 from glycine soda proceeds according to reaction formula (2).

1I2NcI−12CH201−1+Na01−1水′
触−T−12NCI2COONa+2112 (I)1
12NCII2COONa4−%l]2S04−用2N
CI−12COOH+%NX]2SO4(2)グリシン
塩は通常中和してグリシンとし食肉加工、清涼飲料、イ
ンスタント食品、その他加工食品の食品添加剤として広
く使用されている。
1I2NcI-12CH201-1+Na01-1 water'
Touch-T-12NCI2COONa+2112 (I)1
12NCII2COONa4-%l]2N for 2S04-
CI-12COOH+%NX]2SO4(2) Glycine salt is usually neutralized to glycine and is widely used as a food additive for meat processing, soft drinks, instant foods, and other processed foods.

丑だ医薬品、農薬、アミノ酸の原わ等の広い分野にも使
用されている。
It is also used in a wide range of fields, including pharmaceuticals, agricultural chemicals, and amino acid sources.

グリシン塩の工業的製法として、今1]、1゛J′酸と
ホルムアルデヒドを主原料としたストレッカーiが一般
的に知られている。しかしながら、青酸は猛毒ガスであ
るため製造設備、取扱い、立地面で大きな制約を受け、
しかも青酸の大半がアクリロニトリル製造時の副生物と
して?Uられる/(め原X”lの安定確保の面でも大き
な問題かあった。
As an industrial method for producing glycine salts, Strecker i, which uses 1'J' acid and formaldehyde as main raw materials, is generally known. However, since prussic acid is a highly toxic gas, there are major restrictions in terms of manufacturing equipment, handling, and location.
Moreover, most of the hydrocyanic acid is a by-product during the production of acrylonitrile? There was also a big problem in ensuring the stability of Mehara.

一方、モノエタノールアミンを苛性アルカリ中で酸化的
脱水;l−+ L、てグリシ/」1+4.1を製造する
方法は米国特許第2.384,816号および米国特許
第2,381,817号等に開示されている。米国特許
第2.:344,816吋実施例]で開示されている方
法はモノエタノールアミンと水酸化カリウノ、を・無触
媒して反応させているだめ、反応時間か1(クシかもク
リシン収率は約、33係である。又、水の存在(dアミ
ン基の攻!1%を促進すると記載されており、−1訂性
アルカリもモノエタノールアミンに対する溶解性のよい
水酸化カリウムか使用されている。一方、米国特許第2
,384,817−弓実施例1および2で開示されてい
るツノ法(d、4÷ノエタノールアミンとフレーク状の
水酸化力1]・ンムをイj毒物である酸化カドミウム触
媒の存在下で160〜185°Ctで昇温させながら反
応を行っているが、この場合にもグリシン収率は約65
係でイ)る、1 このように、従来技術は無触媒反応ては収(が低ずきる
し、酸化カドミウムを触媒とする反応でC」−有毒物て
40るカドミウム化合物か反応!1成物中に混入する危
険性かある/ζめ食品協力[l耐用としてのクリシン塩
の製造には通して7j、・らずしかも低収ぐトであるた
め、これtてストレソノJ−法と競合しうる技術にはな
りえ々かつ/(−5゜、本発明者ら(弓1、このストレ
ッカー法と代替しつるクリシン塩の製造方法として、モ
ノエタノールアミンの酸化的脱水上法について、鋭意r
ib(死した結果、毒性ih[て問題のある力1’ ミ
ウム化合物を使用ぜすに高収5イてクリシン”)5?t
を製造するXJ′f規な方法を見い出し、本願発明を冗
成した。
On the other hand, a method for producing monoethanolamine by oxidative dehydration in caustic alkali; etc. are disclosed. US Patent No. 2. The method disclosed in ``Example: 344,816 inches'' involves the reaction of monoethanolamine and potassium hydroxide without any catalyst, and the reaction time is approximately 1 (about 1.3 mm). In addition, the presence of water (it is stated that it promotes the attack of d-amine groups by 1%), and potassium hydroxide, which has good solubility in monoethanolamine, is used as a -1 correcting alkali.On the other hand, US Patent No. 2
, 384, 817 - The horn method (d, 4 ÷ hydroxylation power of ethanolamine and flakes 1], um, disclosed in Examples 1 and 2) in the presence of a cadmium oxide catalyst, which is a poisonous substance. The reaction was carried out while raising the temperature at 160-185°Ct, but in this case too, the glycine yield was about 65°C.
In this way, in the conventional technology, the non-catalytic reaction has a low yield, and the reaction using cadmium oxide as a catalyst does not react with cadmium compounds that are toxic. There is a risk of contamination with foods / ζ Food cooperation [l The production of chrysin salt as a durable product requires 7j, and since it has a low yield, it is competitive with the Stresono J-method. The present inventors (Yumi 1) have been earnestly researching the oxidative dehydration method of monoethanolamine as a method for producing vine chrysine salt as an alternative to the Strecker method. r
ib (Death results, toxicity Ih [problematic power 1' high yield even though mium compound is used 5") 5?t
We have discovered a unique method for manufacturing XJ'f, and have completed the present invention.

本発明はモノエタノールアミンをアルカリ金属および/
1だはアルカリ土類金属の水酸化物、調合イー」触媒お
よび水のイf在下て反応せしめ、クリシン塩を高収率で
製造する方法に閏するもので1イ)る。
The present invention combines monoethanolamine with an alkali metal and/or
1) is concerned with a method for producing chrysine salt in high yield by reacting an alkaline earth metal hydroxide in the presence of a catalyst and water.

本発明のV4M徴は、モノエタノールアミンからクリシ
ン塩を製造するに際し、力トミラノ、触媒を使用せずに
、安全な銅含有触媒をアルカリ金属お上iJ/lだはア
ルカリ土類金属の水酸化物の水溶液中て120〜220
 ’Cという非常に温和な条件で使用することにより、
グリシン塩収;(−をモノエタノールアミン基準で92
〜97モル係寸て高めだ点にある。本願発明の実施によ
り、従来法と比較して、クリシン塩の収率向上、反応1
t!1間の先j縮、温和な反応条件等か可能となつ/こ
。その結果5グリシ/塩の大+1jな製造コストの削減
か可能となり、工業的実施が容易なモノエタノールアミ
ンの酸化的脱水素法による両jυ]的なグリ/ン几1製
造法を完成し/ζものである。
The V4M feature of the present invention is that in the production of chrysine salt from monoethanolamine, a safe copper-containing catalyst can be used for the hydration of alkali metal iJ/l or alkaline earth metal without using a catalyst. 120-220 in an aqueous solution of
By using it under the very mild conditions of 'C,
Glycine salt yield: (-92 based on monoethanolamine)
It is on the high side at ~97 mol. By implementing the present invention, compared to the conventional method, the yield of chrysin salt is improved, reaction 1
T! Pre-condensation for 1 hour, mild reaction conditions, etc. are possible. As a result, it became possible to reduce the production cost by a large amount of 5glycide/salt, and completed a process for producing 1glycide salt 1 using the oxidative dehydrogenation method of monoethanolamine, which is easy to implement industrially. It is a ζ thing.

本発明の一実施態様を示せは、本発明の方法に用いら扛
る触媒は銅を必須成分として含有するもので、ちる。触
媒は、その斗1又1qj、111Iアルカリ471の4
−1体に担4’;’+シて使用することかできる。。
In one embodiment of the present invention, the catalyst used in the method of the present invention contains copper as an essential component. The catalyst is 1 or 1qj, 111I alkali 471-4
- It can be used by carrying 4';'+shi in one body. .

触媒の使用量はモノエタノールアミンに対して1〜70
−小量係、好1しくは10−30重量係の範囲である1
、触媒の形態は特に限定するものでは〃いが5金属銅を
空気、酸素中又は適尚な酸化剤で表面を酸化した後、水
素雰囲気で歯元し/こもの、ラネー”jPlをアルカリ
で展開[7だ後、水洗し/こもの、蟻酸銅その他の銅塩
を熱分1竹して作ったもの等の銅を活性化したものが好
適に用いられる。
The amount of catalyst used is 1 to 70% relative to monoethanolamine.
- a small weight factor, preferably in the range 10-30 weight factor 1
The form of the catalyst is not particularly limited; however, after oxidizing the surface of metallic copper in air, oxygen, or with an appropriate oxidizing agent, it is oxidized in a hydrogen atmosphere. After development [7], it is washed with water, and copper-activated products, such as those made by heating copper formate or other copper salts, are preferably used.

触媒は通常反応による活+aL低−トかイバいので、く
り返し使用か可能であるか、−過て使用することもてき
る。
Catalysts usually have low activity and aL during reactions, so they can be used repeatedly or used repeatedly.

本発明の反応でのA(は、従来アミツノ、(の分解を促
、(r−すると考えられていたか、木屑I発明の(晶、
Vllな反応条件ではアミノ基の分解が、、l[暦;;
に少なく、むしろモノエタノールアミンとアルカリ金属
およ0・/寸ゾ、二はアルカリ土類金属の水酸化物を均
一系で反応てきるメリットがあり、高収(−のクリシン
塩をイ;Iるために不1月矢なものである。
In the reaction of the present invention, A( was conventionally thought to promote the decomposition of Amitsuno, (, and (r-);
Under Vll reaction conditions, the decomposition of the amino group is as follows.
Rather, it has the advantage of reacting monoethanolamine with alkali metal and alkaline earth metal hydroxide in a homogeneous system; It is a rare occasion for the purpose of

反応に用いられる水量はモノエタノールアミ/に対し1
0重量φ以上、好」シ〈は10(〕〜500重量係の範
囲である6、 本発明で使用するアルカリ全圧の水酸化物としては、水
酸化リチウム、水酸化す(・リウl3、水酸化カリウム
、水酸化ルビジウム、水酸化セシウムを含む。寸だアル
カリ土類金属の水酸化物は水酸化べIJ IJウム、水
酸化マグネシウム、水酸化カルシウム、水酸化バリウム
等を含む。これらの中て特に水酸化すトリウムおよび水
酸化カリウムが好適に使用される。アルカリ金属および
/またけアルカリ土類金属の水酸化物の使用量は反応に
使用するモノエタノールアミンの当量以上、好捷しくは
10〜20当量の範囲である。アルカリ金属および/′
8たけアルカリ土類金属の水酸化物はフレーク、粉末、
ペレット等およびそれらの水溶液のいずれも用いること
ができるが、一般に取扱い面でイ」利なアルカリ金属の
水溶液が好適に使用される。
The amount of water used in the reaction is 1 for monoethanolamine/
0 weight φ or more, preferably in the range of 10 () to 500 weight ratio6. As the alkaline total pressure hydroxide used in the present invention, lithium hydroxide, Contains potassium hydroxide, rubidium hydroxide, cesium hydroxide.Alkaline earth metal hydroxides include potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, etc. In particular, sthorium hydroxide and potassium hydroxide are preferably used.The amount of alkali metal and/or alkaline earth metal hydroxide used is preferably at least the equivalent of monoethanolamine used in the reaction. In the range of 10 to 20 equivalents.Alkali metal and/'
8. The hydroxides of alkaline earth metals are flakes, powders,
Although pellets and their aqueous solutions can be used, aqueous solutions of alkali metals are generally preferred because they are easier to handle.

モノエタノールアミンはグリシン塩への不純物の混入を
避けるため高純度のものが好ましい。
Monoethanolamine is preferably of high purity in order to avoid contamination of the glycine salt with impurities.

純度について特に限定するものではないが、通常96重
量係以上、好丑しくは99重量係以上のものが用いられ
る。
Although there are no particular limitations on the purity, a purity of 96% by weight or more, preferably 99% by weight or more is used.

反応温度はモノエタノールアミンのN1−12基、グリ
シノ塩のN l−12基の熱分解及び水素化分解を防ぐ
だめ220°C以下の温度、通常120〜2200C5
好ましくは140〜190°Cの副、度範囲て行なわれ
る。又、銅触媒は220℃を超えた温度から一部表面が
ンンクリングを起し、表面粘が減少して触媒7′Ii性
が低下しはじめるため、触媒をくり返し使用する場合に
(は220℃以下の温度がより好寸しい。
The reaction temperature is 220°C or less, usually 120 to 2200°C, in order to prevent thermal decomposition and hydrogenolysis of the N1-12 groups of monoethanolamine and the N1-12 groups of glycino salt.
Preferably, the temperature range is from 140 to 190°C. In addition, when the temperature exceeds 220°C, some parts of the surface of the copper catalyst start to shrink, the surface viscosity decreases, and the catalyst 7'Ii properties begin to deteriorate. temperature is more suitable.

反応圧力は、酸化的脱水素反応であるため、できるだけ
反応圧力を下げる方が反応速度の面から好寸しい。通常
、反応を液相て進めるだめの最低圧以上、好寸しくは0
〜201りg/cnYaさらに好寸しくは5〜’ 5に
9/artOの範囲である。
Since the reaction pressure is an oxidative dehydrogenation reaction, it is better to lower the reaction pressure as much as possible from the viewpoint of reaction rate. Usually, the minimum pressure of the vessel in which the reaction proceeds in the liquid phase, preferably 0
The range is from 5 to 9 g/cnYa, more preferably from 5 to 9 g/cnYa.

反応時間は適宜に選べるが、反応温度、触媒量、反応圧
力によって決する。例えば、反応温度160’C1反応
圧力” Okg/cniG、モノエタノールアミンに対
し10重量係の触媒量の場合に(1′:14〜6時間で
ある。
The reaction time can be selected as appropriate, but it is determined by the reaction temperature, amount of catalyst, and reaction pressure. For example, in the case of a reaction temperature of 160'C1 reaction pressure "Okg/cniG" and a catalyst amount of 10 parts by weight relative to monoethanolamine (1': 14 to 6 hours).

反応形式(はバッチ、セミバッチ、連続反応いずれの方
法も用いることができる。
Any reaction method (batch, semi-batch, or continuous reaction method can be used).

以下、実施例をあげて、本発明の実施の態様を具体的に
例示して説明する。本発明はこれらの実施例に限定され
るものではない。
Hereinafter, embodiments of the present invention will be specifically illustrated and explained with reference to Examples. The present invention is not limited to these examples.

ここでモノエタノールアミンの転化率、グリシン1](
の選択率は次の式から導き出される。
Here, the conversion rate of monoethanolamine, glycine 1] (
The selectivity of is derived from the following formula.

モノエタノールアミンの転化率(%) グリ7ン」2、にの選択率(係) 実施例1 モノエタノールアミン79.3 ? 、水酸化ナトリウ
ム5Gf/、水] 35.3 S’および展開ラネー銅
807を500m1のオートクレーブに仕込み、水素ガ
スで3回内部置換した後、反応温度160℃、反応圧力
9 kg/cnioで、水素の発生がなくなる寸で反応
を行つ/ζ。反応に要した時間r↓160℃に昇?A7
を後4時間てあつ/ζ0反応終了後、反応液を取り出し
分析を行つ/こところ、モノエタノールアミンの転化率
はり81モル係、グリシン塩の選択率は972モル係て
あつ/こ。
Conversion rate of monoethanolamine (%) Selectivity of Gly7in 2, Example 1 Monoethanolamine 79.3 ? , sodium hydroxide 5 Gf/, water] 35.3 S' and developed Raney copper 807 were charged into a 500 ml autoclave, and after internal displacement with hydrogen gas three times, hydrogen was added at a reaction temperature of 160° C. and a reaction pressure of 9 kg/cnio. The reaction is carried out until the occurrence of ζ is stopped. Time required for reaction r ↓ Rise to 160℃? A7
After the reaction was completed, the reaction solution was taken out and analyzed.The conversion of monoethanolamine was 81 moles, and the selectivity of glycine salt was 972 moles.

実施例2 モノエタノールアミン79.3 g、水酸化すトリウム
569、水135.3 fiおよびギ酸銅を水素気流中
200 ’G 3時間熱分)宵して得/こ金ノ、・〕3
銅s、 o yを50 (i ml(Qy4−−1−ク
レープに仕込み、水素ガスで:3回内部置換した後、反
応温度160”G、反応圧力9kg/′c11()で、
水素の発生かなくなる寸で反応を行つプこ。反応に要し
た時間は] fi (]゛Cに昇温後6時間てあった。
Example 2 Monoethanolamine 79.3 g, sodium hydroxide 569, water 135.3 fi and copper formate were heated overnight at 200'G for 3 hours in a stream of hydrogen.
After 50 (i ml) of copper s, o y was charged into a Qy4--1-crepe and internally replaced with hydrogen gas three times, at a reaction temperature of 160"G and a reaction pressure of 9kg/'c11(),
The reaction is carried out until hydrogen is no longer produced. The time required for the reaction was 6 hours after the temperature was raised to 50°C.

反応路Y後、反応液を取り出し分析を行ったところモノ
エタノールアミンの転化率975モル係、グリシン1)
、、1の選択率は951モル係であった。
After reaction path Y, the reaction solution was taken out and analyzed, and the conversion rate of monoethanolamine was 975 mol, glycine 1)
,,1 had a selectivity of 951 moles.

実施例3 モノエタノールアミン71J、 3 y 、 /J< 
酸化力1)ウl、7857、水+353yおよび展開ラ
ネーt1.lI 8. OV f 500 mlのJ−
l−クレープに仕込み、水や、ガスて′3回内部置換し
た後、反応温度160′′0、反応+1力9 kg/c
nfaて、水L4’、の発生かなく在る寸で反応を行つ
/こ。反応に要した時間は160°Oにylt、1..
1.後4 up;間であった。反応終了後、反応液を取
り出し分)p’tr“工つ/こところ、モノエタノール
アミンの11′J、化バ・は982モル係、グリシンB
、;;のL′杖1尺率は!165モルチてあった。
Example 3 Monoethanolamine 71J, 3 y, /J<
Oxidizing power 1) Ul, 7857, water +353y and expanded Raney t1. lI 8. OV f 500 ml J-
After charging into a l-crepe and internally purging with water and gas 3 times, the reaction temperature was 160'', and the reaction +1 force was 9 kg/c.
The reaction is carried out in such a state that nfa and water L4' are not generated. The time required for the reaction was ylt at 160°O, 1. ..
1. It was 4 days later. After the reaction is complete, take out the reaction solution and add 11'J of monoethanolamine, 982 moles of chemical compound, and glycine B.
,; ;'s L' cane 1 scale is! It was 165 molti.

Claims (5)

【特許請求の範囲】[Claims] (1) モノエタノールアミンをアルカリ金属お工び/
またはアルカリ土類金属の水酸化物、水および銅含有触
媒の共存下で反応させることを特徴とするグリシン塩の
製造方法。
(1) Processing monoethanolamine with alkali metals/
Alternatively, a method for producing a glycine salt, which comprises reacting in the coexistence of an alkaline earth metal hydroxide, water, and a copper-containing catalyst.
(2)反応を120〜220℃の温度で行なう特許請求
の範囲第(1)項記載の方法。
(2) The method according to claim (1), wherein the reaction is carried out at a temperature of 120 to 220°C.
(3)反応をO〜20kg/cIOの圧力で行なう特許
請求の範囲第(1)項記載の方法。
(3) The method according to claim (1), wherein the reaction is carried out at a pressure of 0 to 20 kg/cIO.
(4) アルカリ金属の水酸化物が水酸化ナトリウム9
である特許請求の範囲第(1)項記載の方法。
(4) The alkali metal hydroxide is sodium hydroxide9
The method according to claim (1).
(5) アルカリ金属の水酸化物が水酸化カリウムであ
る特許請求の範囲第(11項記載の方法。
(5) The method according to claim 11, wherein the alkali metal hydroxide is potassium hydroxide.
JP58149158A 1983-08-17 1983-08-17 Preparation of glycine salt Granted JPS6041644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149158A JPS6041644A (en) 1983-08-17 1983-08-17 Preparation of glycine salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149158A JPS6041644A (en) 1983-08-17 1983-08-17 Preparation of glycine salt

Publications (2)

Publication Number Publication Date
JPS6041644A true JPS6041644A (en) 1985-03-05
JPH0441136B2 JPH0441136B2 (en) 1992-07-07

Family

ID=15469055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149158A Granted JPS6041644A (en) 1983-08-17 1983-08-17 Preparation of glycine salt

Country Status (1)

Country Link
JP (1) JPS6041644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009559A1 (en) * 1990-11-27 1992-06-11 Nippon Shokubai Co., Ltd. Process for producing amino carboxylic acid salt
JP2017043587A (en) * 2015-08-28 2017-03-02 株式会社日本触媒 Manufacturing method of aminocarboxylic acid salt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009559A1 (en) * 1990-11-27 1992-06-11 Nippon Shokubai Co., Ltd. Process for producing amino carboxylic acid salt
JP2017043587A (en) * 2015-08-28 2017-03-02 株式会社日本触媒 Manufacturing method of aminocarboxylic acid salt

Also Published As

Publication number Publication date
JPH0441136B2 (en) 1992-07-07

Similar Documents

Publication Publication Date Title
US4088682A (en) Oxalate hydrogenation process
JP2916256B2 (en) Method for producing aminocarboxylate
AU707177B2 (en) Process for the preparation of a halosubstituted aromatic acid
JPH0373531B2 (en)
JPS6041644A (en) Preparation of glycine salt
JPS5829296B2 (en) Method for producing monomethylhydrazine
CN113233990B (en) Preparation method of 5-chloro-2-aminobenzoic acid intermediate
JPH0153863B2 (en)
US4048236A (en) Process for preparing o-alkoxy-p-allylphenols
US3230266A (en) Preparation of phloroglucinol
JPH0441137B2 (en)
JPS5945666B2 (en) Method for producing aminocarboxylic acids
JPH0153864B2 (en)
JPS6097945A (en) Production of nitrilotriacetic acid salt
JPS60224661A (en) Production of alpha-amino acid
JPS6129331B2 (en)
US4014928A (en) Process for purifying α-amino acids
JPS62288102A (en) Production of dicyanamide metal salt
JP2839721B2 (en) Method for producing α-formylaminonitrile
JPS6193146A (en) Production of ethylenediaminetetraacetate
JPS6239542A (en) Production of malonic acid
JPS6168472A (en) Production of unsaturated hydantoin
JPH0625090A (en) Production of neopentyl glycol hydroxypivarate
JPH0153866B2 (en)
JPS6356219B2 (en)