JPH0153866B2 - - Google Patents

Info

Publication number
JPH0153866B2
JPH0153866B2 JP58208246A JP20824683A JPH0153866B2 JP H0153866 B2 JPH0153866 B2 JP H0153866B2 JP 58208246 A JP58208246 A JP 58208246A JP 20824683 A JP20824683 A JP 20824683A JP H0153866 B2 JPH0153866 B2 JP H0153866B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
triethanolamine
nitrilotriacetate
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58208246A
Other languages
Japanese (ja)
Other versions
JPS60100545A (en
Inventor
Hideyuki Nishibayashi
Hiromi Yokoyama
Takakyo Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58208246A priority Critical patent/JPS60100545A/en
Priority to GB08425097A priority patent/GB2148287B/en
Publication of JPS60100545A publication Critical patent/JPS60100545A/en
Priority to US06/863,718 priority patent/US4782183A/en
Publication of JPH0153866B2 publication Critical patent/JPH0153866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はトリエタノールアミンからニトリロト
リ酢酸塩を製造する新規な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new process for producing nitrilotriacetate from triethanolamine.

さらに詳しくはトリエタノールアミンをアルカ
リ金属の水酸化物の存在下、反応させて、ニトリ
ロトリ酢酸塩を製造するに際しての特徴ある反応
条件、添加物および触媒に関する。
More specifically, the present invention relates to characteristic reaction conditions, additives, and catalysts for producing nitrilotriacetate by reacting triethanolamine in the presence of an alkali metal hydroxide.

トリエタノールアミンよりニトリロトリ酢酸ソ
ーダの生成はたとえば次に示すような反応式
〔1〕に従つて進み、ニトリロトリ酢酸ソーダよ
りニトリロトリ酢酸の生成は反応式〔2〕に従つ
て進む。
The production of sodium nitrilotriacetate from triethanolamine proceeds according to reaction formula [1] shown below, and the production of nitrilotriacetic acid from sodium nitrilotriacetate proceeds according to reaction formula [2], for example.

N(CH2CH2OH)3+3NaOH水、触媒 ―――――→ N(CH2COONa)3+6H2 ……(1) N(CH2COONa)3+3/2H2SO4→N(CH2COOH)3+3
/2Na2SO4……(2) ニトリロトリ酢酸塩はその優れたキレート能か
ら、硬水軟化剤、精練助剤、染色助剤、ペーパー
コーテイング剤、スケール防止剤、洗剤ビルダ
ー、石ケンの変質防止剤等の広い分野で使用され
ている。
N(CH 2 CH 2 OH) 3 +3NaOH water, catalyst――――→ N(CH 2 COONa) 3 +6H 2 …(1) N(CH 2 COONa) 3 +3/2H 2 SO 4 →N(CH 2 COOH) 3 +3
/2Na 2 SO 4 ...(2) Due to its excellent chelating ability, nitrilotriacetate is used as a water softener, scouring aid, dyeing aid, paper coating agent, scale inhibitor, detergent builder, and soap deterioration inhibitor. It is used in a wide range of fields such as

ニトリロトリ酢酸塩の工業的製法として、今
日、青酸とホルムアルデヒドを主原料としたスト
レツカー法が一般的に知られている。しかしなが
ら、青酸は猛毒ガスであるため製造設備、取扱
い、立地面で大きな制約を受け、しかも青酸の大
半がアクリロニトリル製造時の副生物として得ら
れるため原料の安定確保の面でも大きな問題があ
つた。
Today, the Stretzker process, which uses hydrocyanic acid and formaldehyde as main raw materials, is generally known as an industrial method for producing nitrilotriacetates. However, since hydrocyanic acid is a highly poisonous gas, there are major restrictions in terms of manufacturing equipment, handling, and location.Furthermore, since most of the hydrocyanic acid is obtained as a by-product during the production of acrylonitrile, there are also major problems in securing a stable supply of raw materials.

一方、トリエタノールアミンを苛性アルカリ中
で酸化的脱水素してニトリロトリ酢酸塩を製造す
る方法は、米国特許第2384816号、米国特許第
3535373号、米国特許第3578709号、米国特許第
3739021号等に開示されている。米国特許第
2384816号の実施例5にはトリエタノールアミン
水酸化カリウムを無触媒下で反応させる方法が開
示されているが、反応時間は長く、しかも転化率
が低い。米国特許第3535373号、米国特許第
3578709号、および米国特許第3739021号には酸化
カドミウムを触媒とする方法が開示されている
が、これらの実施例でニトリロトリ酢酸の最高収
率は87.8%である。また、米国特許第3578709号
の実施例6には酸化亜鉛を触媒とした方法が開示
されているが、反応時間は長く、ニトリロトリ酢
酸の収率も77.3%で酸化カドミウムに比べ触媒活
性は劣つている。
On the other hand, a method for producing nitrilotriacetate by oxidative dehydrogenation of triethanolamine in caustic alkali is disclosed in US Pat. No. 2,384,816 and US Pat.
3535373, U.S. Patent No. 3578709, U.S. Patent No.
It is disclosed in No. 3739021 etc. US Patent No.
Example 5 of No. 2384816 discloses a method of reacting triethanolamine potassium hydroxide without a catalyst, but the reaction time is long and the conversion rate is low. U.S. Patent No. 3535373, U.S. Patent No.
No. 3,578,709 and US Pat. No. 3,739,021 disclose methods using cadmium oxide as a catalyst, and the highest yield of nitrilotriacetic acid in these examples is 87.8%. Furthermore, Example 6 of US Pat. No. 3,578,709 discloses a method using zinc oxide as a catalyst, but the reaction time is long and the yield of nitrilotriacetic acid is 77.3%, which indicates that the catalyst activity is inferior to that of cadmium oxide. There is.

このように、従来技術は無触媒あるいは酸化亜
鉛を触媒とした反応では収率が低すぎるし、酸化
カドミウムを触媒とする反応では有毒物であるカ
ドミウム化合物が反応生成物中に混入する危険性
があるため用途によつては全く使用できず、また
廃水として河川に流出した場合には大きな社会問
題を引き起こすため、これまでストレツカー法と
競合しうる技術にはなりえなかつた。
As described above, in the conventional technology, the yield is too low in reactions without catalyst or using zinc oxide as a catalyst, and in the reaction using cadmium oxide as a catalyst, there is a risk that cadmium compounds, which are toxic substances, may be mixed into the reaction product. Because of this, it cannot be used at all for some purposes, and it causes major social problems if it flows into rivers as wastewater, so until now it has not been able to become a technology that can compete with the Stretzker method.

本発明者らは、このストレツカー法と代替しう
るニトリロトリ酢酸塩の製造方法として、トリエ
タノールアミンの酸化的脱水素法について、鋭意
研究した結果、毒性面で問題のあるカドミウム化
合物を使用せずに高収率でニトリロトリ酢酸塩を
製造する新規な方法を見い出し、本願発明を完成
した。
As a result of intensive research into the oxidative dehydrogenation method of triethanolamine as a method for producing nitrilotriacetate that can be used as an alternative to the Stretzker method, the present inventors found that it is possible to produce nitrilotriacetate without using cadmium compounds that have toxicity problems. We have discovered a new method for producing nitrilotriacetate in high yield and completed the present invention.

本発明はトリエタノールアミンをアルカリ金属
の水酸化物、水および銅とジルコニウム含有触媒
の共存下で反応させることを特徴とするニトリロ
トリ酢酸塩の製造方法に関するものである。
The present invention relates to a method for producing nitrilotriacetate, which is characterized by reacting triethanolamine with an alkali metal hydroxide, water, and copper in the coexistence of a zirconium-containing catalyst.

本発明の特徴は、トリエタノールアミンからニ
トリロトリ酢酸塩を製造するに際し、カドミウム
触媒を使用せずに、安全な銅とジルコニウムを含
有する触媒を使用する点にある。
A feature of the present invention is that when producing nitrilotriacetate from triethanolamine, a safe catalyst containing copper and zirconium is used without using a cadmium catalyst.

銅含有触媒は酸化ジルコニウムに担持しなくと
も、140〜220℃という非常に温和な条件で使用す
ることによりニトリロトリ酢酸塩収率をトリエタ
ノールアミン基準で89〜93モル%とすることがで
きる。しかし、銅とジルコニウムを含有する触媒
は耐熱性が向上し、触媒の寿命が長くなるという
効果だけでなく、選択率及び触媒活性が向上し、
ニトリロトリ酢酸塩収率で91〜94モル%、反応温
度で10〜20℃下げることが可能となつた。本願発
明の実施により、従来法と比較してニトリロトリ
酢酸塩の収率向上、反応時間の短縮、温和な反応
条件等が可能となつた。その結果、ニトリロトリ
酢酸塩の大巾な製造コストの削減が可能となり、
工業的実施が容易なトリエタノールアミンの酸化
的脱水素法による画期的なニトリロトリ酢酸塩製
造法を完成したものである。
Even if the copper-containing catalyst is not supported on zirconium oxide, the yield of nitrilotriacetate can be made 89 to 93 mol% based on triethanolamine by using it under very mild conditions of 140 to 220°C. However, the catalyst containing copper and zirconium not only has improved heat resistance and longer catalyst life, but also has improved selectivity and catalytic activity.
It became possible to achieve a yield of nitrilotriacetate of 91 to 94 mol% and a reduction in reaction temperature of 10 to 20°C. By carrying out the present invention, it has become possible to improve the yield of nitrilotriacetate, shorten the reaction time, and use milder reaction conditions as compared to conventional methods. As a result, it is possible to significantly reduce the manufacturing cost of nitrilotriacetate,
This work has completed an innovative method for producing nitrilotriacetate using oxidative dehydrogenation of triethanolamine, which is easy to implement industrially.

本発明の一実施態様を示せば、本発明の方法に
用いれる触媒は銅およびジルコニウムを必須成分
として含有するものである。触媒は、そのまま、
または耐アルカリ性の担体に担持して使用するこ
とができる。触媒の使用量はトリエタノールアミ
ンに対して1〜70重量%、好ましくは10〜30重量
%の範囲である。
In one embodiment of the present invention, the catalyst used in the method of the present invention contains copper and zirconium as essential components. The catalyst is as it is.
Alternatively, it can be used by being supported on an alkali-resistant carrier. The amount of catalyst used ranges from 1 to 70% by weight, preferably from 10 to 30% by weight, based on triethanolamine.

本発明の銅およびジルコニウム含有触媒は、銅
またはジルコニウムの原料化合物として硝酸塩、
硫酸塩、炭酸塩、酸化物、ハロゲン化物、水酸化
物等の無機塩および酢酸塩、シユウ酸塩、クエン
酸塩、乳酸塩等の有機塩などが挙げられる。特に
水溶性の大きい塩が好ましい。
The copper- and zirconium-containing catalyst of the present invention uses nitrate as a raw material compound of copper or zirconium,
Examples include inorganic salts such as sulfates, carbonates, oxides, halides, and hydroxides, and organic salts such as acetates, oxalates, citrates, and lactates. In particular, highly water-soluble salts are preferred.

触媒の形態は特に限定するものではないが、銅
化合物とジルコニウム化合物を水に溶解した溶液
へアルカリ水溶液を添加し、水酸化物を沈殿せし
め、この沈殿物を水洗し、乾燥後空気中または酸
素中で酸化した後、水素雰囲気中で還元処理した
銅およびジルコニウム含有触媒が好適である。ま
た、酸化ジルコニウムに銅化合物水溶液を含浸さ
せ、乾燥後空気中または酸素中で酸化した後水素
雰囲気中で還元処理した銅を酸化ジルコニウムに
担持した触媒が好適に用いられる。
Although the form of the catalyst is not particularly limited, an alkaline aqueous solution is added to a solution of a copper compound and a zirconium compound dissolved in water to precipitate the hydroxide, the precipitate is washed with water, and after drying, it is exposed to air or oxygen. Copper- and zirconium-containing catalysts that have been oxidized in a hydrogen atmosphere and then reduced in a hydrogen atmosphere are preferred. Moreover, a catalyst in which zirconium oxide is impregnated with an aqueous solution of a copper compound, dried, oxidized in air or oxygen, and then reduced in a hydrogen atmosphere and supported on zirconium oxide is preferably used.

触媒は通常反応による活性低下が低いので、く
り返し使用が可能であるが、一過で使用すること
もできる。
Since the activity of the catalyst usually decreases little due to reaction, it can be used repeatedly, but it can also be used once.

本発明の反応での水は、トリエタノールアミン
とアルカリ金属の水酸化物を均一系とするため、
反応条件を温和にすることができ、高収率のニト
リロトリ酢酸塩を得るために不可欠なものであ
る。反応に用いられる水量はトリエタノールアミ
ンに対し10重量%以上、好ましくは100〜500重量
%の範囲である。
Water in the reaction of the present invention is used to form a homogeneous system of triethanolamine and alkali metal hydroxide.
The reaction conditions can be made mild, which is essential for obtaining a high yield of nitrilotriacetate. The amount of water used in the reaction is at least 10% by weight, preferably in the range of 100 to 500% by weight, based on triethanolamine.

本発明で使用するアルカリ金属の水酸化物とし
ては、水酸化リチウム、水酸化ナトリウム、水酸
化カリウム、水酸化ルビジウム、水酸化セシウム
を含む。これらの中で特に水酸化ナトリウムおよ
び水酸化カリウムが好適に使用される。アルカリ
金属の水酸化物の使用量は反応に使用するトリエ
タノールアミンの転化率相当当量以上、好ましく
は1.0〜2.0当量の範囲である。アルカリ金属の水
酸化物はフレーク、粉未、ペレツト等およびそれ
らの水溶液のいずれも用いることができるが、一
般に取扱い面で有利なアルカリ金属の水溶液が好
適に使用される。
The alkali metal hydroxide used in the present invention includes lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, sodium hydroxide and potassium hydroxide are particularly preferably used. The amount of alkali metal hydroxide used is at least an equivalent equivalent to the conversion rate of triethanolamine used in the reaction, preferably in the range of 1.0 to 2.0 equivalents. As the alkali metal hydroxide, any of flakes, powder, pellets, etc. and aqueous solutions thereof can be used, but aqueous alkali metal solutions are generally preferably used because they are convenient in terms of handling.

トリエタノールアミンはニトリロトリ酢酸塩へ
の不純物の混入を避けるため高純度のものが好ま
しい。純度について特に限定するものではない
が、通常96重量%以上、好ましくは99重量%以上
のものが用いられる。
Triethanolamine is preferably of high purity in order to avoid contamination of the nitrilotriacetate with impurities. Although there are no particular limitations on the purity, a purity of 96% by weight or more, preferably 99% by weight or more is used.

反応温度はトリエタノールアミンのC−N結
合、ニトリロトリ酢酸塩のC−N結合の熱分解及
び水素化分解を防ぐため220℃以下の温度、通常
140〜220℃、好ましくは150〜200℃の温度範囲で
行なわれる。また、銅およびジルコニウム触媒は
220℃を越えた温度から一部表面がシンタリング
を起し、表面積が減少して触媒活性が低下しはじ
めるため、触媒をくり返し使用する場合には220
℃以下の温度がより好ましい。
The reaction temperature is usually 220°C or lower to prevent thermal decomposition and hydrogenolysis of the C-N bond of triethanolamine and the C-N bond of nitrilotriacetate.
The temperature range is 140-220°C, preferably 150-200°C. Also, copper and zirconium catalysts
Temperatures exceeding 220°C will cause some of the surface to sinter, reducing the surface area and reducing catalyst activity. Therefore, if the catalyst is used repeatedly,
Temperatures below 0 C are more preferred.

反応圧力は、酸化的脱水素反応であるため、で
きるだけ反応圧力を下げる方が反応速度の面から
好ましい。通常、反応を液相で進めるための最低
圧以上、好ましくは0〜20Kg/cm2Gさらに好まし
くは5〜15Kg/cm2Gの範囲である。
Since the reaction is an oxidative dehydrogenation reaction, it is preferable to lower the reaction pressure as much as possible from the viewpoint of reaction rate. Usually, the pressure is higher than the minimum pressure for proceeding the reaction in a liquid phase, preferably in the range of 0 to 20 kg/cm 2 G, more preferably 5 to 15 kg/cm 2 G.

反応時間は適宜に選べるが、反応温度、触媒
量、反応圧力によつて決まる。例えば、反応温度
180℃、反応圧力10Kg/cm2G、トリエタノールア
ミンに対し10重量%の触媒量の場合には5〜7時
間である。
The reaction time can be selected as appropriate and is determined by the reaction temperature, amount of catalyst, and reaction pressure. For example, reaction temperature
In the case of 180° C., reaction pressure of 10 Kg/cm 2 G, and a catalyst amount of 10% by weight based on triethanolamine, the reaction time is 5 to 7 hours.

反応形式はバツチ、セミバツチ、連続反応いず
れの方法も用いることができる。
As for the reaction format, any of batch, semi-batch and continuous reaction methods can be used.

以下、実施例をあげて、本発明の実施の態様を
具体的に例示して説明する。本発明はこれらの実
施例に限定されるものではない。
Hereinafter, embodiments of the present invention will be specifically illustrated and explained with reference to Examples. The present invention is not limited to these examples.

ここでトリエタノールアミンの転化率、ニトリ
ロトリ酢酸塩の選択率は次の式から導き出され
る。
Here, the conversion rate of triethanolamine and the selectivity of nitrilotriacetate are derived from the following equation.

トリエタノールアミンの転化率(%)=反応したトリ
エタノールアミンのモル数/反応に供したトリエタノー
ルアミンのモル数×100 ニトリロトリ酢酸塩の選択率(%)=生成したニトリ
ロトリ酢酸塩のモル数/反応したトリエタノールアミン
のモル数×100 実施例 1 トリエタノールアミン74.5g、水酸化ナトリウ
ム63.0g、水137.5gおよび触媒としてオキシ塩
化ジルコニウム24.8gと硝酸銅4.0gを水300mlに
溶解した溶液へ水酸化ナトリウム水溶液を添加し
水酸化物を沈殿せしめ、この沈殿を水洗し乾燥
後、空気中500℃、3時間加熱処理し、水素気流
中230℃、6時間還元処理して得られた銅および
ジルコニウム含有触媒7.5gを500mlのオートクレ
ーブに仕込み、水素ガスで3回内部置換した後、
反応温度180℃、反応圧力9Kg/cm2Gで、水素の
発生がなくなるまで反応を行なつた。反応に要し
た時間は180℃に昇温後5.5時間であつた。反応終
了後、反応液を取り出し分析を行なつたところ、
トリエタノールアミンの転化率は98.4モル%、ニ
トリロトリ酢酸塩の選択率は95.4モル%であつ
た。
Conversion rate of triethanolamine (%) = Number of moles of triethanolamine reacted/Number of moles of triethanolamine subjected to reaction x 100 Selectivity of nitrilotriacetate (%) = Number of moles of nitrilotriacetate produced/ Number of moles of reacted triethanolamine x 100 Example 1 Add water to a solution of 74.5 g of triethanolamine, 63.0 g of sodium hydroxide, 137.5 g of water, and 24.8 g of zirconium oxychloride and 4.0 g of copper nitrate as catalysts dissolved in 300 ml of water. Copper and zirconium obtained by adding an aqueous sodium oxide solution to precipitate hydroxide, washing the precipitate with water, drying, heating in air at 500°C for 3 hours, and reducing in a hydrogen stream at 230°C for 6 hours. After charging 7.5 g of the catalyst contained in a 500 ml autoclave and purging the inside with hydrogen gas three times,
The reaction was carried out at a reaction temperature of 180° C. and a reaction pressure of 9 kg/cm 2 G until no hydrogen was generated. The time required for the reaction was 5.5 hours after the temperature was raised to 180°C. After the reaction was completed, the reaction solution was taken out and analyzed.
The conversion rate of triethanolamine was 98.4 mol%, and the selectivity of nitrilotriacetate was 95.4 mol%.

実施例 2 トリエタノールアミン74.5g、水酸化ナトリウ
ム63.0g、水137.5gおよび触媒として、酸化ジ
ルコニウム10gに硝酸銅4.2gを含む水溶液を含
浸させ、乾燥後、空気中500℃、3時間加熱処理
し、水素気流中230℃、6時間還元処理して得ら
れた銅を酸化ジルコニウムに担持した触媒7.5g
を500mlのオートクレーブに仕込み、水素ガスで
3回内部置換した後、反応温度180℃、反応圧力
9Kg/cm2Gで、水素の発生がなくなるまで反応を
行なつた。反応に要した時間は180℃に昇温後6
時間であつた。反応終了後、反応液を取り出し分
析を行なつたところトリエタノールアミンの転化
率98.0モル%、ニトリロトリ酢酸塩の選択率は
94.2モル%であつた。
Example 2 74.5 g of triethanolamine, 63.0 g of sodium hydroxide, 137.5 g of water, and as a catalyst, 10 g of zirconium oxide was impregnated with an aqueous solution containing 4.2 g of copper nitrate, and after drying, heat treated in air at 500°C for 3 hours. , 7.5 g of a catalyst in which copper supported on zirconium oxide was obtained by reduction treatment at 230°C in a hydrogen stream for 6 hours.
was charged into a 500 ml autoclave, and after the interior was purged with hydrogen gas three times, the reaction was carried out at a reaction temperature of 180° C. and a reaction pressure of 9 Kg/cm 2 G until no hydrogen was generated. The time required for the reaction was 6 after raising the temperature to 180℃.
It was time. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of triethanolamine was 98.0 mol%, and the selectivity of nitrilotriacetate was
It was 94.2 mol%.

実施例 3 触媒のくり返し活性をみるため、実施例1と同
様の反応条件で、くり返し実験を行なつたところ
10回目に要した反応時間は昇温後6.5時間であつ
た。反応終了後、反応液を取り出し分析を行なつ
たところ、トリエタノールアミンの転化率は97.3
モル%、ニトリロトリ酢酸塩の選択率は93.5モル
%であつた。
Example 3 In order to check the repeated activity of the catalyst, repeated experiments were conducted under the same reaction conditions as in Example 1.
The reaction time required for the 10th reaction was 6.5 hours after the temperature was raised. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of triethanolamine was 97.3.
The selectivity for nitrilotriacetate was 93.5 mol%.

Claims (1)

【特許請求の範囲】[Claims] 1 トリエタノールアミンをアルカリ金属の水酸
化物、水および銅とジルコニウム含有触媒の共存
下で反応させることを特徴とするニトリロトリ酢
酸塩の製造方法。
1. A method for producing nitrilotriacetate, which comprises reacting triethanolamine with an alkali metal hydroxide, water, and copper in the coexistence of a zirconium-containing catalyst.
JP58208246A 1983-10-05 1983-11-08 Preparation of nitrotriacetate Granted JPS60100545A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58208246A JPS60100545A (en) 1983-11-08 1983-11-08 Preparation of nitrotriacetate
GB08425097A GB2148287B (en) 1983-10-05 1984-10-04 Preparation of aminocarboxylic acid salts from amino alcohols
US06/863,718 US4782183A (en) 1983-10-05 1986-05-16 Method for manufacture of amino-carboxylic acid salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208246A JPS60100545A (en) 1983-11-08 1983-11-08 Preparation of nitrotriacetate

Publications (2)

Publication Number Publication Date
JPS60100545A JPS60100545A (en) 1985-06-04
JPH0153866B2 true JPH0153866B2 (en) 1989-11-15

Family

ID=16553067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208246A Granted JPS60100545A (en) 1983-10-05 1983-11-08 Preparation of nitrotriacetate

Country Status (1)

Country Link
JP (1) JPS60100545A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69115883T2 (en) * 1990-10-23 1996-06-05 Nippon Catalytic Chem Ind METHOD FOR PRODUCING SALTS OF AMINOCARBOXYLIC ACIDS
KR970009569B1 (en) * 1990-11-27 1997-06-14 닛뽕 쇼꾸 바이가가꾸 고오교 가부시끼가이샤 Process for producing aminocarboxylates

Also Published As

Publication number Publication date
JPS60100545A (en) 1985-06-04

Similar Documents

Publication Publication Date Title
US4782183A (en) Method for manufacture of amino-carboxylic acid salts
AU780040B2 (en) Process for the preparation of carboxylic acid salts from primary alcohols
JPH0153866B2 (en)
JPH03857B2 (en)
JPS625418B2 (en)
JPS62198641A (en) Production of carboxylic acid salt
JPH0237911B2 (en)
JPS61136902A (en) Manufacture of chlorine
JPH0153863B2 (en)
JPH0153864B2 (en)
JPH0153865B2 (en)
JPS5945666B2 (en) Method for producing aminocarboxylic acids
JPH0441137B2 (en)
JP4026350B2 (en) Method for producing alkyl nitrite
JP2005509051A5 (en)
JPH0441136B2 (en)
JP2804877B2 (en) Production method of aminocarboxylate
JP3876682B2 (en) Nitric oxide production method
JPS6041656B2 (en) Method for oxidizing (poly)oxyethylene ether compounds
JP2005501947A5 (en)
JPS6010016B2 (en) Method for producing hydroxyacetic acid
JPH062716B2 (en) Method for producing aromatic secondary amino compound
JPS61189247A (en) Production of oxydicarboxylic acid salt
JP3360410B2 (en) Method for producing epoxy compound
JPS588050A (en) Preparation of acrylamide