JPS625418B2 - - Google Patents

Info

Publication number
JPS625418B2
JPS625418B2 JP56002102A JP210281A JPS625418B2 JP S625418 B2 JPS625418 B2 JP S625418B2 JP 56002102 A JP56002102 A JP 56002102A JP 210281 A JP210281 A JP 210281A JP S625418 B2 JPS625418 B2 JP S625418B2
Authority
JP
Japan
Prior art keywords
weight
parts
hydrocyanic acid
isophorone
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002102A
Other languages
Japanese (ja)
Other versions
JPS57116038A (en
Inventor
Tetsuro Nakahama
Yasuyuki Takayanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP56002102A priority Critical patent/JPS57116038A/en
Publication of JPS57116038A publication Critical patent/JPS57116038A/en
Publication of JPS625418B2 publication Critical patent/JPS625418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は3−シアノ−3,5,5−トリメチル
シクロヘキサノンの製造法に関し、詳しくは塩基
性触媒とグリコール類の存在下に、イソホロンと
青酸とを特定温度範囲で反応させることにより、
反応性を高め高収率で3−シアノ−3,5,5−
トリメチルシクロヘキサノンを製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 3-cyano-3,5,5-trimethylcyclohexanone, and more specifically, a method for producing 3-cyano-3,5,5-trimethylcyclohexanone, in which isophorone and hydrocyanic acid are reacted in the presence of a basic catalyst and glycols at a specific temperature range. By letting
3-cyano-3,5,5- with increased reactivity and high yield
The present invention relates to a method for producing trimethylcyclohexanone.

3−シアノ−3,5,5−トリメチルシクロヘ
キサノン(以下、ジヒドロイソホロンニトリルと
記す)はこれを更に水素添加とアミノ化してエポ
キシ硬化剤、ポリウレタン塗料等の原料として使
用される1−アミノ−3−アミノメチル−3,
5,5−トリメチルシクロヘキサノンの製造に用
いられる。
3-Cyano-3,5,5-trimethylcyclohexanone (hereinafter referred to as dihydroisophoronenitrile) is further hydrogenated and aminated to produce 1-amino-3-, which is used as a raw material for epoxy curing agents, polyurethane paints, etc. aminomethyl-3,
Used in the production of 5,5-trimethylcyclohexanone.

従来より、イソホロンと青酸を原料とするジヒ
ドロイソホロンニトリルの製造法は知られてい
る。たとえば、特公昭40−7486号公報には固体担
体に付着したアルカリ性触媒上に青酸が約10重量
%以下であるイソホロン−青酸混合物をガス状で
供給してジヒドロイソホロンニトリルを連続的に
製造する方法が記載されている。この方法はアル
カリ性触媒上でイソホロンに青酸の濃度を希薄な
状態で反応させることにより、青酸重合の副反応
を極力抑制し、ジヒドロイソホロンニトリルの収
率を高めようとするものである。しかし、青酸重
合物の副生は皆無ではない。副生する青酸重合物
が僅かであつても、それによる触媒の被毒は避け
難く、実用上、触媒寿命の点で問題がある。ま
た、西独特許第1085871号公報には反応槽中で反
応するケトン、触媒としてアルカリ金属またはア
ルカリ土類金属塩類と極性溶媒たとえばジメチル
アセトアミドとを混合し、これに青酸を加えて反
応させシアノケトンを回分式に製造する方法が記
載されている。しかし、この方法によるジヒドロ
イソホロンニトリルの粗製収率は低く約70%であ
る。さらにまた、西独特許第1240854号公報には
使用触媒の分散剤としてメタノールを用い、アル
カリ金属塩触媒の存在下にイソホロンと青酸とを
反応させてジヒドロイソホロンニトリルを製造す
る方法が記載されている。この方法を回分式方法
で追試検討したところ、青酸重合物が多量に副生
しジヒドロイソホロンニトリル収率は53.7%と非
常に低いものであつた。
BACKGROUND ART A method for producing dihydroisophorone nitrile using isophorone and hydrocyanic acid as raw materials has been known. For example, Japanese Patent Publication No. 40-7486 describes a method for continuously producing dihydroisophorone nitrile by supplying a gaseous isophorone-cyanic acid mixture containing about 10% by weight or less of hydrocyanic acid onto an alkaline catalyst attached to a solid carrier. is listed. This method attempts to suppress side reactions of hydrocyanic acid polymerization as much as possible and increase the yield of dihydroisophorone nitrile by reacting isophorone with hydrocyanic acid at a dilute concentration over an alkaline catalyst. However, by-products of hydrocyanic acid polymers are not completely eliminated. Even if the by-produced hydrocyanic acid polymer is small, it is difficult to avoid poisoning of the catalyst by it, which poses a practical problem in terms of catalyst life. Furthermore, West German Patent No. 1085871 discloses that a ketone is reacted in a reaction tank, an alkali metal or alkaline earth metal salt as a catalyst, and a polar solvent such as dimethylacetamide are mixed, hydrocyanic acid is added to the mixture, the reaction is carried out, and a cyanoketone is produced in batches. A method of manufacturing is described in the formula. However, the crude yield of dihydroisophorone nitrile by this method is low, about 70%. Furthermore, German Patent No. 1240854 describes a method for producing dihydroisophorone nitrile by reacting isophorone and hydrocyanic acid in the presence of an alkali metal salt catalyst using methanol as a dispersant for the catalyst used. When this method was further tested using a batch method, a large amount of hydrocyanic acid polymer was produced as a by-product, and the yield of dihydroisophorone nitrile was very low at 53.7%.

元来、イソホロンの二重結合への青酸の付加反
応性は非常に小さく、反応性を高めるためアルカ
リ金属塩類を触媒として用いて、CNイオンを
つくり、高温下で反応することで反応活性を高め
て来た。しかしイソホロン自体にアルカリ金属塩
類の溶解性がないことから、その改良法として、
多量の触媒を用いるかまたはジメチルアセトアミ
ドのような極性溶媒を用いてCNイオンの増加
を図り、改善して来たが工業的方法としては経済
性の点から必ずしも優れた方法とはいえない。
Originally, the addition reactivity of hydrocyanic acid to the double bond of isophorone is very small.In order to increase the reactivity, alkali metal salts are used as catalysts to create CN ions, and the reaction is performed at high temperatures to increase the reaction activity. I came. However, since isophorone itself has no solubility in alkali metal salts, as an improvement method,
Improvements have been made by using large amounts of catalysts or polar solvents such as dimethylacetamide to increase the number of CN ions, but as an industrial method, it cannot necessarily be said to be an excellent method from an economic point of view.

かかる実情に鑑み、本発明者等はジヒドロイソ
ホロンニトリルを工業的に有利に製造する方法を
開発するため鋭意研究した結果、アルカリ金属、
アルカリ(土類)金属塩類など公知の塩基性触媒
をグリコール類と組み合せ、その存在下でイソホ
ロンと青酸との反応を比較的低温域で行うことに
よつてCNイオン濃度を大巾に高め、ジヒドロ
イソホロンニトリルが高収率で取得出来ることを
見出した。本発明はこの知見に基づいてなされた
ものである。
In view of these circumstances, the present inventors conducted intensive research to develop an industrially advantageous method for producing dihydroisophorone nitrile, and as a result, they found that alkali metals,
By combining known basic catalysts such as alkali (earth) metal salts with glycols and performing the reaction between isophorone and hydrocyanic acid in the presence of the catalyst at a relatively low temperature, the concentration of CN ions is greatly increased, and dihydrohydrochloride is produced. It has been found that isophorone nitrile can be obtained in high yield. The present invention has been made based on this knowledge.

すなわち本発明の3−シアノ−3,5,5−ト
リメチルシクロヘキサノンの製造法は、塩基性触
媒とグリコール類の存在下に、イソホロンと青酸
とを温度50〜150℃で反応させることを特徴とす
るものである。
That is, the method for producing 3-cyano-3,5,5-trimethylcyclohexanone of the present invention is characterized by reacting isophorone and hydrocyanic acid at a temperature of 50 to 150°C in the presence of a basic catalyst and glycols. It is something.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明方法において用いられる塩基性触媒とし
ては、たとえばナトリウム、カリウム等のアルカ
リ金属、ナトリウム、カリウム、バリウム、カル
シウム、マグネシウム等アルカリ金属またはアル
カリ土類金属の水酸化物、シアン化物、炭酸化
物、酸化物、アルコラート等、公知の塩基性触媒
が用いられる。触媒の使用量は特に制限はないが
使用するイソホロンに対し重量比で約0.1%〜約
1%とするのがよい。
The basic catalyst used in the method of the present invention includes, for example, hydroxides, cyanides, carbonates, oxides of alkali metals such as sodium and potassium, alkali metals such as sodium, potassium, barium, calcium, and magnesium, or alkaline earth metals. Known basic catalysts such as compounds, alcoholates, etc. are used. The amount of the catalyst used is not particularly limited, but it is preferably about 0.1% to about 1% by weight based on the isophorone used.

グリコール類としては、たとえばエチレングリ
コール、プロピレングリコール、ジエチレングリ
コール、トリエチレングリコール、1,3−プロ
パンジオール、1,4−ブタンジオール、グリセ
リン、グリコールモノメチルエーテル、グリコー
ルモノエチルエーテルなどが用いられる。これら
のグリコールはイソホロンおよび青酸と不活性、
比較的高温で安定であり、かつ塩基性触媒に対し
高い溶解性を示す。グリコール類の使用量は反応
に用いる触媒量と重量比で同量から約50倍量の範
囲、好ましくは約5倍量から約20倍量の範囲とす
るのがよい。
Examples of glycols used include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, 1,4-butanediol, glycerin, glycol monomethyl ether, and glycol monoethyl ether. These glycols are inert with isophorone and prussic acid,
It is stable at relatively high temperatures and shows high solubility in basic catalysts. The amount of glycols to be used is preferably from the same amount to about 50 times the amount of the catalyst used in the reaction, preferably from about 5 times to about 20 times the amount by weight.

本発明方法を実施するに当つては、イソホロ
ン、塩基性触媒およびグリコールの混合物を加熱
し、これに青酸を供給し反応させてジヒドロイソ
ホロンニトリルを製造する回分式の方法によつて
行なうのがよい。青酸の供給法としては青酸を滴
下する方法あるいは不活性ガスをキヤリヤーとし
て使用し青酸をフイードする方法などが用いられ
る。反応に用いるイソホロンと青酸の割合はモル
比でイソホロン/青酸が1.5〜5の範囲、好まし
くは2.5〜3.5の範囲とするのがよい。反応温度は
50℃〜150℃の範囲、好ましくは70℃〜120℃の範
囲がよい。温度が50℃より低い場合には反応が十
分に行われず、150℃より高い場合には青酸重合
物の副生が大くなるので好ましくない。反応時間
は2〜6時間とするのがよい。
In carrying out the method of the present invention, it is preferable to carry out a batch process in which dihydroisophorone nitrile is produced by heating a mixture of isophorone, a basic catalyst and a glycol, and supplying hydrocyanic acid thereto for reaction. . As a method for supplying hydrocyanic acid, a method of dropping hydrocyanic acid or a method of feeding hydrocyanic acid using an inert gas as a carrier is used. The molar ratio of isophorone to hydrocyanic acid used in the reaction is preferably in the range of 1.5 to 5, preferably in the range of 2.5 to 3.5. The reaction temperature is
The temperature range is 50°C to 150°C, preferably 70°C to 120°C. If the temperature is lower than 50°C, the reaction will not be carried out sufficiently, and if it is higher than 150°C, a large amount of hydrocyanic acid polymer will be produced as a by-product, which is not preferable. The reaction time is preferably 2 to 6 hours.

反応終了後は反応液に酸を加えて反応液中の触
媒を中和し、さらに未反応青酸と塩とを除去した
のち、減圧蒸留を行ない未反応イソホロンを分離
してジヒドロイソホロンニトリルを取得する。蒸
留によつて得られたジヒドロイソホロンニトリル
は十分に高純度であり特に精製を要しないが、精
製度を更に高める場合にはイソプロパノールなど
を用い再結晶法により精製することも可能であ
る。蒸留時に分離したイソホロンは回収し、それ
にジヒドロイソホロンニトリルが混入している場
合でもジヒドロイソホロンニトリルが反応に際し
変性することがないから、回収イソホロンを反応
原料としてそのまま再使用することができる。
After the reaction is complete, acid is added to the reaction solution to neutralize the catalyst in the reaction solution, and unreacted hydrocyanic acid and salt are removed, followed by distillation under reduced pressure to separate unreacted isophorone to obtain dihydroisophorone nitrile. . Dihydroisophorone nitrile obtained by distillation has a sufficiently high purity and does not require any particular purification, but if the degree of purification is to be further increased, it can be purified by a recrystallization method using isopropanol or the like. The isophorone separated during distillation is recovered, and even if it is contaminated with dihydroisophorone nitrile, the dihydroisophorone nitrile is not denatured during the reaction, so the recovered isophorone can be reused as it is as a reaction raw material.

以下、本発明を実施例により具体的に説明する
が、本発明はこの実施例にのみ限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

実施例 1 撹拌器、冷却管、温度計及び冷却管付き滴下ロ
ートを備えた反応装置にイソホロン351.5重量部
と炭酸ソーダ2.7重量部、エチレングリコール25
重量部を仕込み、撹拌しながら油浴上で加熱し
た。滴下ロートに青酸27.5重量部を入れ、反応液
が110℃で青酸を3時間かけて滴下した。青酸の
顕著な環流現象はなかつた。青酸の滴下後、110
℃で0.5時間熟成反応を行なつたのち80%リン酸
5.9重量部を添加した。反応液は暗褐色から黄橙
色に変つた。未反応の青酸(気相部濃度1〜2
%)を、僅かに減圧下、N2ガスを通して0.01%以
下に除去した。室温に冷却後塩を別し減圧下、
蒸留分離を行なつた。蒸留で留出した各留分をガ
スクロマトグラフイーにより分析した結果、ジヒ
ドロイソホロンニトリルの生成量は156.0重量部
であり、その収率(青酸基準)は92.9%であつ
た。
Example 1 351.5 parts by weight of isophorone, 2.7 parts by weight of soda carbonate, and 25 parts by weight of ethylene glycol were placed in a reaction apparatus equipped with a stirrer, a cooling tube, a thermometer, and a dropping funnel with a cooling tube.
Parts by weight were charged and heated on an oil bath while stirring. 27.5 parts by weight of hydrocyanic acid was placed in a dropping funnel, and when the reaction solution was at 110°C, hydrocyanic acid was added dropwise over 3 hours. There was no significant reflux phenomenon of hydrocyanic acid. After dropping prussic acid, 110
80% phosphoric acid after aging reaction for 0.5 h at °C.
5.9 parts by weight were added. The reaction solution turned from dark brown to yellow-orange. Unreacted hydrocyanic acid (gas phase concentration 1-2
%) was removed to below 0.01% by passing N2 gas under slight vacuum. After cooling to room temperature, remove the salt and remove under reduced pressure.
Distillation separation was performed. As a result of analyzing each fraction distilled by gas chromatography, the amount of dihydroisophorone nitrile produced was 156.0 parts by weight, and the yield (based on hydrocyanic acid) was 92.9%.

実施例 2 実施例1と同様の装置にイソホロン67.4重量部
と実施例1における回収イソホロン(ジヒドロイ
ソホロンニトリル8.4重量部とエチレングリコー
ル24.5重量部を含む)239.9重量部とシアン化ソ
ーダ1.0重量部を仕込み、撹拌しながら油浴上で
110℃に加熱した。滴下ロートに青酸27.0重量部
を入れ、3時間かけて滴下した。青酸の滴下後
110℃で0.5時間熟成反応を行なつたのち、80%リ
ン酸5.8重量部を添加した。反応液は暗褐色から
黄橙色に変つた。次いで未反応の青酸を除去する
操作を行なつたのち、室温に冷却に塩を別し減
圧下蒸留分離を行なつた。蒸留で留出した各留分
をガスクロマトグラフイーにより分析した結果、
ジヒドロイソホロンニトリルの生成量は161.3重
量部であり、その収率(青酸基準)は97.8%であ
つた。
Example 2 67.4 parts by weight of isophorone, 239.9 parts by weight of the recovered isophorone in Example 1 (containing 8.4 parts by weight of dihydroisophorone nitrile and 24.5 parts by weight of ethylene glycol), and 1.0 parts by weight of sodium cyanide were charged into the same apparatus as in Example 1. , on an oil bath with stirring.
Heated to 110°C. 27.0 parts by weight of hydrocyanic acid was placed in a dropping funnel and added dropwise over 3 hours. After dropping prussic acid
After carrying out an aging reaction at 110°C for 0.5 hour, 5.8 parts by weight of 80% phosphoric acid was added. The reaction solution turned from dark brown to yellow-orange. After performing an operation to remove unreacted hydrocyanic acid, the mixture was cooled to room temperature, the salt was separated, and distillation separation under reduced pressure was carried out. As a result of analyzing each fraction distilled by gas chromatography,
The amount of dihydroisophorone nitrile produced was 161.3 parts by weight, and the yield (based on hydrocyanic acid) was 97.8%.

実施例 3 実施例1と同様の装置にイソホロン408.2重量
部と炭酸カリウム3.5重量部とプロピレングリコ
ール17.5重量部を仕込み、撹拌しながら、油浴上
で120℃に加熱した。滴下ロートに青酸31.9重量
部を入れ、3時間かけて滴下した。青酸の滴下後
120℃で0.5時間熟成反応を行なつたのち80%リン
酸6.9重量部を添加した。反応液は暗褐色から黄
橙色に変つた。次いで未反応の青酸を除去する操
作を行つたのち、反応液を室温に冷却し塩を
別、減圧下蒸留分離を行なつた。蒸留で留出した
各留分をガスクロマトグラフイーにより分析した
結果、ジヒドロイソホロンニトリルの生成量は
173.9重量部であり、その収率(青酸基準)は
89.1%であつた。
Example 3 408.2 parts by weight of isophorone, 3.5 parts by weight of potassium carbonate, and 17.5 parts by weight of propylene glycol were charged into the same apparatus as in Example 1, and heated to 120°C on an oil bath while stirring. 31.9 parts by weight of hydrocyanic acid was placed in a dropping funnel and added dropwise over 3 hours. After dropping prussic acid
After carrying out an aging reaction at 120°C for 0.5 hours, 6.9 parts by weight of 80% phosphoric acid was added. The reaction solution turned from dark brown to yellow-orange. Next, after performing an operation to remove unreacted hydrocyanic acid, the reaction solution was cooled to room temperature, the salt was separated, and distillation separation was performed under reduced pressure. As a result of analyzing each fraction distilled by gas chromatography, the amount of dihydroisophorone nitrile produced was
The yield is 173.9 parts by weight (based on hydrocyanic acid).
It was 89.1%.

実施例 4 実施例1と同様の装置を用いた。ただし、青酸
をガス状で供給できるように装置の一部を改造し
た。イソホロン472.2重量部と炭酸マグネシウム
2.9重量部と1,3−プロパンジオール17.4重量
部を反応槽に仕込み、撹拌しながら120℃に加熱
した。青酸気化槽に青酸36.9重量部を入れ、気化
槽の油浴を50℃に温めながらN2ガスをキヤリヤ
ーとして200ml/minの流速で同槽に導入し、青
酸をN2ガスに同伴せしめて反応槽にフイードし
た。約3.5時間で青酸のフイードを終了した。青
酸のフイード終了後120℃で0.5時間熟成反応を行
い、次いで80%リン酸7.9重量部を添加した。反
応液は暗褐色から赤橙色に変つた。未反応の青酸
(気相部で3%以下)を除去するため同温でN2
スを同流速で1時間導入した。反応液を室温に冷
却したのち塩を別、減圧下蒸留分離を行つた。
蒸留で留出した各留分をガスクロマトグラフイー
により分析した結果、ジヒドロイソホロンニトリ
ルの生成量は195.5重量部であり、その収率(青
酸基準)は86.6%であつた。
Example 4 The same apparatus as in Example 1 was used. However, part of the equipment was modified so that cyanide could be supplied in gaseous form. 472.2 parts by weight of isophorone and magnesium carbonate
2.9 parts by weight and 17.4 parts by weight of 1,3-propanediol were charged into a reaction tank and heated to 120°C with stirring. 36.9 parts by weight of hydrocyanic acid was placed in a hydrocyanic acid vaporization tank, and while the oil bath in the vaporization tank was heated to 50°C, N 2 gas was introduced into the tank at a flow rate of 200 ml/min as a carrier, and the hydrocyanic acid was entrained in the N 2 gas to react. It was fed into the tank. The cyanide feed was finished in about 3.5 hours. After the hydrocyanic acid feed was completed, an aging reaction was carried out at 120° C. for 0.5 hours, and then 7.9 parts by weight of 80% phosphoric acid was added. The reaction solution turned from dark brown to reddish-orange. In order to remove unreacted hydrocyanic acid (3% or less in the gas phase), N 2 gas was introduced at the same temperature and flow rate for 1 hour. After the reaction solution was cooled to room temperature, the salt was removed and distillation separation was performed under reduced pressure.
As a result of analyzing each fraction distilled by gas chromatography, the amount of dihydroisophorone nitrile produced was 195.5 parts by weight, and the yield (based on hydrocyanic acid) was 86.6%.

比較例 1 実施例1と同様の装置に、イソホロン204.2重
量部と青酸0.06重量部と15重量%カセイソーダの
メタノール溶液0.9mlを仕込み、撹拌しながら油
浴上で150℃に加熱した。滴下ロートに青酸38.0
重量部を入れ4時間で滴下した。青酸の滴下後
150℃で0.5時間熟成反応を行なつたのち、反応液
を室温に冷却した。0.65重量%硝酸100重量部を
加え撹拌して洗浄後反応液を分液し蒸留分離を行
つた。蒸留で留出した各留分をガスクロマトグラ
フイーにより分析した結果、ジヒドロイソホロン
ニトリルの生成量は124.8重量部であり、その収
率(青酸基準)は53.7%であつた。
Comparative Example 1 Into the same apparatus as in Example 1, 204.2 parts by weight of isophorone, 0.06 parts by weight of hydrocyanic acid, and 0.9 ml of a methanol solution of 15% by weight caustic soda were charged and heated to 150°C on an oil bath while stirring. Hydrocyanic acid 38.0 in the dropping funnel
Parts by weight were added and added dropwise over 4 hours. After dropping prussic acid
After carrying out the aging reaction at 150°C for 0.5 hour, the reaction solution was cooled to room temperature. After washing, 100 parts by weight of 0.65% nitric acid was added and stirred, and the reaction solution was separated and separated by distillation. As a result of analyzing each fraction distilled by gas chromatography, the amount of dihydroisophorone nitrile produced was 124.8 parts by weight, and the yield (based on hydrocyanic acid) was 53.7%.

比較例 2 実施例1と同様の装置に、イソホロン192.2重
量部と炭酸カリウム4.9重量部とジメチルホルム
アミド192.2重量部を仕込み、撹拌しながら油浴
上で165℃に加熱した。滴下ロートに青酸39.5重
量部を入れ、3時間かけて滴下した。青酸の滴下
後反応液を80℃に冷却し、80%リン酸8.1重量部
を加えて触媒を中和した。反応液が冷却したの
ち、塩を別して液を蒸留分離した。蒸留で留
出した各留分をガスクロマトグラフイーにより分
析した結果、ジヒドロイソホロンニトリルの生成
量は171.6重量部であり、その収率(青酸基準)
は71.1%であつた。
Comparative Example 2 192.2 parts by weight of isophorone, 4.9 parts by weight of potassium carbonate, and 192.2 parts by weight of dimethylformamide were charged into the same apparatus as in Example 1, and heated to 165°C on an oil bath while stirring. 39.5 parts by weight of hydrocyanic acid was placed in a dropping funnel and added dropwise over 3 hours. After dropping hydrocyanic acid, the reaction solution was cooled to 80°C, and 8.1 parts by weight of 80% phosphoric acid was added to neutralize the catalyst. After the reaction solution was cooled, the salt was removed and the solution was separated by distillation. As a result of analyzing each fraction distilled by gas chromatography, the amount of dihydroisophorone nitrile produced was 171.6 parts by weight, and the yield (based on hydrocyanic acid)
was 71.1%.

Claims (1)

【特許請求の範囲】 1 塩基性触媒とグリコール類の存在下に、イソ
ホロンと青酸とを温度50〜150℃で反応させるこ
とを特徴とする3−シアノ−3,5,5−トリメ
チルシクロヘキサノンの製造法。 2 グリコール類が、エチレングリオール、プロ
ピレングリコール、ジエチレングリコール、トリ
エチレングリコール、1,3−プロパンジオー
ル、1,4−ブタンジオール、グリセリン、グリ
コールモノメチルエーテルおよびグリコールモノ
エチルエーテルからなる群から選ばれた少なくと
も一種である特許請求の範囲第1項記載の3−シ
アノ−3,5,5−トリメチルシクロヘキサノン
の製造法。
[Claims] 1. Production of 3-cyano-3,5,5-trimethylcyclohexanone, characterized by reacting isophorone and hydrocyanic acid at a temperature of 50 to 150°C in the presence of a basic catalyst and glycols. Law. 2 Glycols are at least selected from the group consisting of ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, 1,4-butanediol, glycerin, glycol monomethyl ether, and glycol monoethyl ether. A method for producing 3-cyano-3,5,5-trimethylcyclohexanone according to claim 1.
JP56002102A 1981-01-12 1981-01-12 Preparation of 3-cyano-3,5,5-trimethylcyclohexanone Granted JPS57116038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002102A JPS57116038A (en) 1981-01-12 1981-01-12 Preparation of 3-cyano-3,5,5-trimethylcyclohexanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002102A JPS57116038A (en) 1981-01-12 1981-01-12 Preparation of 3-cyano-3,5,5-trimethylcyclohexanone

Publications (2)

Publication Number Publication Date
JPS57116038A JPS57116038A (en) 1982-07-19
JPS625418B2 true JPS625418B2 (en) 1987-02-04

Family

ID=11519973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002102A Granted JPS57116038A (en) 1981-01-12 1981-01-12 Preparation of 3-cyano-3,5,5-trimethylcyclohexanone

Country Status (1)

Country Link
JP (1) JPS57116038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480224U (en) * 1990-11-27 1992-07-13

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942371A1 (en) * 1989-12-21 1991-06-27 Degussa METHOD FOR PRODUCING 1,3,3-TRIMETHYL-5-OXO-CYCLOHEXANE-CARBONITRIL
US5011968A (en) * 1990-02-06 1991-04-30 W. R. Grace & Co.-Conn. Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone
JPH04279559A (en) * 1991-03-05 1992-10-05 Nippo Kagaku Kk Production of 3-cyano-3,5,5-trimethylcyclohexanone
US5235089A (en) * 1992-02-27 1993-08-10 Hampshire Chemical Corp. Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone
US5183915A (en) * 1992-03-05 1993-02-02 Elf Atochem North America, Inc. Catalyst and process for the production of 3-cyano-3,5,5-trialkylcyclohexanone
DE10251680A1 (en) * 2002-11-07 2004-05-19 Basf Ag Process for the CaO-catalyzed production of isophoronenitrile
DE102010062603A1 (en) 2010-12-08 2012-06-14 Evonik Degussa Gmbh Process for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
DE102011077681A1 (en) * 2011-06-17 2012-12-20 Evonik Degussa Gmbh Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone
CN115433103B (en) * 2022-10-09 2023-08-18 山东新和成维生素有限公司 Synthesis method of isophorone nitrile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480224U (en) * 1990-11-27 1992-07-13

Also Published As

Publication number Publication date
JPS57116038A (en) 1982-07-19

Similar Documents

Publication Publication Date Title
EP1777215B1 (en) Method for producing 2-amino-5-iodobenzoic acid
JPS625418B2 (en)
US5349077A (en) Process for producing alkylene carbonates
JPH06128214A (en) Process of manufacturing 1,3,3-trimethyl-5-oxocyclohexane- carbonitrile
EP0367364B1 (en) Integrated process for the production of aminoacetonitriles
US2920098A (en) Acrylonitrile synthesis
JPH0780830B2 (en) Method for producing isocyanate compound
JPH04164057A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
US3644453A (en) Cuprous halide and adiponitrile complexes
JPH0481583B2 (en)
EP0502707A1 (en) Method for production of 3-cyano-3,5,5-trimethyl cyclohexanone
JPH04112862A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPS61134355A (en) Manufacture of 4-nitrodiphenylamines
JP2004155785A (en) Method for production of isophoronenitrile
US3709921A (en) Method of forming dicyano compounds
US2442040A (en) Manufacture of acrylonitrile from acetylene and hcn
JPH04279558A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPH0533217B2 (en)
JPS59222449A (en) Manufacture of diphenyl amine and aniline
JPH0153863B2 (en)
JPWO2003062187A1 (en) Method for producing 2,5-bis (trifluoromethyl) nitrobenzene
US4415745A (en) Process for the preparation of aromatic carbamates and isocyanates
JP3981186B2 (en) Process for producing 1,3-dimethyl-2-imidazolidinone
GB2077723A (en) Process for the production of acrylamide
JPS6051158A (en) Production of diaminomaleonitrile