JPH04164057A - Production of 3-cyano-3,5,5-trimethylcyclohexanone - Google Patents

Production of 3-cyano-3,5,5-trimethylcyclohexanone

Info

Publication number
JPH04164057A
JPH04164057A JP2285816A JP28581690A JPH04164057A JP H04164057 A JPH04164057 A JP H04164057A JP 2285816 A JP2285816 A JP 2285816A JP 28581690 A JP28581690 A JP 28581690A JP H04164057 A JPH04164057 A JP H04164057A
Authority
JP
Japan
Prior art keywords
isophorone
hydrocyanic acid
solvent
ipcn
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2285816A
Other languages
Japanese (ja)
Inventor
Shoichi Terasawa
寺沢 正一
Tadatsugu Yamamoto
忠嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2285816A priority Critical patent/JPH04164057A/en
Publication of JPH04164057A publication Critical patent/JPH04164057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound in high yield enabling an equimolar reaction of raw material compounds by using 1,3-dimethyl-2-imidazolidinone as a solvent and reacting isophorone with hydrocyanic acid in the presence of a basic catalyst. CONSTITUTION:3-Cyano-3,5,5-trimethylcyclohexanone is produced by reacting isophorone with hydrocyanic acid in the presence of a basic catalyst at 60-160 deg.C using 1,3-dimethyl-2-imidazolidinone as a solvent. The process enables the industrial production of the objective compound at a low cost in remarkably high yield at a molar ratio (isophorone/hydrocyanic acid) of 1. The compound is useful as a starting substance for the production of raw material for an epoxy resin hardener, a higher elastomer, a polyurethane coating, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、3−シアノ−3,5,5−トリメチルシクロ
ヘキサノン(以下、IPCNと略記する)の製造法に関
するものである。さらに詳しくは、塩基性触媒と溶媒1
,3−ジメチル−2−イミダゾリジノン(以下、DMI
と略記する)の存在下で、イソホロンと青酸から生産性
の高いIPCNの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing 3-cyano-3,5,5-trimethylcyclohexanone (hereinafter abbreviated as IPCN). For more details, see Basic Catalysts and Solvents 1
, 3-dimethyl-2-imidazolidinone (hereinafter referred to as DMI
The present invention relates to a highly productive method for producing IPCN from isophorone and hydrocyanic acid in the presence of (abbreviated as ).

IPCNは、アミノ化と水素添加を経て1−アミノ−3
−アミノメチル−3,5,5−トリメチルシクロヘキサ
ノンに導かれ、エポキシ樹脂用硬化剤や高級エラストマ
ー、ポリウレタン塗料原料である1−インシアナト−3
−(イソシアナトメチル)−3,5,5−トリメチルシ
クロヘキサノンに導かれる産業上有用な基礎原料であっ
て、近年、需要が急速に増加してきている。
IPCN is converted to 1-amino-3 through amination and hydrogenation.
-1-incyanato-3 is derived from aminomethyl-3,5,5-trimethylcyclohexanone and is a curing agent for epoxy resins, high-grade elastomers, and raw material for polyurethane paints.
It is an industrially useful basic raw material derived from -(isocyanatomethyl)-3,5,5-trimethylcyclohexanone, and its demand has been rapidly increasing in recent years.

(従来の技術) 従来より、イソホロンと青酸を原料とするIPCNの製
造法は知られている。例えば、W、F、Whityao
reおよびC,R,R,Robert、 J、Org、
Chem、+ 13+31 (1948)では、イソホ
ロンとシアン化ナトリウムを、メタノールと水と氷酢酸
の混合溶媒中で、室温において1週間反応させることに
より、約45%の収率でIPCNを得ている。しかしな
がら、この方法は低収率であり、かつ、反応日数を要す
るため、工業的方法としては全く問題にならない。
(Prior Art) A method for producing IPCN using isophorone and hydrocyanic acid as raw materials has been known. For example, W, F, Whityao
re and C,R,R,Robert, J,Org,
Chem, +13+31 (1948), IPCN was obtained in about 45% yield by reacting isophorone and sodium cyanide in a mixed solvent of methanol, water, and glacial acetic acid at room temperature for one week. However, this method has a low yield and requires several days of reaction, so it is not a problem at all as an industrial method.

また、特公昭40−7486号公報によれば、固体担体
に付着させたアルカリ触媒上に、イソホロンに対し青酸
が約10重量%以下のイソホロン−青酸混合物を供給し
て、IPCNを連続的に合成している。しかしながら、
この方法は、多量の未反応イソホロンの回収を必要とす
るため、工業的方法としては問題がある。
Furthermore, according to Japanese Patent Publication No. 40-7486, IPCN is continuously synthesized by supplying an isophorone-cyanic acid mixture containing about 10% by weight or less of hydrocyanic acid to isophorone on an alkali catalyst attached to a solid carrier. are doing. however,
This method is problematic as an industrial method because it requires recovery of a large amount of unreacted isophorone.

さらに、西独特許1,085,871号明細書によれば
、ジメチルアセトアミド溶媒中でアルカリ金属塩を触媒
とし、イソホロンと青酸とを反応させてIPCNを合成
している。しかしながら、この方法によるIPCNの収
率は約70%と低く、溶媒の回収に多大の経費を必要と
する。
Further, according to West German Patent No. 1,085,871, IPCN is synthesized by reacting isophorone and hydrocyanic acid in a dimethylacetamide solvent using an alkali metal salt as a catalyst. However, the yield of IPCN by this method is as low as about 70%, and a large amount of expense is required for recovering the solvent.

さらにまた、西独特許1,240,854号明細書によ
れば、メタノールを溶媒としてアルカリ金属塩触媒の存
在下に、イソホロンと青酸を反応させてIPCNを合成
している。しかしながら、この方法は、特開昭57−1
16038号公報によると多量の青酸重合物が生成し、
IPCNの収率は約80%と低いものである。
Furthermore, according to West German Patent No. 1,240,854, IPCN is synthesized by reacting isophorone and hydrocyanic acid in the presence of an alkali metal salt catalyst using methanol as a solvent. However, this method is
According to Publication No. 16038, a large amount of hydrocyanic acid polymer is produced,
The yield of IPCN is as low as about 80%.

次に、特開昭57−116038号公報によれば、無機
の塩基性触媒とグリコール類の存在下に青酸の重合物の
副生を避けるため、大過剰のイソホロンに青酸を反応さ
せてIPCNを合成している。しかしながら、未反応の
イソホロンを大量に回収する必要があり、工業的には問
題がある。
Next, according to JP-A-57-116038, in order to avoid the by-product of polymerization of hydrocyanic acid in the presence of an inorganic basic catalyst and glycols, a large excess of isophorone is reacted with hydrocyanic acid to produce IPCN. It is being synthesized. However, it is necessary to recover a large amount of unreacted isophorone, which poses an industrial problem.

さらには、特開昭6133158号公報によれば、ジア
ザ−ビシクロ−アルケン類(有機塩基触媒)の存在下で
イソホロンに青酸を反応させてIPCNを合成している
。しかしながら、この方法は、高価な触媒を多量に使用
し、この触媒の回収を行うことが必要で、工業的に行う
には問題がある。
Furthermore, according to JP-A-6133158, IPCN is synthesized by reacting isophorone with hydrocyanic acid in the presence of diaza-bicyclo-alkenes (organic base catalyst). However, this method requires the use of a large amount of expensive catalyst and the recovery of this catalyst, which poses problems for industrial use.

(発明が解決しようとする課題) こうした背景から、イソホロンと青酸からIPCNを工
業的に収率良く安価に製造する方法が望まれている。
(Problems to be Solved by the Invention) Against this background, a method for industrially producing IPCN from isophorone and hydrocyanic acid with high yield and at low cost is desired.

(t![題を解決するための手段) 本発明者らは、この方法について鋭意検討を重ね、溶媒
にDMIを用いて塩基性触媒存在下で反応を行わせると
、イソホロン/青酸モル比として等モルで反応が進み、
高収率でIPCNが得られることを見出し、本発明をな
すに至った。
(t! [Means for solving the problem) The present inventors have conducted extensive studies on this method, and found that when the reaction is carried out in the presence of a basic catalyst using DMI as a solvent, the isophorone/cyanic acid molar ratio is The reaction proceeds with equimolar
It was discovered that IPCN can be obtained in high yield, and the present invention was completed.

すなわち、本発明のIPCNの製造方法は、塩基性触媒
とDMIの存在下に、イソホロンと青酸とを温度60〜
160℃で反応させることを特徴とするものである。
That is, in the method for producing IPCN of the present invention, isophorone and hydrocyanic acid are heated in the presence of a basic catalyst and DMI at a temperature of 60 to
It is characterized by being reacted at 160°C.

本発明において用いられる塩基性触媒としては、例えば
、ナトリウム、カリウム等のアルカリ金属、ナトリウム
、カリウム等のアルカリ金属の水酸化物、シアン化物、
炭酸化物、酸化物、アルコラード等、公知の塩基性触媒
が用いられる。触媒の使用量は特に制限はないが、使用
するインホロンに対し0.05〜1.5重量%の範囲と
するのがよい。
Examples of the basic catalyst used in the present invention include alkali metals such as sodium and potassium, hydroxides and cyanides of alkali metals such as sodium and potassium,
Known basic catalysts such as carbonates, oxides, and alcolades are used. The amount of the catalyst to be used is not particularly limited, but it is preferably in the range of 0.05 to 1.5% by weight based on the inholon used.

溶媒であるDMIの使用量は、反応に用いるイソホロン
量と重量比で5〜50%の範囲とするのがよい。5%以
下では反応が進みに<<、反応完結に長時間を要し好ま
しくない。また、50%を超えると溶媒の回収が増加し
、コスト上好ましくない。
The amount of DMI used as a solvent is preferably in the range of 5 to 50% by weight relative to the amount of isophorone used in the reaction. If it is less than 5%, the reaction will not progress and it will take a long time to complete the reaction, which is not preferable. Moreover, if it exceeds 50%, the recovery of the solvent will increase, which is not preferable in terms of cost.

反応に用いるイソホロンと青酸の割合は、モル比でイソ
ホロン/青酸が0.8〜1.5、好ましくは1前後であ
る。0.8未満では未反応青酸が多量に残り、後処理が
多くなり、また、青酸ロスも多くなる。1.5を超える
と未反応イソホロン量が多くなり、回収のための経費が
増え好ましくない。
The molar ratio of isophorone to hydrocyanic acid used in the reaction is 0.8 to 1.5, preferably around 1. If it is less than 0.8, a large amount of unreacted hydrocyanic acid remains, resulting in increased post-treatment and increased prussic acid loss. If it exceeds 1.5, the amount of unreacted isophorone increases, which increases the expense for recovery, which is not preferable.

反応温度は60〜160℃、好ましくは100〜140
℃である。60℃未満では反応が遅く、また、160℃
を超えると副反応が増え、収率が低下する。
The reaction temperature is 60-160°C, preferably 100-140°C.
It is ℃. The reaction is slow below 60°C, and
Exceeding this will increase side reactions and reduce the yield.

反応時間は特に制限するものではないが、1〜10時間
で目標の反応率を得ることができる。
Although the reaction time is not particularly limited, the target reaction rate can be obtained in 1 to 10 hours.

本発明の方法を実施するに当たっては、インホロン、塩
基性触媒および溶媒の混合物を加熱攪拌し、これに青酸
を供給し反応させてIPCNを製造することができる。
In carrying out the method of the present invention, IPCN can be produced by heating and stirring a mixture of inphorone, a basic catalyst, and a solvent, and supplying hydrocyanic acid to the mixture for reaction.

青酸の供給法としては、液体青酸を滴下する方法、ある
いは不活性ガスをキャリヤーとして使用した青酸をフィ
ードする方法などが用いられる。
As a method of supplying hydrocyanic acid, a method of dropping liquid hydrocyanic acid, a method of feeding hydrocyanic acid using an inert gas as a carrier, etc. are used.

(実施例) 以下、本発明を実施例により具体的に説明するが、本発
明は、この実施例のみに限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically explained using Examples, but the present invention is not limited only to these Examples.

実施例で明らかなように、反応に供するイソホロン/青
酸モル比が1ではIPCHの収率が格段に高く、工業的
に実施する上で多大な効果がある。
As is clear from the examples, when the molar ratio of isophorone/cyanic acid used in the reaction is 1, the yield of IPCH is extremely high, and this has a great effect on industrial implementation.

実施例1 攪拌機、冷却管、温度針および冷却管付滴下ロートを備
えた反応装置に、イソホロン529.1重量部と炭酸カ
リウム6.6重量部、DM147゜3重量部を仕込み、
攪拌しなから油浴上で加熱した。滴下ロートに青酸11
0.3重量部を入れ、反応液を110℃に保ちつつ、攪
拌下に青酸を4時間かけて滴下した(イソホロン/青酸
モル比=1.0)。青酸滴下後、110℃で1時間反応
を行ったのち、80%リン酸8.5重量部を添加した。
Example 1 529.1 parts by weight of isophorone, 6.6 parts by weight of potassium carbonate, and 3 parts by weight of DM147.
It was heated on an oil bath without stirring. Hydrocyanic acid 11 in the dropping funnel
0.3 parts by weight was added thereto, and while the reaction solution was kept at 110° C., hydrocyanic acid was added dropwise over 4 hours with stirring (isophorone/cyanic acid molar ratio = 1.0). After dropping hydrocyanic acid, the reaction was carried out at 110° C. for 1 hour, and then 8.5 parts by weight of 80% phosphoric acid was added.

未反応の青酸をN2ガスを通して0.01%以下に除去
した。室温に冷却後、塩を濾別し、反応液をガスクロマ
トグラフィーで分析を行った。
Unreacted hydrocyanic acid was removed to 0.01% or less by passing N2 gas. After cooling to room temperature, the salt was filtered off, and the reaction solution was analyzed by gas chromatography.

その結果、イソホロンの反応率は88%で、IPCNへ
の選択率は94%であり、IPCHの収率は83%であ
った。また、反応液を減圧蒸留して純度99%のIPC
N502gを得た。
As a result, the reaction rate of isophorone was 88%, the selectivity to IPCN was 94%, and the yield of IPCH was 83%. In addition, the reaction solution is distilled under reduced pressure to obtain IPC with a purity of 99%.
502 g of N was obtained.

比較例1 実施例1と同様の装置に、イソホロン528゜0重量部
と炭酸ナトリウム5.1重量部、溶媒としてエチレング
リコール37.6重量部を仕込み、攪拌下に110℃の
温度で青酸102.9重量部を3.5時間にわたって滴
下して反応させた(イソホロン/青酸モル比=1.0)
、滴下終了後、110℃で1時間反応を行ったのち、8
0%リン酸9.8重量部を添加した。未反応の青酸をN
Comparative Example 1 Into the same apparatus as in Example 1, 528.0 parts by weight of isophorone, 5.1 parts by weight of sodium carbonate, and 37.6 parts by weight of ethylene glycol as a solvent were charged, and 102.0 parts by weight of hydrocyanic acid was added at a temperature of 110°C with stirring. 9 parts by weight was added dropwise over 3.5 hours to react (isophorone/cyanic acid molar ratio = 1.0)
After the completion of the dropwise addition, the reaction was carried out at 110°C for 1 hour, and then
9.8 parts by weight of 0% phosphoric acid was added. unreacted hydrocyanic acid with N
.

ガスを通して0.01%以下に除去した。室温に冷却後
、塩を濾別し、反応液を分析した。その結果、イソホロ
ンの反応率は47%で、IPCNへの選択率は88%で
あり、IPCNの収率は41%であった。
It was removed to 0.01% or less by passing gas through it. After cooling to room temperature, the salts were filtered off and the reaction solution was analyzed. As a result, the reaction rate of isophorone was 47%, the selectivity to IPCN was 88%, and the yield of IPCN was 41%.

(ほか1名)(1 other person)

Claims (1)

【特許請求の範囲】[Claims] 塩基性触媒と溶媒の存在下に、イソホロンと青酸とを温
度60〜160℃で反応させ、3−シアノ−3,5,5
−トリメチルシクロヘキサノンを製造する方法において
、溶媒として1,3−ジメチル−2−イミダゾリジノン
を用いることを特徴とする3−シアノ−3,5,5−ト
リメチルシクロヘキサノンの製造法。
In the presence of a basic catalyst and a solvent, isophorone and hydrocyanic acid are reacted at a temperature of 60 to 160°C to form 3-cyano-3,5,5
- A method for producing 3-cyano-3,5,5-trimethylcyclohexanone, the method comprising using 1,3-dimethyl-2-imidazolidinone as a solvent.
JP2285816A 1990-10-25 1990-10-25 Production of 3-cyano-3,5,5-trimethylcyclohexanone Pending JPH04164057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2285816A JPH04164057A (en) 1990-10-25 1990-10-25 Production of 3-cyano-3,5,5-trimethylcyclohexanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2285816A JPH04164057A (en) 1990-10-25 1990-10-25 Production of 3-cyano-3,5,5-trimethylcyclohexanone

Publications (1)

Publication Number Publication Date
JPH04164057A true JPH04164057A (en) 1992-06-09

Family

ID=17696460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2285816A Pending JPH04164057A (en) 1990-10-25 1990-10-25 Production of 3-cyano-3,5,5-trimethylcyclohexanone

Country Status (1)

Country Link
JP (1) JPH04164057A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985659A1 (en) * 1998-08-12 2000-03-15 Basf Aktiengesellschaft Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone
DE102010062603A1 (en) 2010-12-08 2012-06-14 Evonik Degussa Gmbh Process for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
DE102011077681A1 (en) 2011-06-17 2012-12-20 Evonik Degussa Gmbh Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone
CN109761855A (en) * 2018-12-20 2019-05-17 万华化学集团股份有限公司 A method of preparing isophorone diisocyanate
CN115433103A (en) * 2022-10-09 2022-12-06 山东新和成维生素有限公司 Synthesis method of isophorone nitrile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985659A1 (en) * 1998-08-12 2000-03-15 Basf Aktiengesellschaft Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone
DE102010062603A1 (en) 2010-12-08 2012-06-14 Evonik Degussa Gmbh Process for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
WO2012076317A1 (en) 2010-12-08 2012-06-14 Evonik Degussa Gmbh Process for preparing 3-aminomethyl-3,5,5-trimethylcyclohexylamine
DE102011077681A1 (en) 2011-06-17 2012-12-20 Evonik Degussa Gmbh Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone
CN109761855A (en) * 2018-12-20 2019-05-17 万华化学集团股份有限公司 A method of preparing isophorone diisocyanate
US11939280B2 (en) 2018-12-20 2024-03-26 Wanhua Chemical Group Co., Ltd. Method for preparing isophorone diisocyanate
CN115433103A (en) * 2022-10-09 2022-12-06 山东新和成维生素有限公司 Synthesis method of isophorone nitrile
CN115433103B (en) * 2022-10-09 2023-08-18 山东新和成维生素有限公司 Synthesis method of isophorone nitrile

Similar Documents

Publication Publication Date Title
JP2022504766A (en) How to prepare isophorone diisocyanate
WO2006016510A1 (en) Method for producing 2-amino-5-iodobenzoic acid
US6683204B1 (en) Method for producing monoisocyanates and oligoisocyanates
JPH06128214A (en) Process of manufacturing 1,3,3-trimethyl-5-oxocyclohexane- carbonitrile
JPS625418B2 (en)
JPH04164057A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JP2004262835A (en) Method for producing aromatic isocyanate
CN111116420B (en) Preparation method of symmetrical urea compound
JPH04112862A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPS61280462A (en) Manufacture of carbamate ester
JPH0565250A (en) Production of 3,5-difluoroaniline
JPH04279559A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JP2004262834A (en) Method for producing aromatic urethane compound
JPS6133157A (en) Preparation of 3-cyano-3,5,5,-trimethylcyclohexanone
JPS63159362A (en) Production of methyleneimine compound
JPH0481583B2 (en)
JPH04279558A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPS61289071A (en) Manufacture of 2-(n-formylanino)-propinonitrile
US7211689B2 (en) Method for production of isocyanates
JPH07278066A (en) Production of 1,5-diaminonaphthalene
US7064233B2 (en) Method for producing isocyanates
JPH04253948A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JP3981186B2 (en) Process for producing 1,3-dimethyl-2-imidazolidinone
JPH0588227B2 (en)
JPS61236769A (en) Production of 2,3-dimethyl-2-imidazolidinone