JPS63159362A - Production of methyleneimine compound - Google Patents

Production of methyleneimine compound

Info

Publication number
JPS63159362A
JPS63159362A JP61305396A JP30539686A JPS63159362A JP S63159362 A JPS63159362 A JP S63159362A JP 61305396 A JP61305396 A JP 61305396A JP 30539686 A JP30539686 A JP 30539686A JP S63159362 A JPS63159362 A JP S63159362A
Authority
JP
Japan
Prior art keywords
compound
catalyst
hexahydrotriazine
methyleneimine
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61305396A
Other languages
Japanese (ja)
Inventor
Masahiro Kurokawa
正弘 黒川
Noriyoshi Watanabe
渡辺 宣義
Masayoshi Okamura
岡村 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP61305396A priority Critical patent/JPS63159362A/en
Publication of JPS63159362A publication Critical patent/JPS63159362A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful for instantaneous adhesive, etc., in high quality, stability and yield, by carrying out thermally decomposition of a hexahydrotriazine compound in the presence of a catalyst in a basic gas atmosphere. CONSTITUTION:A methyleneimine compound of formula II can be produced by the thermal decomposition reaction of a hexahydrotriazine compound of formula I (R is alkyl, benzyl, phenetyl, etc.) in the presence of a catalyst in a basic gas atmosphere. The catalyst is e.g. a complex of a metal salt and a compound of formula I, a salt of an inorganic acid and benzylamine or m- xylylenediamine, etc., a synthetic zeolite, etc. The basic gas is e.g. NH3, methylamine, ethylamine, etc., and is directly blown into the reaction system. The objective compound produced by this process can be stably stored for longer time than a compound produced in an inert gas atmosphere and can be handled at normal temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はへキサヒドロトリアジン化合物を原料としてメ
チレンイミン化合物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a methyleneimine compound using a hexahydrotriazine compound as a raw material.

〔従来の技術〕[Conventional technology]

ヘキサヒドロトリアジン化合物は、無触媒下で熱分解す
るとメチレンイミン化合物を生じるが、この時副反応も
同時に起こり、1.2級アミン化合物、アミド化合物及
びアルデヒド化合物等の多(の副生物が生じる。
When a hexahydrotriazine compound is thermally decomposed in the absence of a catalyst, it produces a methyleneimine compound, but at this time side reactions also occur simultaneously, producing a number of byproducts such as primary and secondary amine compounds, amide compounds, and aldehyde compounds.

又メチレンイミン化合物は非常に不安定な化合物である
ので、上記不純物や水分が僅かに存在しても、重合が起
こったり、出発原料であるヘキサヒドロトリアジン化合
物に再び戻ったりする為、無触媒下の熱分解反応によっ
てメチレンイミン化合物を安定な状態で得ることはでき
ない。
In addition, methyleneimine compounds are very unstable compounds, so even if the above impurities and moisture are present, polymerization will occur or the starting material will return to the hexahydrotriazine compound, so it cannot be used without a catalyst. Methyleneimine compounds cannot be obtained in a stable state through thermal decomposition reactions.

従って、触媒を使用し、かつ低い反応温度条件を選択す
る必要がある。
Therefore, it is necessary to use a catalyst and select low reaction temperature conditions.

これまで、メチレンイミン化合物の製造方法としては、
米国特許第2.739.679号、同第2.739、6
80号及びジャーナル・オブ・アメリカン・ケミカル・
ソサエティー 第2部(Journal ofAmer
ican Chemical 5ociety、 Pa
rt It)に、ヘキサヒドロトリアジン化合物を、強
酸又はフリーデルタラフト触媒を使用して、分解反応さ
せる方法が開示されている。
Up until now, the methods for producing methyleneimine compounds have been as follows:
U.S. Patent No. 2.739.679, U.S. Patent No. 2.739, 6
No. 80 and Journal of American Chemical
Society Part 2 (Journal of Amer
ican Chemical 5ociety, Pa
rt It) discloses a method of subjecting a hexahydrotriazine compound to a decomposition reaction using a strong acid or a Friedelta raft catalyst.

上記強酸やフリーデル・クラフト触媒を使用した場合で
も、高品質で安定性の良いメチレンイミン化合物を高収
率で得ることは出来ない。
Even when the above-mentioned strong acid or Friedel-Crafts catalyst is used, it is not possible to obtain a high-quality, stable methyleneimine compound in high yield.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような従来技術の問題点を改良し、高品
質で安定性の良いメチレンイミン化合物を、高収率で得
る方法を提供することを目的とする。
An object of the present invention is to improve the problems of the prior art and provide a method for obtaining a high-quality, stable methyleneimine compound at a high yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、鋭意研究の結果、触媒を使用しかつ塩基
性ガスの雰囲気下に、反応を行わせることにより、高品
質で安定性のよいメチレンイミン化合物を、高収率で得
ることに成功した。
As a result of extensive research, the present inventors have succeeded in obtaining a high-quality, stable methyleneimine compound in high yield by carrying out the reaction using a catalyst and in a basic gas atmosphere. Successful.

本発明は、一般式〔I〕で示されるヘキサヒドロトリア
ジン化合物から、−i式(II)で示されるメチレンイ
ミン化合物の製造法に関するものである。
The present invention relates to a method for producing a methyleneimine compound represented by the -i formula (II) from a hexahydrotriazine compound represented by the general formula [I].

CH,=N−R(II) (式中、Rはアルキル基、ベンジル基、アルキル置換ベ
ンジル基、フェネチル基又はアルキル置換フェネチル基
を表わす。) 一般式(13及び〔■〕中、Rで表されるアルキル基と
しては、炭素数が5〜15の鎖状、環状又はアルキル置
換された環状のアルキル基、例えば、鎖状、環状または
アルキル置換された環状の、ペンチル基、ヘキシル基、
ヘプチル基、オクチル基、デシル基、ドデシル基が適当
であり、アルキル置換ベンジル基及びアルキル置換フェ
ネチル基に於けるアルキル基としては、炭素数が1〜4
の鎖状アルキル基、例えばメチル基、エチル基、プロピ
ル基、ブチル基が適当であり、これらのアルキル基がベ
ンジル基又はフェネチル基に複数結合した場合も含まれ
る。
CH,=N-R(II) (In the formula, R represents an alkyl group, a benzyl group, an alkyl-substituted benzyl group, a phenethyl group, or an alkyl-substituted phenethyl group.) In the general formula (13 and [■], R represents Examples of the alkyl group include a chain, cyclic or alkyl-substituted cyclic alkyl group having 5 to 15 carbon atoms, such as a chain, cyclic or alkyl-substituted cyclic pentyl group, hexyl group,
Heptyl group, octyl group, decyl group, and dodecyl group are suitable, and the alkyl group in the alkyl-substituted benzyl group and alkyl-substituted phenethyl group has 1 to 4 carbon atoms.
A chain alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group is suitable, and cases in which a plurality of these alkyl groups are bonded to a benzyl group or a phenethyl group are also included.

代表的なヘキサヒドロトリアジン化合物としては、1.
3.5−トリス(1−メチルヘプチル)へキサヒドロト
リアジン、1,3.5−1−リベンジルへキサヒドロト
リアジン、1.3.5−トリフェネチルへキサヒドロト
リアジン、1,3.5−トリス(α−メチルベンジル)
へキサヒドロトリアジン、1.3.5−トリス(3−メ
チルベンジル)へキサヒドロトリアジン、1.3.5−
 )リス(4−メチルベンジル)へキサヒドロトリアジ
ン、1.3.5− )リシクロへキシルへキサヒドロト
リアジン、1.3.5−)リス(4−メチルシクロヘキ
シル)へキサヒドロトリアジン、1.3.5−1−リス
(2,3−ジメチルシクロヘキシル)へキサヒドロトリ
アジン等を例示することかできる。
Typical hexahydrotriazine compounds include 1.
3.5-tris(1-methylheptyl)hexahydrotriazine, 1,3.5-1-ribenzylhexahydrotriazine, 1.3.5-triphenethylhexahydrotriazine, 1,3.5-tris (α-methylbenzyl)
Hexahydrotriazine, 1.3.5-tris(3-methylbenzyl)hexahydrotriazine, 1.3.5-
) Lis(4-methylbenzyl)hexahydrotriazine, 1.3.5-) Lis(4-methylcyclohexyl)hexahydrotriazine, 1.3.5-) Lis(4-methylcyclohexyl)hexahydrotriazine, 1.3 Examples include 5-1-lis(2,3-dimethylcyclohexyl)hexahydrotriazine.

本発明において、使用する触媒として、金属塩と前記一
般式〔I〕で示される化合物との錯体が一例としてあげ
られる。
In the present invention, an example of the catalyst used is a complex of a metal salt and a compound represented by the general formula [I].

上記錯体触媒の一成分である金属塩は、2価又は3価の
価電子を有する金属(例えば銅、鉄、ニッケル、亜鉛、
水銀、錫、クロム、コバルト、鉛等が例示される)と、
無機酸(例えば、塩酸、臭素酸、ヨウ素酸及び硫酸等が
例示される)とから得られる。
The metal salt, which is a component of the above-mentioned complex catalyst, is a metal having divalent or trivalent valence electrons (such as copper, iron, nickel, zinc,
Examples include mercury, tin, chromium, cobalt, lead, etc.)
It is obtained from an inorganic acid (for example, hydrochloric acid, bromic acid, iodic acid, sulfuric acid, etc.).

上記の金属塩と、錯体を形成するヘキサヒドロトリアジ
ン化合物は、前記一般式〔I〕で示される化合物である
が、原料として用いるヘキサヒドロトリアジン化合物と
同一の化合物である必要はなく、特に1.3.5−トリ
ベンジルへキサヒドロトリアジン及び1.3.5− )
リシクロへキシルへキサヒドロトリアジンが好ましい。
The hexahydrotriazine compound that forms a complex with the above metal salt is a compound represented by the general formula [I], but it does not need to be the same compound as the hexahydrotriazine compound used as a raw material, and in particular 1. 3.5-tribenzylhexahydrotriazine and 1.3.5-)
Licyclohexylhexahydrotriazine is preferred.

その他、本発明に使用できる触媒としては、無機酸とベ
ンジルアミン、メタキシリレンジアミン等との塩、更に
合成ゼオライト等が例示される。
Other examples of catalysts that can be used in the present invention include salts of inorganic acids with benzylamine, metaxylylene diamine, etc., and synthetic zeolites.

又本発明で使用する触媒は上記触媒に限定されるもので
はない、すなわち本発明で使用する塩基性ガスは他の触
媒を使用した場合でも有効に作用するものである。
Further, the catalyst used in the present invention is not limited to the above-mentioned catalyst; that is, the basic gas used in the present invention works effectively even when other catalysts are used.

本発明に使用する塩基性ガスとしては、例えば、アンモ
ニア、メチルアミン、エチルアミン、イソプロピルアミ
ン、ジメチルアミンなどを例示することができる。
Examples of the basic gas used in the present invention include ammonia, methylamine, ethylamine, isopropylamine, and dimethylamine.

これらの塩基性ガスのうちアンモニア及びメチルアミン
が特に好ましい。
Among these basic gases, ammonia and methylamine are particularly preferred.

塩基性ガスの使用法としては、反応系に直接吹き込むだ
けで十分である。
As for how to use the basic gas, it is sufficient to blow it directly into the reaction system.

反応生成液からのメチレンイミン化合物の分離は、減圧
蒸溜により容易に行うことができるが、減圧蒸溜装置内
で、分解反応を行わせながら生成メチレンイミン化合物
を蒸溜分離する方法をとることもできる。
The separation of the methyleneimine compound from the reaction product liquid can be easily carried out by distillation under reduced pressure, but it is also possible to separate the generated methyleneimine compound by distillation while allowing the decomposition reaction to take place in a reduced pressure distillation apparatus.

〔作用及び効果〕[Action and effect]

本発明によれば、高品質で安定性の良いメチレンイミン
化合物を、高収率で得ることが出来る。
According to the present invention, a methyleneimine compound of high quality and good stability can be obtained in high yield.

本発明による塩基性ガスの雰囲気下に生成したメチレン
イミン化合物は、不活性ガス雰囲気下で得られたものよ
りも更に長時間安定に保存することができる。
The methyleneimine compounds produced under a basic gas atmosphere according to the invention can be stored stably for a longer period of time than those obtained under an inert gas atmosphere.

又、本発明により反応生成物であるメチレンイミン化合
物の取り扱いが、常温においても可能となる。
Further, according to the present invention, the methyleneimine compound, which is a reaction product, can be handled even at room temperature.

本反応方法により得られる高品質のメチレンイミン化合
物は、瞬間接着剤、各種ウレタンフオーム用触媒、エポ
キシ樹脂用硬化剤及び硬化促進剤、塗料安定剤、ゴムラ
テックス硬化剤、加硫促進剤、電極保護剤、導電性ポリ
マー、イオン交換樹脂、高分子凝集剤など、種々の用途
に極めて重要である。
The high-quality methyleneimine compounds obtained by this reaction method are used in instant adhesives, catalysts for various urethane foams, curing agents and curing accelerators for epoxy resins, paint stabilizers, rubber latex curing agents, vulcanization accelerators, and electrode protection. It is extremely important for a variety of applications, including agents, conductive polymers, ion exchange resins, and polymer flocculants.

〔実施例〕〔Example〕

次に実施例及び比較例により本発明を具体的に説明する
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

尚、参考例1〜4に本実施例に用いた触媒の調製例につ
いて記す。
In addition, reference examples 1 to 4 describe preparation examples of the catalysts used in this example.

参考例1 試薬特級塩化第二鉄16.2gを350m1のエタノー
ルに?8解させる、次にこのエタノールシン容液を濾過
し、この時得られた濾液を、撹拌機、温度計及び冷却器
を備えた500m1の4つロフラスコに仕込んだ。
Reference example 1: 16.2g of reagent grade ferric chloride in 350ml of ethanol? The ethanolcin solution was then filtered, and the filtrate obtained at this time was charged into a 500 ml four-bottle flask equipped with a stirrer, a thermometer, and a condenser.

エタノールで再結晶、精製した1、 3.5− )リベ
ンジルへキサヒドロトリアジン28.6gを150m1
のエタノールに溶解させ、次にこのエタノール溶液を濾
過する。この時得られた濾液を、撹拌かつ40〜45°
Cの条件下に、前記4つロフラスコ中の液に、約1時間
を要して滴下し、更に約1時間、同温度に保った。
150ml of 28.6g of 1,3.5-)ribenzylhexahydrotriazine recrystallized and purified with ethanol
of ethanol and then filter the ethanol solution. The filtrate obtained at this time was stirred and heated at 40 to 45°C.
It was added dropwise to the liquid in the 4-hole flask over a period of about 1 hour under conditions C, and the temperature was kept at the same temperature for an additional hour.

その後、10″C付近まで徐々に冷却し、生成した沈澱
物を濾別し、精製エタノール50m1で2回洗浄した後
、減圧下で乾燥させ、真黄色の粉末触媒34.8gを得
た。
Thereafter, the mixture was gradually cooled to around 10''C, and the formed precipitate was filtered off, washed twice with 50 ml of purified ethanol, and then dried under reduced pressure to obtain 34.8 g of a bright yellow powdered catalyst.

参考例2 試薬特級塩化第二銅15gと、エタノールで再結晶、精
製した1、 3.5− )リシクロへキシルへキサヒド
ロトリアジン25.5gを用い、反応温度を30°Cと
した以外は、参考例1と同様の操作を行った。
Reference Example 2 Except for using 15 g of reagent special grade cupric chloride and 25.5 g of 1,3.5-)licyclohexylhexahydrotriazine recrystallized and purified with ethanol, and setting the reaction temperature to 30°C. The same operation as in Reference Example 1 was performed.

その結果、淡緑色の粉末触媒13gを得た。As a result, 13 g of a light green powdered catalyst was obtained.

参考例3 撹拌機、冷却器、温度計を備えつけた4つロフラスコに
蒸溜精製したベンジルアミン30gと蒸溜水30gとを
仕込み、温度が50’Cをこえないように冷却しながら
、20%塩酸50gを滴下ロートより反応系に徐々に滴
下した。
Reference Example 3 30 g of distilled benzylamine and 30 g of distilled water were placed in a four-bottle flask equipped with a stirrer, a cooler, and a thermometer, and while cooling so that the temperature did not exceed 50'C, 50 g of 20% hydrochloric acid was added. was gradually dropped into the reaction system from the dropping funnel.

その後、反応溶液をエバポレーターにより′a縮し、得
られたベンジルアミン塩酸塩の粗結晶をメタノールより
2回再結晶精製を行った。
Thereafter, the reaction solution was condensed using an evaporator, and the resulting crude crystals of benzylamine hydrochloride were purified by recrystallization twice from methanol.

得られた板状ないし柱状結晶を減圧下に乾燥させ、22
.4gの触媒を得た。
The obtained plate-like or columnar crystals were dried under reduced pressure, and 22
.. 4 g of catalyst was obtained.

参考例4 参考例3と同様の4つ目フラスコに蒸溜精製したメタキ
シリレンジアミン35gと蒸溜水40gとを仕込み、2
0%塩酸47gを滴下ロートより反応系に徐々に滴下し
た。
Reference Example 4 Into a fourth flask similar to Reference Example 3, 35 g of metaxylylene diamine purified by distillation and 40 g of distilled water were charged.
47 g of 0% hydrochloric acid was gradually dropped into the reaction system from the dropping funnel.

反応条件及び操作は、参考例3と同様である。The reaction conditions and operations were the same as in Reference Example 3.

上記操作により、板状ないし柱状の結晶(触媒)35.
2gを得た。
By the above operation, plate-like or columnar crystals (catalyst) 35.
2g was obtained.

実施例1 1、3.5− )リベンジルへキサヒドロトリアジン(
純度99.9%以上)65.5g及び参考例1で得た塩
化第二鉄と1.3.5−1−リベンジルへキサヒドロト
リアジンとの錯体0.820 gを温度計及び蒸溜器を
備えたナシ型フラスコに供給し、内部を乾燥アンモニア
ガスで置換した後、アンモニアガス気流下、0.4mm
Hg (絶対圧)の減圧条件下に、140〜160°C
で分解反応させ、ベンジルメチレンイミンを留出成分と
して得た。
Example 1 1,3.5-) Ribenzylhexahydrotriazine (
65.5 g (purity of 99.9% or higher) and 0.820 g of the complex of ferric chloride and 1.3.5-1-ribenzylhexahydrotriazine obtained in Reference Example 1 were prepared using a thermometer and a distiller. After supplying it to a pear-shaped flask and replacing the inside with dry ammonia gas, under ammonia gas flow, 0.4 mm
140-160°C under reduced pressure conditions of Hg (absolute pressure)
A decomposition reaction was performed to obtain benzylmethyleneimine as a distillate component.

その収量は57.2gであり、理論収量の873モル%
に相当した。
The yield was 57.2 g, 873 mol% of the theoretical yield.
It was equivalent to

ここで得られた生成物は、不活性ガス密封容器内に無色
、透明な低粘度の液体として、0°Cで7日間、25°
Cでは24時間安定に保存することができた。
The product obtained here was stored as a colorless, transparent, low viscosity liquid in an inert gas-tight container at 0°C for 7 days at 25°C.
C could be stably stored for 24 hours.

実施例2 1、3.5− )リシクロへキシルへキサヒドロトリア
ジン(純度99.9%以上)50g及び参考例2で得た
塩化第二銅と1.3.5−1リシクロへキシルへキサヒ
ドロトリアジンとの錯体0.44 gを実施例1と同様
のフラスコに供給し、内部を乾燥アンモニアガスで置換
した後、アンモニアガス気流下、13.5mmHg(絶
対圧)の減圧条件下に95〜110”Cで分解反応させ
、シクロへキシルメチレンイミンを留出成分として得た
Example 2 50 g of 1,3.5-)licyclohexylhexylhexyltriazine (purity 99.9% or higher) and cupric chloride obtained in Reference Example 2 and 1.3.5-1lycyclohexylhexylhexyl 0.44 g of the complex with hydrotriazine was supplied to the same flask as in Example 1, and after replacing the inside with dry ammonia gas, the flask was heated under reduced pressure conditions of 13.5 mmHg (absolute pressure) under a stream of ammonia gas at 95 to 95 mmHg (absolute pressure). A decomposition reaction was carried out at 110"C to obtain cyclohexylmethyleneimine as a distillate component.

その収量は42.3gであり、理論収量の846モル%
に相当した。
The yield was 42.3 g, 846 mol% of the theoretical yield.
It was equivalent to

ここで得られた生成物は、不活性ガス密封容器内に無色
、透明な低粘度の液体として、0°Cで30日間、25
°Cでは5日間安定に保存することができた。
The product obtained here was stored as a colorless, transparent, low viscosity liquid in an inert gas-tight container at 0°C for 30 days.
It could be stored stably for 5 days at °C.

実施例3 1、3.5−トリシクロへキシルへキサヒドロトリアジ
ン(純度99.9%以上)50g、及び参考例3で得た
ベンジルアミン塩酸塩0.504gを実施例1と同様の
装置に仕込み、メチルアミンガス気流下、13mmHg
(絶対圧)の減圧条件下に、102〜115°Cで分解
反応させ、留出物として無色透明のシクロへキシルメチ
レンイミン40.3gを得た。
Example 3 50 g of 1,3.5-tricyclohexylhexahydrotriazine (purity 99.9% or more) and 0.504 g of benzylamine hydrochloride obtained in Reference Example 3 were charged into the same apparatus as in Example 1. , under methylamine gas flow, 13mmHg
A decomposition reaction was carried out at 102 to 115° C. under reduced pressure conditions (absolute pressure) to obtain 40.3 g of clear and colorless cyclohexylmethyleneimine as a distillate.

反応収率は80.6モル%であった。The reaction yield was 80.6 mol%.

ここで得られた生成物は、密封容器内に無色、透明な低
粘度の液体として、O′Cで20日間、25°Cでは3
日間安定に保存することができた。
The product obtained here was stored as a colorless, transparent, low viscosity liquid in a sealed container at O'C for 20 days and at 25 °C for 3 days.
It could be stored stably for several days.

実施例4 1、3.5− )リベンジルへキサヒドロトリアジン(
純度99.9%以上)50g及び参考例4で得たメタキ
シリレンジアミン2塩酸塩0.52gを実施例1と同様
の装置に仕込み、メチルアミンガス気流下、1.9mm
Hg (絶対圧)の減圧条件下に、135〜145°C
で分解反応させ、留出物として無色透明のベンジルメチ
レンイミン40゜9gを得た。
Example 4 1,3.5-) Ribenzylhexahydrotriazine (
50 g (purity of 99.9% or higher) and 0.52 g of metaxylylenediamine dihydrochloride obtained in Reference Example 4 were placed in the same apparatus as in Example 1, and heated under a methylamine gas flow to a diameter of 1.9 mm.
135-145°C under reduced pressure conditions of Hg (absolute pressure)
A decomposition reaction was carried out to obtain 40.9 g of clear and colorless benzylmethyleneimine as a distillate.

反応収率は81.8モル%であった。The reaction yield was 81.8 mol%.

ここで得られた生成物は、密封容器内に無色、透明な低
粘度の液体として、0゛Cで5日間、25°Cでは20
時間安定に保存することができた。
The product obtained here is stored as a colorless, transparent, low viscosity liquid in a sealed container at 0°C for 5 days and at 25°C for 200°C.
It was possible to store it stably over time.

実施例5 1、3.5− トリス(3−メチルベンジル)へキサヒ
ドロトリアジン(純度99.9%以上)50g及び参考
例4で得たメタキシリレンジアミン2塩酸塩0.251
gを実施例1と同様の装置に仕込み、アンモニアガス気
流下、1 、 5 m m f(g (絶対圧)の減圧
条件下に、140〜160°Cで分解反応させ、留出物
として無色透明の3−メチルベンジルメチレンイミン3
9.7gを得た。
Example 5 50 g of 1,3.5-tris(3-methylbenzyl)hexahydrotriazine (purity 99.9% or higher) and 0.251 g of metaxylylenediamine dihydrochloride obtained in Reference Example 4
g was charged into the same apparatus as in Example 1, and subjected to a decomposition reaction at 140 to 160 °C under reduced pressure conditions of 1.5 m m f (g (absolute pressure)) under a stream of ammonia gas, and a colorless distillate was obtained. Transparent 3-methylbenzylmethyleneimine 3
9.7g was obtained.

反応収率は79.4モル%であった。The reaction yield was 79.4 mol%.

二二で得られた生成物は、密封容器内に無色、透明な低
粘度の液体として、0°Cで7日間、25℃では24時
間安定に保存することができた。
The product obtained in 22 could be stably stored in a sealed container as a colorless, transparent, low viscosity liquid at 0°C for 7 days and at 25°C for 24 hours.

実施例6 1、3.5− )リシクロへキシルへキサヒドロトリア
ジン(純度99.9%以上)75gとX型ゼオライト2
gを、温度計及び蒸溜装置を備えつけたナシ型フラスコ
に仕込み、内部をメチルアミンガスで置換後、メチルア
ミンガス気流下、10mmHg(絶対圧)の減圧条件下
に、110〜180°Cで分解反応させ、留出物として
無色透明のシクロヘキシルメチレンイミン65.7gを
得た。
Example 6 1,3.5-) 75 g of lycyclohexylhexahydrotriazine (purity 99.9% or more) and X-type zeolite 2
g into a pear-shaped flask equipped with a thermometer and a distillation device, and after purging the inside with methylamine gas, decompose it at 110 to 180°C under a reduced pressure condition of 10 mmHg (absolute pressure) under a stream of methylamine gas. The reaction yielded 65.7 g of colorless and transparent cyclohexylmethyleneimine as a distillate.

反応収率は87.6モル%であった。The reaction yield was 87.6 mol%.

ここで得られた生成物は、密封容器内に無色、透明な低
粘度の液体として、O′Cで30日間、25℃では5日
間安定に保存することができた。
The product obtained here could be stably stored in a sealed container as a colorless, transparent, low viscosity liquid at O'C for 30 days and at 25°C for 5 days.

比較例1 1.3.5−i−リベンジルへキサヒドロトリアジン(
純度99.9%以上)50g及び参考例1で得た塩化第
二鉄と1.3.5−)リベンジルへキサヒドロトリアジ
ンとの錯体0.453gを温度計及び蒸溜装置を備えた
ナシ型フラスコに供給し、内部を乾燥窒素で置換した後
、窒素気流下、1.6mmHg (絶対圧)の減圧条件
下に145〜165°Cで分解反応させ、ベンジルメチ
レンイミンを留出成分として得た。
Comparative Example 1 1.3.5-i-ribenzylhexahydrotriazine (
50 g (purity 99.9% or higher) and 0.453 g of the complex of ferric chloride and 1.3.5-)ribenzylhexahydrotriazine obtained in Reference Example 1 were placed in a pear-shaped flask equipped with a thermometer and a distillation device. After purging the inside with dry nitrogen, a decomposition reaction was carried out at 145 to 165°C under reduced pressure conditions of 1.6 mmHg (absolute pressure) under a nitrogen stream to obtain benzylmethyleneimine as a distillate component.

その収量は、40.3gであり、理論収量の80.6モ
ル%に相当した。
The yield was 40.3 g, corresponding to 80.6 mol% of the theoretical yield.

ここで得られた生成物は、不活性ガス密封容器内に無色
、透明な低粘度の液体として、0℃で1日間、25°C
では1時間保存することができた。
The product obtained here was stored as a colorless, transparent, low viscosity liquid in an inert gas-sealed container at 0°C for 1 day at 25°C.
I was able to save it for an hour.

比較例2 1、3.5−トリシクロへキシルへキサヒドロトリアジ
ン(純度99,9%以上)50g及び参考例2で得た塩
化第二銅と1.3.5−トリシクロヘキシルへキサヒド
ロトリアジンとの錯体0.44gを実施例1と同様のフ
ラスコに供給し、内部を乾燥窒素で置換した後、窒素気
流下、13.5mmHg(絶対圧)の減圧条件下に98
〜110″Cで分解反応させ、シクロへキシルメチレン
イミンを留出成分として得た。
Comparative Example 2 50 g of 1,3.5-tricyclohexylhexylhexahydrotriazine (purity 99.9% or higher), cupric chloride obtained in Reference Example 2, and 1,3.5-tricyclohexylhexahhydrotriazine 0.44 g of the complex was supplied to the same flask as in Example 1, and after purging the inside with dry nitrogen, it was heated to 98% under reduced pressure conditions of 13.5 mmHg (absolute pressure) in a nitrogen stream.
A decomposition reaction was carried out at ~110''C to obtain cyclohexylmethyleneimine as a distillate component.

その収量は、38.5gであり、理論収量の77.0モ
ル%に相当した。
The yield was 38.5 g, corresponding to 77.0 mol% of the theoretical yield.

ここで得られた生成物は、′(不活性ガス密封容器内に
無色、透明な低粘度の液体として、0°Cで2日間、2
5°Cで3時間安定に保存することができた。
The product obtained here was stored as a colorless, transparent, low viscosity liquid in an inert gas-tight container at 0°C for 2 days.
It could be stably stored at 5°C for 3 hours.

Claims (1)

【特許請求の範囲】  一般式〔 I 〕で示されるヘキサヒドロトリアジン化
合物を原料として、一般式〔II〕で示されるメチレンイ
ミン化合物を製造するに際して、触媒の存在下に、塩基
性ガスの雰囲気下で反応させることを特徴とするメチレ
ンイミン化合物の製造法▲数式、化学式、表等がありま
す▼〔II〕 (式中、Rはアルキル基、ベンジル基、アルキル置換ベ
ンジル基、フェネチル基又はアルキル置換フェネチル基
を表わす。)
[Claims] When producing a methyleneimine compound represented by the general formula [II] using a hexahydrotriazine compound represented by the general formula [I] as a raw material, in the presence of a catalyst and in an atmosphere of basic gas. A method for producing methyleneimine compounds characterized by reacting with (represents the group)
JP61305396A 1986-12-23 1986-12-23 Production of methyleneimine compound Pending JPS63159362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61305396A JPS63159362A (en) 1986-12-23 1986-12-23 Production of methyleneimine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61305396A JPS63159362A (en) 1986-12-23 1986-12-23 Production of methyleneimine compound

Publications (1)

Publication Number Publication Date
JPS63159362A true JPS63159362A (en) 1988-07-02

Family

ID=17944616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61305396A Pending JPS63159362A (en) 1986-12-23 1986-12-23 Production of methyleneimine compound

Country Status (1)

Country Link
JP (1) JPS63159362A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120878A (en) * 1991-01-30 1992-06-09 Akzo N.V. Process for the preparation of secondary monomethylalkyl amines
WO1999030822A1 (en) * 1997-12-16 1999-06-24 Exxon Research And Engineering Company Group 11 transition metal amine catalysts for olefin polymerization
US6037297A (en) * 1997-12-16 2000-03-14 Exxon Research And Engineering Co. Catalyst complexes and polymers therefrom
US6180788B1 (en) 1997-12-16 2001-01-30 Exxon Research And Engineering Company Catalyst compositions
US6417303B1 (en) 1997-12-16 2002-07-09 Exxonmobil Research And Engineering Company Substantially linear copolymers
US6501000B1 (en) 2000-04-04 2002-12-31 Exxonmobil Research And Engineering Company Late transition metal catalyst complexes and oligomers therefrom
US6689928B2 (en) 2000-04-04 2004-02-10 Exxonmobil Research And Engineering Company Transition metal complexes and oligomers therefrom

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120878A (en) * 1991-01-30 1992-06-09 Akzo N.V. Process for the preparation of secondary monomethylalkyl amines
WO1999030822A1 (en) * 1997-12-16 1999-06-24 Exxon Research And Engineering Company Group 11 transition metal amine catalysts for olefin polymerization
US6037297A (en) * 1997-12-16 2000-03-14 Exxon Research And Engineering Co. Catalyst complexes and polymers therefrom
US6180788B1 (en) 1997-12-16 2001-01-30 Exxon Research And Engineering Company Catalyst compositions
US6417303B1 (en) 1997-12-16 2002-07-09 Exxonmobil Research And Engineering Company Substantially linear copolymers
US6501000B1 (en) 2000-04-04 2002-12-31 Exxonmobil Research And Engineering Company Late transition metal catalyst complexes and oligomers therefrom
US6689928B2 (en) 2000-04-04 2004-02-10 Exxonmobil Research And Engineering Company Transition metal complexes and oligomers therefrom

Similar Documents

Publication Publication Date Title
KR100220266B1 (en) Optically active secondary amine compound; process for producing optically active secondary amine compound and process for producing optically active carboxylic acid by using said compound
JPS6078945A (en) Production of diethylenetriamine
JPS63159362A (en) Production of methyleneimine compound
WO2015019777A1 (en) Benzoguanamine compound having aminomethyl group or salt thereof, and method for producing same
JP2002053542A (en) Cyanoethylation of alicyclic primary vicinal diamine
CN108276356B (en) Preparation method of 3, 5-disubstituted thiazolidine-2-thioketone compound
JPH03176457A (en) Novel propargyl compound, its production and coating material containing the same compound
CN112608262B (en) Oxalic acid diselenide ester compound and synthesis method and application thereof
JPS5826849A (en) Manufacture of methacryl- and acrylamide
TW201302672A (en) Method for producing unsaturated carboxylic acid amide composition
JPS59196843A (en) Production of cyclohexylamine compound
CN117886718B (en) Preparation method of high-selectivity asymmetric urea compound and asymmetric urea compound
JP2002226450A (en) Synthesis of new polynitrile from alicyclic vicinal primary diamine
US3880925A (en) Separation and purification of cis and trans isomers
JPH04164057A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPH0570411A (en) Production of aliphatic triamine
CN113801051B (en) Preparation method of N-succinimide
SK280401B6 (en) Process for the preparation of aminopropionitriles
CN108530321B (en) Method for synthesizing other amidines from one amidine
JP7509573B2 (en) Method for producing oxystyrene compounds having polysubstituted ether substituents
US4195034A (en) Process for the manufacture of N-(substituted)-3-aminoacrylonitriles
JPS6126985B2 (en)
JPS63198654A (en) Production of methylene imine compound
CN111793088A (en) Synthetic method of alkenyl dithiophosphate compound
JPH0510332B2 (en)